首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Petrological, oxygen isotope and 40Ar/39Ar studies were used to constrain the Tertiary metamorphic evolution of the lower tectonic unit of the Cyclades on Tinos. Polyphase high-pressure metamorphism reached pressures in excess of 15 kbar, based on measurements of the Si content in potassic white mica. Temperatures of 450–500° C at the thermal peak of high-pressure metamorphism were estimated from critical metamorphic assemblages, the validity of which is confirmed by a quartz–magnetite oxygen isotope temperature of 470° C. Some 40Ar/39Ar spectra of white mica give plateau ages of 44–40 Ma that are considered to represent dynamic recrystallization under peak or slightly post-peak high-pressure metamorphic conditions. Early stages in the prograde high-pressure evolution may be documented by older apparent ages in the high-temperature steps of some spectra. Eclogite to epidote blueschist facies mineralogies were partially or totally replaced by retrograde greenschist facies assemblages during exhumation. Oxygen isotope thermometry of four quartz–magnetite pairs from greenschist samples gives temperatures of 440–470° C which cannot be distinguished from those deduced for the high-pressure event. The exhumation and overprint is documented by decreasing ages of 32–28 Ma in some greenschists and late-stage blueschist rocks, and ages of 30–20 Ma in the lower temperature steps of the Ar release patterns of blueschist micas. Almost flat parts of Ar–Ar release spectra of some greenschist micas gave ages of 23–21 Ma which are assumed to represent incomplete resetting caused by a renewed prograde phase of greenschist metamorphism. Oxygen isotope compositions of blueschist and greenschist facies minerals show no evidence for the infiltration of a δ18O-enriched fluid. Rather, the compositions indicate that fluid to rock ratios were very low, the isotopic compositions being primarily controlled by those of the protolith rocks. We assume that the fundamental control catalysing the transformation of blueschists into greenschists and the associated resetting of their isotopic systems was the selective infiltration of metamorphic fluid. A quartz–magnetite sample from a contact metamorphic skarn, taken near the Miocene monzogranite of Tinos, gave an oxygen isotope temperature of 555° C and calculated water composition of 9.1%. The value of δ18O obtained from this water is consistent with a primary magmatic fluid, but is lower than that of fluids associated with the greenschist overprint, which indicates that the latter event cannot be directly related to the monozogranite intrusion.  相似文献   

2.
Abstract 40Ar/39Ar age spectrum analysis of phengite separates from Naxos, part of the Attic Cycladic Metamorphic Belt in Greece, indicates that cooling following high-pressure, low- to medium-temperature metamorphism, M1, occurred about 50 Ma ago. Phengite has 40Ar* gradients that suggest that part of the scatter observed in conventional K–Ar ages was caused by diffusion of radiogenic argon from the minerals during a younger metamorphism, M2. In central Naxos, this metamorphism (M2) has overprinted the original mineral assemblages completely, and is associated with development of a thermal dome. Excellent 40Ar/39Ar plateaus at 15.0 ± 0.1 Ma, 11.8 ± 0.1 Ma, and 11.4 ± 0.1 Ma, obtained on hornblende, muscovite and biotite, respectively, from the migmatite zone, indicate that relatively rapid cooling followed the M2 event, and that no significant thermal overprinting occurred subsequent to M2. Toward lower M2 metamorphic grade, 40Ar/39Ar plateau ages of hornblendes increase to 19.8 ± 0.1 Ma; concomitantly the proportion of excess 40Ar in the spectra increases as well. We propose that the peak of M2 metamorphism occurred beween 15.0 and 19.8 Ma ago. K–Ar ages of biotites from a granodiorite on the west coast are indistinguishable from those found in the metamorphic complex, and hornblende K–Ar ages from the same samples are in the range 12.1–13.6 Ma. As the latter ages are somewhat younger than most ages obtained from the metamorphic complex, intrusion of the granodiorite most likely followed the peak of the M2 metamorphism. The metamorphic evolution of Naxos is consistent with rapid crustal thickening during the Cretaceous or early Tertiary, causing conditions at which supracrustal rocks experienced pressures in the range 900–1500 MPa. Transition to normal crustal thicknesses ended the M1 metamorphism about 50 Ma ago. The M2 metamorphism and granodiorite intrusion occurred during a period of heat input into the crust, possibly related to the migration of the Hellenic volcanic ar°C in a southerly direction through the area.  相似文献   

