首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling‐based approaches are expensive and provide low‐density spatial and temporal information. Time‐lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation‐related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling‐based approaches for assessing emplacement and monitoring biostimulation‐based remediation. Field studies demonstrating the ability of time‐lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment‐related geochemical properties. Crosshole radar zero‐offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time‐lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost‐effective surface‐based ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance.  相似文献   

2.
Toxic and carcinogenic effects of arsenic in drinking water continue to impact people throughout the world and arsenic remains common in groundwater at cleanup sites and in areas with natural sources. Advances in groundwater remediation are needed to attain the low concentrations that are protective of human health and the environment. In this article, we present the successful use of a permeable reactive barrier (PRB) utilizing sulfate reduction coupled with zero‐valent iron (ZVI) to remediate the leading edge of a dissolved arsenic plume in a wetland area near Tacoma, Washington. A commercially available product (EHC‐M®, Adventus Americas Inc., Freeport, Illinois) that contains ZVI, organic carbon substrate, and sulfate was injected into a reducing, low‐seepage‐velocity aquifer elevated in dissolved arsenic and iron from a nearby, slag‐containing landfill. Removal effectiveness was strongly correlated with sulfate concentration, and was coincident with temporary redox potential (Eh) reductions, consistent with arsenic removal by iron sulfide precipitation. The PRB demonstrates that induced sulfate reduction and ZVI are capable of attaining a regulatory limit of 5 µg/L total arsenic, capturing of 97% of the arsenic entering the PRB, and sustaining decreased arsenic concentrations for approximately 2 years, suggesting that the technology is appropriate for consideration at other sites with similar hydrogeochemical conditions. The results indicate the importance of delivery and longevity of minimum sulfate concentrations and of maintaining sufficient dissolved organic carbon and/or microscale ZVI to precipitate FeS, a precursor phase to arsenic‐bearing pyrite that may provide a stable, long‐term sink for arsenic.  相似文献   

3.
ZVI‐Clay is an emerging remediation approach that combines zero‐valent iron (ZVI)‐mediated degradation and in situ stabilization of chlorinated solvents. Through use of in situ soil mixing to deliver reagents, reagent‐contaminant contact issues associated with natural subsurface heterogeneity are overcome. This article describes implementation, treatment performance, and reaction kinetics during the first year after application of the ZVI‐Clay remediation approach at Marine Corps Base Camp Lejeune, North Carolina. Primary contaminants included trichloroethylene, 1,1,2,2‐tetrachloroethane, and related natural degradation products. For the field application, 22,900 m3 of soils were treated to an average depth of 7.6 m with 2% ZVI and 3% sodium bentonite (dry weight basis). Performance monitoring included analysis of soil and water samples. After 1 year, total concentrations of chlorinated volatile organic compounds (CVOCs) in soil samples were decreased by site‐wide average and median values of 97% and >99%, respectively. Total CVOC concentrations in groundwater were reduced by average and median values of 81% and >99%, respectively. In several of the soil and groundwater monitoring locations, reductions in total CVOC concentrations of greater than 99.9% were apparent. Further reduction in concentrations of chlorinated solvents is expected with time. Pre‐ and post‐mixing average hydraulic conductivity values were 1.7 × 10?5 and 5.2 × 10?8 m/s, respectively, indicating a reduction of about 2.5 orders of magnitude. By achieving simultaneous contaminant mass depletion and hydraulic conductivity reduction, contaminant flux reductions of several orders of magnitude are predicted.  相似文献   