3.
Abstract 40Ar/39Ar data collected from hornblende, muscovite, biotite and K-feldspar constrain the P-T-t history of the Cordillera Darwin metamorphic complex, Tierra del Fuego, Chile. These data show two periods of rapid cooling, the first between c. 500 and c. 325° C at rates ≥25° C Ma-1, and the second between c. 250 and c. 200°C. For high-T cooling, 40Ar/39Ar ages are spatially disparate and depend on metamorphic grade: rocks that record deeper and hotter peak metamorphic conditions have younger 40Ar/39Ar ages. Sillimanite- and kyanite-grade rocks in the south-central part of the complex cooled latest: 40Ar/39Ar Hbl = 73–77 Ma, Ms = 67–70 Ma, Bt = 68 Ma, and oldest Kfs = 65 Ma. Thermobarometry and P-T path studies of these rocks indicate that maximum burial of 26–30 km at 575–625° C may have been followed by as much as 10 km of exhumation with heating of 25–50° C. Staurolite-grade rocks have intermediate 40Ar/39Ar ages: Hbl = 84–86 Ma, Ms = 71 Ma, Bt = 72–75 Ma, and oldest Kfs = 80 Ma. Thermobarometry on these rocks indicates maximum burial of 19–26 km at temperatures of 550–580° C. Garnet-grade rocks have the oldest ages: Ms = 72 Ma and oldest Kfs = 91 Ma; peak P-T conditions were 525–550° C and 5–7 kbar. Regional metamorphic temperatures for greenschist facies rocks south of the Beagle Channel did not exceed c. 300–325° C from 110 Ma to the present, although the rocks are only 2 km from kyanite-bearing rocks to the north. One-dimensional thermal models allow limits to be placed on exhumation rates. Assuming a stable geothermal gradient of 20–25° C km-1, the maximum exhumation rate for the St-grade rocks is c. 2.5 mm yr-1, whereas the minimum exhumation rate for the Ky + Sil-grade rocks is c. 1.0 mm yr-1. Uniform exhumation rates cannot explain the disparity in cooling histories for rocks at different grades, and so early differential exhumation is inferred to have occurred. Petrological and geochronological comparisons with other metamorphic complexes suggest that single exhumation events typically remove less than c. 20 km of overburden. This behaviour can be explained in terms of a continental deformation model in which brittle extensional faults in the upper crust are rooted to shallowly dipping ductile shear zones or regions of homogeneous thinning at mid- to deep-crustal levels. The P-T-t data from Cordillera Darwin (1) are best explained by a ‘wedge extrusion’model, in which extensional exhumation in the southern rear of the complex was coeval with thrusting in the north along the margin of the complex and into the Magallanes sedimentary basin, (2) suggest that differential exhumation occurred initially, with St-grade rocks exhuming faster than Ky + Sil-grade rocks, and (3) show variations in cooling rate through time that correlate both with local deformation events and with changes in plate motions and interactions.  相似文献   

4.
Abstract The St Malo region in north-west France contains migmatites and anatectic granites derived by partial melting of metasedimentary protoliths during Cadomian orogenesis at c. 540 Ma. Previously reported Rb–Sr model ages for muscovite and biotite range from c. 550 to c. 300 Ma, and suggest variable resetting of mineral isotopic systems. These rocks display microscopic evidence for variably intense Cadomian intracrystalline plastic strain but record no obvious evidence of penetrative Palaeozoic regional deformation. 40Ar/39Ar mineral ages have been determined to evaluate better the extent, timing and significance of Palaeozoic overprinting. Eleven muscovite concentrates and one whole-rock phyllite have been prepared from various units exposed in the St Malo and adjacent Mancellian regions. In the Mancellian region, muscovite from two facies of the Bonnemain Granite Complex record 40Ar/39Ar plateau ages of c. 527 and 521 Ma. An internally discordant 40Ar/39Ar release spectrum characterizes muscovite from protomylonitic granite within the Cadomian Alexain-Deux Evailles-Izé Granite Complex, and probably records the effects of Variscan displacement along the North Armorican Shear Zone. Muscovite concentrates from anatectic granite and from Cadomian mylonites along ductile shear zones within the north-western sector of the St Malo region exhibit internally discordant 40Ar/39Ar release spectra which suggest variable and partial late Palaeozoic rejuvenation. By contrast, muscovite concentrates from samples of variably mylonitic Brioverian metasedimentary rocks exposed within the south-eastern sector of the St Malo region display internally concordant apparent age spectra which define plateaux of 326–320 Ma. A whole-rock phyllite sample from Brioverian metasedimentary rocks exposed along the eastern boundary of the St Malo region displays an internally discordant argon release pattern which is interpreted to reflect the effects of a partial late Palaeozoic thermal overprint. Muscovite from the Plélan granite, part of the Variscan Plélan-Bobital Granite Complex, yields a 40Ar/39Ar plateau age of c. 307 Ma. The 40Ar/39Ar results indicate that Cadomian rocks of the St Malo region have undergone a widespread and variable Palaeozoic (Carboniferous) rejuvenation of intracrystalline argon systems which apparently did not affect the Mancellian region. This rejuvenation was not accompanied by penetrative regional deformation, and was probably of a static thermal–hydrothermal origin. The heat source for rejuvenation was probably either the result of heating during Variscan extension or advection from Variscan granites which are argued to underlie the St Malo region.  相似文献   

5.
The Schistes Lustrés (SL) suture zone occupies a key position in the Alpine chain between the high‐pressure (HP) Brianconnais domain and the ultrahigh‐pressure (UHP) Dora Maira massif, and reached subduction depths ranging from c. 40–65 km (Cottian Alps). In order to constrain the timing of HP metamorphism and subsequent exhumation, several phengite generations were differentiated, on the basis of habit, texture, paragenesis and chemistry, as belonging to the first or second exhumation episode, respectively, D2 or D3, or to earlier stages of the tectono‐metamorphic evolution. Ten carefully selected samples showing D2, D3 (D2 + D3), or earlier (mostly peak temperature) phengite population(s) were subjected to laser probe 40Ar/39Ar analysis. The data support the results of the petrostructural study with two distinct age groups (crystallization ages) for D2 and D3 phengite, at 51–45 and 38–35 Ma, respectively. The data also reveal a coherent age cluster, at 62–55 Ma, for peak temperature phengite associated with chloritoid which were preserved in low strain domains. The age of the D3 event in the SL complex appears very similar to ages recently obtained for greenschist facies deformation on the border of most internal crystalline massifs. Exhumation rates of the order of 1–2 mm yr?1 are obtained for the SL complex, which are compatible with velocities documented for accretionary wedge settings. Similarly, cooling velocities are only moderate (c.5 °C Myr?1), which is at variance with recent estimates in the nearby UHP massifs.  相似文献   

6.
Main part of the Siberian Traps Large Igneous Province was formed in a short time-span at the Permo-Triassic boundary c. 250 Ma. New 40Ar/39Ar dating results for the Usol'skii dolerite sill in south-eastern part of the province indicate its probable emplacement c. 6 Myr after the main Permo-Triassic magmatic phase. Compilation of the published 40Ar/39Ar and U-Pb ages implies that basaltic and related magmatism lasted in total as long as 22–26 Myr. Therefore, similar to other large igneous provinces, magmatism of the Siberian Traps combined voluminous short-lived and less prominent long-lived events.  相似文献   