4.
Agricultural subsurface drainage waters containing nutrients (nitrate/phosphate) and pesticides are discharged into neighboring streams and lakes, frequently producing adverse environmental impacts on local, regional, and national scales. On‐site drainage water filter treatment systems can potentially prevent the release of agricultural contaminants into adjacent waterways. Zero valent iron (ZVI) and sulfur‐modified iron (SMI) are two types of promising filter materials that could be used within these treatment systems. Therefore, water treatment capabilities of three ZVI and three SMI filter materials were evaluated in the laboratory. Laboratory evaluation included saturated falling‐head hydraulic conductivity tests, contaminant removal batch tests, and saturated solute transport column experiments. The three ZVI and the three SMI filter materials, on average, all had a sufficient hydraulic conductivity greater than 1 × 10–3 cm/s. Batch test results showed a phosphate decrease of at least 94% for all tests conducted with the ZVI and SMI. Furthermore, the three SMI filter materials removed at least 86% of the batch test nitrate originally present, while batch tests for one of the ZVI filter materials exhibited an 88% decrease in the pesticide, atrazine. Saturated solute transport column experiments were carried on the best ZVI filter material, or the best SMI filter material, or both together, in order to better evaluate drainage water treatment effectiveness and efficiency. Results from these column tests additionally document the drainage water treatment ability of both ZVI and SMI to remove the phosphate, the ability of SMI to remove nitrate, and the ability of a select ZVI material to remove atrazine. Consequently, these findings support further investigation of ZVI and SMI subsurface drainage water treatment capabilities, particularly in regard to small‐ and large‐scale field tests.  相似文献   

5.
Degradation of an anthraquinone dye, disperse blue E‐4R, by zero‐valent iron (ZVI)/ozone (O3) was carried out in a series of laboratory‐scale experiments. The obtained results indicated that this method was much more effective than single ZVI or single O3 at removal of color, chemical oxygen demand, total organic carbon, and adsorbable organic halogen. The effect of several related operational parameters, including O3 dosage, zero valent iron dosage, temperature, pH value, and ZVI particle size were also discussed. Finally, we tried to decontaminate some actual samples with this method, which showed high treatment efficiency to the sample pretreated by conventional activated sludge.  相似文献   

6.
Heterogeneity of hydraulic properties in aquifers may lead to contaminants residing in lower‐permeability zones where it is difficult to deliver remediation amendments using conventional injection processes. The focus of this study is to examine use of a shear‐thinning fluid (STF) to improve the uniformity of remedial amendment distribution within a heterogeneous aquifer. Previous studies have demonstrated the significant potential of STFs for improving remedial amendment delivery in heterogeneous aquifers, but quantitative evaluation of these improvements from field applications is lacking. A field‐scale test was conducted that compares data from successive injection of a tracer in water followed by injection of a tracer in an STF to evaluate the impact of the STF on tracer distribution uniformity in the presence of permeability contrasts within the targeted injection zone. Data from tracer breakthrough at multiple depth‐discrete monitoring intervals and electrical resistivity tomography (ERT) showed that inclusion of STF in the injection solution improved the distribution of the injected fluid within the targeted treatment zone. One improvement was a reduction in the movement of injected fluids through high‐permeability pathways, as evidenced by slower breakthrough of tracer at monitoring locations where breakthrough in baseline tracer‐only injection data was faster. In addition, STF‐amended injection solutions arrived faster and to a greater extent in monitoring locations within low‐permeability zones. ERT data showed that the STF injection covered a higher percentage of a two‐dimensional cross section within the injection interval between the injection well and a monitoring well about 3 m away.  相似文献   

7.
MIN3P, a multicomponent reactive transport model for variably saturated porous media, is used to simulate the outputs of column tests carried out using zero valent iron (ZVI) for nickel contaminated groundwater remediation. The objective of this study is to investigate the main chemical reactions involved in contaminant removal and the main causes of the reactivity decline of ZVI over time. According to the results of the model the major causes of ZVI reactivity loss is identified in the mineral precipitation of α‐FeOOH on iron surface that probably caused ZVI passivation and led to a decline of the electron transfer rate. An existing empirical relationship between mineral precipitation and the reactivity loss of ZVI, included in the model, reproduced the changes in nickel removal observed during different laboratory column tests.  相似文献   