7.
Abstract The Sambagawa metamorphic belt exposed in central Shikoku records a high-P–T metamorphic event. It is represented by the Oboke nappe and structurally overlying, internally imbricated, Besshi nappe complex. These major structural units are in ductile thrust contact. A melange is developed along a ductile internal tectonic contact within the Besshi nappe complex. Tectonic emplacement of a high-T enclave (Sebadani eclogite) in the melange zone resulted in the development of a contact metamorphic aureole within the host Sambagawa rocks. 36Ar/40Ar versus 39Ar/40Ar isotope correlation ages recorded by hornblende from the Sambagawa basic schists which surround the Sebadani enclave are 83.4 ± 0.3 Ma (within contact aureole) and 83.6 ± 0.5 Ma (outside aureole). 40Ar/39Ar plateau ages recorded by muscovite from the same samples are 87.9 ± 0.3 and 89.3 ± 0.4 Ma. Amphibole from the amphibolite within the Sebadani enclave records isotope correlation ages of 93.7 ± 1.1 and 96.5 ± 0.7 Ma (massive interior) and 84.6 ± 1.2 Ma (marginal shear zone). Amphibole within the massive amphibolite is significantly higher in XMg than that within the host Sambagawa basic schists. The older ages recorded by amphibole within the Sebadani enclave are interpreted to date cooling through somewhat higher closure temperatures than which characterize the more Fe-rich amphibole in surrounding schists. The younger amphibole age recorded within the marginal shear zone probably indicates that crystallization of amphibole continued until cooling through the relatively lower amphibole closure temperatures. These results, together with the previously published 40Ar/39Ar ages of the Sambagawa schists, suggest: (i) metamorphic culmination occurred in the Besshi nappe complex at c. 100–90 Ma; (ii) at c. 95 Ma the Besshi nappe complex was internally imbricated and tectonic enclaves were emplaced; (iii) at c. 85 Ma, the composite Besshi nappe was rapidly exhumed and tectonically emplaced over the Oboke nappe (which attained peak metamorphic conditions at c. 75 Ma); (iv) the Besshi and Oboke nappe complexes were further exhumed as a coherent tectonic unit and unconformably overlain by the Eocene Kuma Group at c. 50 Ma.  相似文献   

8.
Abstract. Ages for thirty adularia samples collected from various veins were in the Hishikari gold deposit determined by 40Ar/39Ar dating to constrain the timing of adularia‐quartz vein formation and to determine the temporal change in temperature of hydrothermal fluid. Plateau ages were obtained from all adularia samples, and significant excess 40Ar is not recognized from inverse isochrones. The duration of mineralization within individual veins was determined by adularia ages from the early and late stages of mineralization within the same vein. The durations of mineralization in the Daisen‐1, Daisen‐3, Hosen‐2 and Keisen‐3 veins in the Honko‐Sanjin zone were 7,000, 140,000, 160,000 and 170,000 years, respectively. The durations of mineralization in the Seisen‐2 and Yusen‐1–2 veins in the Yamada zones were 360,000 and 320,000 years, respectively. Mineralization lasted for a relatively longer period in individual veins at the Yamada zone. Mineralization ages from the Honko‐Sanjin zone range from 1.04 to 0.75 Ma, and most mineralization ages are concentrated in a short period from 1.01 to 0.88 Ma. In contrast, mineralization ages for the Yamada zone range from 1.21 to 0.64 Ma. These results indicate that fracturing and subsequent vein formation lasted for a longer period in the Yamada zone (about 570,000 years) compared with those events in the Honko‐Sanjin zone (about 290,000 years). The homogenization temperatures of liquid‐rich fluid inclusions in columnar adularia used for age determination were determined to be 223°C on average, and most of these temperatures range from 180 to 258d?C. No significant temporal change in homogenization temperature is recognized in this study. However, adularia in the Keisen veins indicated higher homogenization temperatures compared with elsewhere in the deposit, suggesting that the principal ascent of mineralizing hydrothermal fluid was via the Keisen veins.  相似文献   

9.
Two samples from the Eclogite Micaschist Complex (EMC) and the Seconda Zona Diorito–Kinzigitica (IIDK) of the Sesia Zone have been studied using a high-spatial resolution laser probe 40Ar/39Ar technique with the aim of investigating the complexities of argon behaviour in metamorphic rocks and comparing their thermal histories. Data from a single large phengite grain from the EMC show a range of ages from mid-Jurassic to Upper Cretaceous. These ‘apparent age’ variations are spatially related to both location within the grain and to intragrain microstructure. Modelling of the data shows that the profile formed by the diffusion of an excess argon component into the grain, parallel to the mica cleavage. Profile asymmetry is explained by temporal variations in microstructural development enabling excess argon to enter the grain at different times in different places. The temperatures of the initiation of deformation and the possible time-scales for the deformation can be calculated as a function of cooling rate. All estimates suggest deformation at greenschist facies, in accord with the observed retrograde mineral assemblage. Absolute temperature estimates for deformation vary by less than 22 °C for different cooling rates of 10 and 30 °C Ma?1 but vary by 80 °C with different estimates of diffusion parameters. The duration of deformation was for at least 2 Ma at 10 °C Ma?1 or 0.7 Ma at 30 °C Ma?1. Biotites from the IIDK sample record a Permian to Upper Cretaceous age range that correlates with grain size, the smallest grain sizes yielding the youngest ages. This relationship is best explained by a partial resetting of biotites during an Alpine thermal event initiated not more than 70 Ma ago. Modelling of these data suggest that the sample never exceeded 300 °C during the Alpine. The profoundly different thermal histories of the two units—the EMC recrystallized at 550 °C whilst the IIDK remained below 300 °C—suggests that they may not have been juxtaposed until much later than the eclogite facies metamorphism.  相似文献   