8.
Recently, increased industrial and agriculture activities have resulted in toxic metal ions, which has increased public concern about the quality of surface and groundwater. Various types of physical, biological, and chemical approaches have been developed to remove surface and groundwater metal ions contaminants. Among these practices, zero‐valent iron (ZVI) is the most studied reactive material for environmental clean‐up over the last two decade and so. Although ZVI can remove the contaminants even more efficiently than any other reactive materials. However, low reactivity due to its intrinsic passive layer, narrow working pH, and the loss of hydraulic conductivity due to the precipitation of metal hydroxides and metal carbonates limits its wide‐scale application. The aim of this work is to document properties, synthesis, and reaction mechanism of ZVI for the treatment of metal ions from the surface and groundwater in recent 10 years (2008–2018). So far, different modified techniques such as conjugation with support, bimetal alloying, weak magnetic field, and ZVI/oxidant coupling system have been developed to facilitate the use of ZVI in various environmental remediation scenarios. However, some challenges still remain to be addressed. Therefore, development and research in this field are needed to overcome or mitigate these limitations.  相似文献   

9.
Approximately 190 kg of 2 μm‐diameter zero‐valent iron (ZVI) particles were injected into a test zone in the top 2 m of an unconfined aquifer within a trichloroethene (TCE) source area. A shear‐thinning fluid was used to enhance ZVI delivery in the subsurface to a radial distance of up to 4 m from a single injection well. The ZVI particles were mixed in‐line with the injection water, shear‐thinning fluid, and a low concentration of surfactant. ZVI was observed at each of the seven monitoring wells within the targeted radius of influence during injection. Additionally, all wells within the targeted zone showed low TCE concentrations and primarily dechlorination products present 44 d after injection. These results suggest that ZVI can be directly injected into an aquifer with shear‐thinning fluids to induce dechlorination and extends the applicability of ZVI to situations where other emplacement methods may not be viable.  相似文献   

10.
Abiotic degradation of chlorinated solvents by reactive iron minerals such as iron sulfides, magnetite, green rust, and other Fe(II)‐containing minerals has been observed in both laboratory and field studies. These reactive iron minerals form under iron‐ and sulfate‐reducing conditions which are commonly found in permeable reactive barriers (PRBs), enhanced reductive dechlorination (ERD) treatment locations, landfills, and aquifers that are chemically reducing. The objective of this review is to synthesize current understanding of abiotic degradation of chlorinated solvents by reactive iron minerals, with special focus on how abiotic processes relate to groundwater remediation. Degradation of chlorinated solvents by reactive minerals can proceed through reductive elimination, hydrogenolysis, dehydrohalogenation, and hydrolysis reactions. Degradation products of abiotic reactions depend on degradation pathways and parent compounds. Some degradation products (e.g., acetylene) have the potential to serve as a signature product for demonstrating abiotic reactions. Laboratory and field studies show that various minerals have a range of reactivity toward chlorinated solvents. A general trend of mineral reactivity for degradation of chlorinated solvents can be approximated as follows: disordered FeS > FeS > Fe(0) > FeS2 > sorbed Fe2+ > green rust = magnetite > biotite = vermiculite. Reaction kinetics are also influenced by factors such as pH, natural organic matter (NOM), coexisting metal ions, and sulfide concentration in the system. In practice, abiotic reactions can be engineered to stimulate reactive mineral formation for groundwater remediation. Under appropriate site geochemical conditions, abiotic reactions can occur naturally, and can be incorporated into remedial strategies such as monitored natural attenuation.  相似文献   

11.
The capacity for subsurface sediments to sequester radionuclide contaminants, such as uranium (U), and retain them after bioremediation efforts are completed is critical to the long‐term stewardship of re‐mediated sites. In U bioremediation strategies, carbon amendment stimulates bioreduction of U(VI) to U(IV), immobilizing it within the sediments. Sediments enriched in natural organic matter are naturally capable of sequestering significant U, but may serve as sources to the aquifer, contributing to plume persistence. Two types of organic‐rich sediments were compared to better understand U release mechanisms. Sediments that were artificially primed for U removal were retrieved from an area previously biostimulated while detrital‐rich sediments were collected from a location never subject to amendment. Batch incubations demonstrated that primed sediments rapidly removed uranium from the groundwater, whereas naturally reduced sediments released a sizeable portion of U before U(VI)‐reduction commenced. Column experiments confirmed that U release persisted for 65 pore volumes in naturally reduced sediments, demonstrating their sink‐source behavior. Acetate addition to primed sediments shifted the microbial community from sulfate‐reducing bacteria within Desulfobacteraceae to the iron‐reducing Geobacteraceae and Firmicutes, associated with efficient U(VI) removal and retention, respectively. In contrast, Geobacteraceae communities in naturally reduced sediments were replaced by sequences with similarity to Pseudomonas spp. during U release, while U(VI) removal only occurred with enrichment of Firmicutes. These investigations stress the importance of characterizing zones with heterogeneous carbon pools at U‐contaminated sites prior to the determination of a remedial strategy to identify areas, which may contribute to long‐term sourcing of the contaminants.  相似文献   

12.
13.
A pilot‐scale zero valent iron (ZVI) Permeable Reactive Barrier (PRB) was installed using an azimuth‐controlled ‐vertical hydrofracturing at an industrial facility to treat a chlorinated Volatile Organic Compound (VOC) plume. Following ZVI injection, no significant reduction in concentration was observed to occur with the exception of some multilevel monitoring wells, which also showed high levels of total organic carbon (TOC). These patterns suggested that the zero valent iron was not well distributed in the PRB creating leaky conditions. The geochemical data indicated reducing conditions in these areas where VOC reduction was observed, suggesting that biotic processes, associated to the guar used in the injection of the iron, could be a major mechanism of VOC degradation. Compound‐Specific Isotope Analysis (CSIA) using both carbon and chlorine stable isotopes were used as a complementary tool for evaluating the contribution of abiotic and biotic processes to VOC trends in the vicinity of the PRB. The isotopic data showed enriched isotope values around the PRB compared to the isotope composition of the VOC source confirming that VOC degradation is occurring along the PRB. A batch experiment using site groundwater collected near the VOC source and the ZVI used in the PRB was performed to evaluate the site‐specific abiotic isotopic fractionation patterns. Field isotopic trends, typical of biodegradations were observed at the site and were different from those obtained during the batch abiotic experiment. These differences in isotopic trends combined with changes in VOC concentrations and redox parameters suggested that biotic processes are the predominant pathways involved in the degradation of VOCs in the vicinity of the PRB.  相似文献   

14.
During thermally enhanced in situ remediation of soils and ground water, gas streams are generated with varying temperatures, moisture content, and organic compound concentrations. In this study, we evaluated the performance of tin dioxide sensors for measuring trichloroethylene (TCE) concentrations in gas streams from a thermally enhanced soil vapor extraction system. Temperature, pressure, moisture content, and vapor flow rates affected the resistivity of the sensors, and thus the signal. When fluctuations in these parameters were eliminated by condensing excess water and healing to a constant temperature prior to measurement, the sensors provided reliable in-line measurement of TCE concentrations. Gas tracers such as methane were easily monitored in-line, providing quick and inexpensive data on subsurface vapor flow velocities and direction.  相似文献   

15.
The fate of hydrocarbons in the subsurface near Bemidji, Minnesota, has been investigated by a multidisciplinary group of scientists for over a quarter century. Research at Bemidji has involved extensive investigations of multiphase flow and transport, volatilization, dissolution, geochemical interactions, microbial populations, and biodegradation with the goal of providing an improved understanding of the natural processes limiting the extent of hydrocarbon contamination. A considerable volume of oil remains in the subsurface today despite 30 years of natural attenuation and 5 years of pump‐and‐skim remediation. Studies at Bemidji were among the first to document the importance of anaerobic biodegradation processes for hydrocarbon removal and remediation by natural attenuation. Spatial variability of hydraulic properties was observed to influence subsurface oil and water flow, vapor diffusion, and the progression of biodegradation. Pore‐scale capillary pressure‐saturation hysteresis and the presence of fine‐grained sediments impeded oil flow, causing entrapment and relatively large residual oil saturations. Hydrocarbon attenuation and plume extent was a function of groundwater flow, compound‐specific volatilization, dissolution and biodegradation rates, and availability of electron acceptors. Simulation of hydrocarbon fate and transport affirmed concepts developed from field observations, and provided estimates of field‐scale reaction rates and hydrocarbon mass balance. Long‐term field studies at Bemidji have illustrated that the fate of hydrocarbons evolves with time, and a snap‐shot study of a hydrocarbon plume may not provide information that is of relevance to the long‐term behavior of the plume during natural attenuation.  相似文献   