10.
We present an updated geological evolution of Mount Etna volcano based on new 40Ar/39Ar age determinations and stratigraphic data integrating the previous K/Ar ages. Volcanism began at about 500 ka ago through submarine eruptions on the Gela–Catania Foredeep basin. About 300 ka ago fissure-type eruptions occurred on the ancient alluvial plain of the Simeto River forming a lava plateau. From about 220 ka ago the eruptive activity was localised mainly along the Ionian coast where fissure-type eruptions built a shield volcano. Between 129 and 126 ka ago volcanism shifted westward toward the central portion of the present volcano (Val Calanna–Moscarello area). Furthermore, scattered effusive eruptions on the southern periphery of Etna edifice occurred until about 121 ka ago. The stabilization of the plumbing system on the Valle del Bove area is marked by the building of two small polygenic edifices, Tarderia and Rocche volcanoes. Their eruptive activity was rather coeval ending 106 and 102 ka ago, respectively. During the investigated time-span volcanism in Etna region was controlled by a main E–W extensional tectonic related to the reactivation of Malta Escarpment fault system in eastern Sicily. Electronic supplementary material The online version of this article () contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

11.
An attempt to date deep-sea igneous rocks reliably was made using the 40Ar/39Ar dating technique. It was determined that the 40Ar/39Ar incremental release technique could not be used to eliminate the effects of excess radiogenic 40Ar in deep-sea basalts. Excess 40Ar is released throughout the extraction temperature range and cannot be distinguished from 40Ar generated by in situ40K decay. The problem of the reduction of K-Ar dates associated with sea water alteration of deep-sea igneous rocks could not be resolved using the 40Ar/39Ar technique. Irradiation induced 39Ar loss and/or redistribution in fine-grained and altered igneous rocks results in age spectra that are artifacts of the experimental procedure and only partly reflect the geologic history of the sample. Therefore, caution must be used in attributing significance to age spectra of fine grained and altered deep-sea igneous rocks. Effects of 39Ar recoil are not important for either medium-grained (or coarser) deep-sea rocks or glasses because only a small fraction of the 39Ar recoils to channels of easy diffusion, such as intergranular boundaries or cracks, during the irradiation.  相似文献   

12.
In this paper we present new 40Ar/39Ar data of volcanic ash layers intercalated in the astronomically dated sections of Monte dei Corvi and Monte Gibliscemi (Italy) to obtain better radioisotopic time constraints on the Serravallian/Tortonian boundary and to confirm the intercalibration of radioisotopic and astronomical time proposed by Kuiper et al. [2004 ; Fish Canyon Tuff (FCT)-sanidine at 28.21 ± 0.03 Ma]. The latter intercalibration is supported by astronomically calibrated FCT sanidine ages for two ash layers at Monte Gibliscemi (GiF-1: 28.28 ± 0.04; GiD-3: 28.16 ± 0.04 Ma; ±1 SE). As a consequence, our results support the astronomically calibrated age of 11.608 Ma for the Tortonian Global Stratotype Section and Point and, hence, the tuning of the Serravallian/Tortonian boundary interval. The Ancona and Respighi levels at Monte dei Corvi give a more diffuse picture, possibly because of contamination with detrital or xenocrystic material and the inferior quality of biotite for intercalibration purposes.  相似文献   