16.
Pre‐ and post‐remediation data sets are used herein to assess the effectiveness of remedial measures implemented in the headwaters of the Mineral Creek watershed, where contamination from hard rock mining has led to elevated metal concentrations and acidic pH. Collection of pre‐ and post‐remediation data sets generally followed the synoptic mass balance approach, in which numerous stream and inflow locations are sampled for the constituents of interest and estimates of streamflow are determined by tracer dilution. The comparison of pre‐ and post‐remediation data sets is confounded by hydrologic effects and the effects of temporal variation. Hydrologic effects arise due to the relatively wet conditions that preceded the collection of pre‐remediation data, and the relatively dry conditions associated with the post‐remediation data set. This difference leads to a dilution effect in the upper part of the study reach, where pre‐remediation concentrations were diluted by rainfall, and a source area effect in the lower part of the study reach, where a smaller portion of the watershed may have been contributing constituent mass during the drier post‐remediation period. A second confounding factor, temporal variability, violates the steady‐state assumption that underlies the synoptic mass balance approach, leading to false identification of constituent sources and sinks. Despite these complications, remedial actions completed in the Mineral Creek headwaters appear to have led to improvements in stream water quality, as post‐remediation profiles of instream load are consistently lower than the pre‐remediation profiles over the entire study reach for six of the eight constituents considered (aluminium, arsenic, cadmium, copper, iron, and zinc). Concentrations of aluminium, cadmium, copper, lead, and zinc remain above chronic aquatic‐life standards, however, and additional remedial actions may be needed. Future implementations of the synoptic mass balance approach should be preceded by an assessment of temporal variability, and modifications to the synoptic sampling protocol should be made if necessary. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

17.
Continuous remediation monitoring using sensors is potentially a more effective and inexpensive alternative to current methods of sample collection and analysis. Gaseous components of a system are the most mobile and easiest to monitor. Continuous monitoring of soil gases such as oxygen, carbon dioxide, and contaminant vapors can provide important quantitative information regarding the progress of bioremediation efforts and the area of influence of air sparging or soil venting. Laboratory and field tests of a commercially available oxygen sensor show that the subsurface oxygen sensor provides rapid and accurate data on vapor phase oxygen concentrations. The sensor is well suited for monitoring gas flow and oxygen consumption in the vadose zone during air sparging and bioventing. The sensor performs well in permeable, unsaturated soil environments and recovers completely after being submerged during temporary saturated conditions. Calibrations of the in situ oxygen sensors were found to be stable after one year of continuous subsurface operation. However, application of the sensor in saturated soil conditions is limited. The three major advantages of this sensor for in situ monitoring arc as follows: (1) it allows data acquisition at any specified time interval; (2) it provides potentially more accurate data by minimizing disturbance of subsurface conditions; and (3) it minimizes the cost of field and laboratory procedures involved in sample retrieval and analysis.  相似文献   

18.
Geochemical effects on metals following permanganate oxidation of DNAPLs   总被引:2,自引:0,他引:2  
Crimi ML  Siegrist RL 《Ground water》2003,41(4):458-469
The application of in situ chemical oxidation for dense, nonaqueous phase liquid (DNAPL) remediation requires delivery of substantial levels of oxidant chemicals into the subsurface to degrade target DNAPLs and to satisfy natural oxidant demand. This practice can raise questions regarding changes in subsurface conditions, yet information regarding potential effects, especially at the field scale, has been lacking. This paper describes an evaluation of the effects on metals associated with in situ chemical oxidation using potassium permanganate at Launch Complex 34 (LC34), Cape Canaveral Air Station, Florida. At LC34, high concentrations of permanganate (1 to 2 wt%) were injected into the subsurface as part of a demonstration of DNAPL remediation technologies. In a companion experimental effort at the Colorado School of Mines, field samples were characterized and laboratory batch and mini-column studies were completed to assess effects of permanganate oxidation on metals in the subsurface one year after completion of the field demonstration. Results indicated there was potential for long-term immobilization of a portion of introduced manganese and no treatment-induced loss in subsurface permeability due to deposition of manganese oxides particles, which are a product of the oxidation reactions. Permanganate treatment did cause elevated manganese, chromium, and nickel concentrations in site ground water within the treated region. Some of these metals effects can be attenuated during downgradient flow through uncontaminated and untreated aquifer sediments.  相似文献   

19.
An injectable permeable reactive barrier (PRB) technology was developed to sequester 90Sr in groundwater through the in situ formation of calcium‐phosphate mineral phases, specifically apatite that incorporates 90Sr into the chemical structure. This injectable barrier technology extends the PRB concept to sites where groundwater contaminants are too deep or where site conditions otherwise preclude the application of more traditional trench‐emplaced barriers. An integrated, multiscale development and testing approach was used that included laboratory bench‐scale experiments, an initial pilot‐scale field test, and the emplacement and evaluation of a 300‐feet‐long treatability‐test‐scale PRB. The apatite amendment formulation uses two separate precursor solutions, one containing a Ca‐citrate complex and the other a Na‐phosphate solution, to form apatite precipitate in situ. Citrate is needed to keep calcium in solution long enough to achieve a more uniform and areally extensive distribution of precipitate formation. In the summer of 2008, the apatite PRB technology was applied as a 91‐m‐long (300 feet) PRB on the downgradient edge of a 90Sr plume beneath the Hanford Site in Washington State. The technology was deployed to reduce 90Sr flux discharging to the Columbia River. Performance assessment monitoring data collected to date indicate that the barrier is meeting treatment objectives (i.e., 90% reduction in 90Sr concentration). The average reduction in 90Sr concentrations at four downgradient compliance monitoring locations was 95% relative to the high end of the baseline range approximately 1 year after treatment, and continues to meet remedial objectives more than 4 years after treatment.  相似文献   

20.
In situ remediation technologies have the potential to alter subsurface properties such as natural organic matter (NOM) content or character, which could affect the organic carbon‐water partitioning behavior of chlorinated organic solvents, including dense nonaqueous phase liquids (DNAPLs). Laboratory experiments were completed to determine the nature and extent of changes in the partitioning behavior of trichloroethene (TCE) caused by in situ chemical oxidation or in situ surfactant flushing. Sandy porous media were obtained from the subsurface at a site in Orlando, Florida. Experiments were run using soil slurries in zero‐headspace reactors (ZHRs) following a factorial design to study the effects of porous media properties (sand vs. loamy sand with different total organic carbon [TOC] contents), TCE concentration (DNAPL presence or absence), and remediation agent type (potassium permanganate vs. activated sodium persulfate, Dowfax 8390 vs. Tween 80). Results revealed that the fraction of organic carbon (foc) of porous media after treatment by oxidants or surfactants was higher or lower relative to that in the untreated media controls. Isotherm experiments were run using the treated and control media to measure the distribution coefficient (Kd) of TCE. Organic carbon‐water partitioning coefficient values (Koc) calculated from the experimental data revealed that Koc values for TCE in the porous media were altered via treatment using oxidants and surfactants. This alteration can affect the validity of estimates of contaminant mass remaining after remediation. Thus, potential changes in partitioning behavior should be considered to help avoid decision errors when judging the effectiveness of an in situ remediation technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号