13.
Laserprobe 40Ar–39Ar data from fault‐related pseudotachylytes and granitic host‐rocks from the Tatra Mountains (Central Western Carpathians) resolve the controversy over the age of propagation of the sub‐Tatra detachment fault. This major structure has resulted in exhumation of crystalline basement to the north‐west, and subsidence and sediment deposition in the Palaeogene Central Carpathians Basin to the south‐east. Host‐rock biotite ages range from 331 Ma to 322 Ma, and pseudotachylyte spot ages range from 164 Ma to 28 Ma. Of these, the youngest group identify the maximum timing of the early stages of Tatra Mountains uplift, which continued in the Miocene (20–10 Ma) and culminated during the Quaternary. The wide‐ranging older ages are an artefact of an unsupported 40Ar component that is most likely a combination of both inherited and excess argon.  相似文献   

14.
In the Caledonide orogen of northern Sweden, the Seve Nappe Complex is dominated by rift facies sedimentary and mafic rocks derived from the Late Proterozoic Baltoscandian miogeocline and offshore-continent–Iapetus transition. Metamorphic breaks and structural inversions characterize the nappe complex. Within the Sarek Mountains, the Sarektjåkkå Nappe is composed of c. 600-Ma-old dolerites with subordinate screens of sedimentary rocks. These lithological elements preserve parageneses which record contact metamorphism at shallow crustal levels. The Sarektjåkkå Nappe is situated between eclogite-bearing nappes (Mikka and Tsäkkok nappes) which underwent high-P metamorphism at c. 500 Ma during westward subduction of the Baltoscandian margin. 40Ar/39Ar mineral ages of c. 520–500 Ma are recorded by hornblende within variably foliated amphibolite derived from mafic dyke protoliths within the Sarektjåkkå Nappe. Plateau ages of 500 Ma are displayed by muscovite within the basal thrust of the nappe and are consistent with metamorphic evidence which indicates that the nappe escaped crustal depression as a result of detachment at an early stage of subduction. Cooling ages recorded by hornblende from variably retrogressed eclogites in the entire region are in the range of c. 510–490 Ma and suggest that imbrication of the subducting miogeocline was followed by differential exhumation of the various imbricate sheets. Hornblende cooling ages of 470–460 Ma are recorded from massive dyke protoliths within the Sarektjåkkå Nappe. These are similar to ages reported from the Seve Nappe Complex in the central Scandinavian Caledonides. Probably these date imbrication and uplift related to Early Ordovician arrival of outboard terranes (e.g. island-arc sequences represented by structurally lower horizons of the Köli Nappes). Metamorphic contrasts and the distinct grouping of mineral cooling ages suggest that the various Seve structural units are themselves internally imbricated, and were individually tectonically uplifted through argon closure temperatures during assembly of the Seve Nappe Complex. The cooling ages of 520–500 Ma recorded within Seve terranes and along terrane boundaries of the Sarek Mountains provide evidence of significant accretionary activity in the northern Scandinavian Caledonides in the Late Cambrian–Early Ordovician.  相似文献   

15.
The combination of metamorphic petrology tools and in situ laser 40Ar/39Ar dating on phengite (linking time of growth, compositions and P–T conditions) enables us to identify a detailed P–T–d–t path for the still debated tectonometamorphic evolution of the Nevado‐Filabride complex and infer new geodynamic‐scale constraints. Our data show an isothermal decompression (at 550 °C) from 20 kbar for the Bédar‐Macael unit and 14 kbar for the Calar Alto unit down to c. 3–4 kbar for both units at 2.8 mm year?1. At 22–18 Ma, this first part of the exhumation is followed by a final exhumation at 0.6 mm year?1 along a high‐temperature low‐pressure (HTLP) gradient of c. 60 °C km?1. The age of the peak of pressure is not precisely known but it is shown that it is around 30 Ma and possibly older, which is at variance with recent models suggesting a younger age for high‐pressure (HP) metamorphism. Most of the exhumation is related to late‐orogenic extension from c. 30 to 22–18 Ma. Thus the formation of the main ductile extensional shear zone, the Filabres Shear Zone (FSZ), occurred at 22–18 Ma and is clearly associated with a top‐to‐the‐west shear sense once the FSZ is well localized. The transition from ductile to brittle then occurred at c. 14 Ma. The final exhumation, accommodated by brittle deformation, occurred from c. 14 to 9 Ma and was accompanied, from 12 to 8 Ma, by the formation of nearby extensional basins. The duration of the extensional process is c. 20 Myr which argues in favour of a progressive slab retreat from c. 30 to 9 Ma. The change in the shape of the P–T path at 22–18 Ma together with strain localization along the main top‐to‐the‐west shear zone suggests that this date corresponds to a change in the direction of slab retreat from southwards to westwards.  相似文献   

16.
王松山 《地质科学》1982,(2):226-234
常规的K-Ar法是基于40K通过K-层电子捕获衰变成40Ar*这一机理,应用衰变定律而定年的。它具有测定对象广、测定年龄范围大等优点,是同位素地质定年的主要方法之一。但是,由于40Ar*是气体,当岩石、矿物形成以后受到搅动时(如岩浆的侵入、构造活动、宇宙物质的冲击等),40Ar*容易丢失,使年龄值偏低。1962年由Sigurgeirsson提出的,后经Merrihue、Turner等人逐步完善的40Ar-39Ar快中子活化定年技术,很好地克服了K-Ar法的局限性。40Ar-39Ar定年分为两种:一是全熔融法(total fusion),样品被快中子照射后一次加热熔融,然后计算年龄,此值与常规K-Ar法结果相当;另一种是阶段加热法(step-heating),被照射的样品从低温到高温被逐步加热,分别计算各温度阶段的40Ar/39Ar视年龄,并进而得到一条年龄谱和一个坪年龄(plateau age)。后一种方法对研究地质体是否受过热的挠动、岩石矿物的早期结晶年代、后期热挠动次数、热挠动年代、岩石矿物对氢的保存性、过剩氩的存在状态等具有独特作用,它开辟了同位素地质年代学的一个新领域。本文将着重介绍应用40Ar-39Ar阶段加热技术研究地球物质及陨石受热历史的某些成果。  相似文献   

17.
(极)年轻火山岩激光熔蚀40Ar/39Ar定年   总被引:3,自引:2,他引:1  
对中国大量年轻或/和极年轻火山岩的定年实践研究表明,(极)年轻火山岩的激光熔蚀40Ar/39 Ar定年具有不同于第四纪以前喷发火山岩定年的显著特点.激光熔蚀40Ar/39Ar定年技术因为本底低、样品用量小以及与现代惰性气体同位素质谱设备在灵敏度、高精度方面的相一致,在年轻火山岩的定年中得到深入运用.借助激光在年轻或/和极年轻火山岩的40 Ar/39 Ar定年中,实践证明,样品形成时限越年轻(特别是相当于第四纪时期的样品),Nier值与样品中初始氩比值的偏离会引起K-Ar和40Ar/39 Ar表观年龄的偏差越大.对于小于0.2Ma的样品,Nier值与样品中初始氩比值的偏离对K-Ar和40Ar/39Ar表观年龄的偏差影响呈指数增长;当样品年龄相对较老(老于第四纪)时,Nier值和初始氩比值的偏离对K-Ar和40Ar/39 Ar表观年龄的影响较小.以40Ar/ArAr定年为出发点,定量给出界定年轻与极年轻火山岩的年龄:2~0.2Ma的火山岩界定为年轻火山岩,0.2Ma以来的火山岩称为极年轻火山岩.实验结果还证实,测定(极)年轻火山岩基质年龄时要尽量剔除非同源分馏的斑晶,以便去除斑晶可能带来的过剩氩影响;年轻火山岩样品的测年,应根据岩石结构和粒度特征选取合适的粒度,通常情况下,推荐0.2mm颗粒直径(60~80目)为理想粒径;年轻火山岩样品在快中子辐照后冷却放置时间不宜过长,否则造成37 Ar测不准,影响数据结果,带来较大偏差;激光40Ar/39Ar精细定年对标准样品的均一性有很高的要求,通过标定常用的国内外监测标样发现,标样SB-778-Bi,Bem4M,BT-1均一性很好,适合用作激光熔蚀40Ar/39Ar定年监测;测试数据的处理中,火山岩喷发后冷却结晶中同时形成的斑晶和基质的等时线处理能够帮助获得客观真实和精细的年龄结果.在此基础上,北京大学惰性气体同位素实验室建成了专用于(极)年轻火山岩精细定年的激光熔蚀40Ar/39Ar定年实验流程.  相似文献   

18.
雷州半岛第四纪火山岩激光40Ar/39Ar等时线定年研究   总被引:2,自引:1,他引:1  
雷州半岛是我国新生代火山岩最重要的分布地区之一,火山活动主要集中在中晚更新世。前人对雷州火山岩的年代学研究以K-Ar法为主。研究表明,雷州火山岩测年结果大致分布在0.38~3.04Ma范围内。根据地层和火山岩层的叠置关系,雷州第四纪火山岩由于覆盖在被确定是1.87Ma和0.76Ma沉积的地层之上,故火山岩年龄应小于该地层年龄。K-Ar法定年结果与雷州地区地层叠置关系存在矛盾。本文通过对雷州半岛第四纪火山岩进行野外考察及采样,利用激光40Ar/39Ar年代学方法进行了精细定年。结果表明,雷州火山岩的喷发主要集中18万年前后。定年结果还表明,对于年轻样品,基于尼尔值计算的K-Ar年龄及40Ar/39Ar表观年龄偏老,等时线年龄相对较为可靠。对同一样品的斑晶、基质作斑晶-基质等时线计算,只有在斑晶基质满足同源条件时才有意义。本文首次提出,通过对比未照射样品的初始36Ar/38Ar值的均一性,以检验样品是否同源,确认斑晶-基质等时线年龄的可信度。据此,等时线的处理方法可以推广应用于特定区域内全部同源同时样品。  相似文献   

19.
The relation of shock to the drop in the 401Ar/391Ar ratio seen at high release temperatures in some neutron-irradiated lunar samples is investigated through measurements of the 401Ar/391Ar ratio in gas samples released by stepwise heating of rock samples previously subjected to shock, either in the laboratory or in nature.Explosives were used to shock solid pieces and powder of a basalt from a diabase dike in Liberia to calculated pressures of 65, 150 and 270 kbar. These, an unshocked sample of the powder, two naturally shocked samples from the Brent impact crater in Canada, one unshocked sample from near the crater, and appropriate monitors were irradiated. Ar from stepwise heating was analyzed.The unshocked basalt shows a good 401Ar/391Ar plateau at age 198 ± 9 m.y. in agreement with a previous result of 186 ± 2 m.y. The shocked samples contain varying amounts of implanted atmospheric Ar, the isotopes of which have experienced mass fractionation. This effect is small enough in four samples so that the linearity of their graphs of 391Ar/40Ar vs 36Ar/40Ar is evidence of a plateau. The ages of these samples are then 201 ± 10, 205 ± 11, 205 ± 12 and 201 ± 9 m.y. It appears that the shock has had little effect on the 40Ar-39Ar age spectrum, although the release patterns of the 391Ar are shifted downward by the order of 200°C. Shock implantation of Ar was at lower shock pressure, in the presence of less Ar, and into a less porous material than previously demonstrated.The Brent Crater samples do not all show good plateaus, but do indicate an age of ~420 m.y. for the crater event and 795 ± 24 m.y. for the rock formation, in agreement with previous results.None of the 401Ar/391Ar profiles shows a drop at high temperature, but a possible role of shock implantation of Ar is indicated in the production of this effect. Further experiments are suggested.  相似文献   

20.
由于较低的钾元素含量以及过剩氩的存在,长期以来对硅质岩的40Ar/39Ar定年一直存在较大难度。近年来,由于仪器水平的不断提高,新实验技术和方法的应用,特别是激光全熔40Ar/39Ar定年技术的应用,40Ar/39Ar定年方法具有了足够高的测试精度和稳定的低本底水平,可以满足测试极低钾元素含量的硅质岩样品的要求。利用多组矿物颗粒测试数据计算等时线年龄的方法可以很好地去除过剩氩对硅质岩年龄的影响。本文利用激光全熔40Ar/39Ar定年方法对新疆准噶尔盆地边缘的两个硅质岩样品进行了定年研究。采自白碱滩地区的08BJT-3样品的年龄测试结果为294±14Ma,该年龄结果与硅质岩样品所处的晚石炭世地层沉积年代基本一致。采自卡拉麦里地区的KML-2样品的年龄测试结果为266±14Ma,该年龄结果与强烈变形改造硅质岩样品的卡拉麦里构造变形带活动年代十分一致,表明激光全熔40Ar/39Ar定年方法可以准确地对硅质岩进行定年。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号