首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After a prolonged period of convergent margin tectonics in the Late Paleozoic and Mesozoic, resulting in terrane accretion, uplift and erosion of the New Zealand segment of Gondwana, the region saw a rapid change to extensional tectonics in mid-Cretaceous times. The change in regime is commonly marked by a major angular unconformity that separates the older, often strongly-deformed subduction-related ‘basement’ rocks from the younger, less-deformed ‘cover’ strata. The youngest ‘basement’ strata locally contain Albian fossils, and the youngest associated zircons have been radiometrically dated at ca. 100 Ma. In general the oldest strata overlying the unconformity contain fossils of similar Albian age, and the oldest radiometric dates also give similar dates of ca. 100 Ma, indicating a very rapid transition between the two tectonic regimes.The onset of extension resulted in the widespread development of grabens and half grabens, associated in the northwest of the South Island with a metamorphic core complex. In the west and south, on the thicker and more buoyant crust of most of the South Island, the new basins were infilled with mainly non-marine deposits. Non-marine graben infill consists of locally-derived breccia deposited as talus or debris flows on alluvial fans, passing directly as fan deltas or via fluvial deposits into lacustrine deposits. Active faulting continued in some areas until the initiation of sea floor spreading in Santonian times. Post-subduction strata on the thinner continental crust of the northeastern South Island and eastern North Island (East Coast Basin) were mainly marine. Initial sedimentary deposits in the west of the basin, reflecting extensional tectonism, consist of coarse-grained debris-flow deposits or olistostromes, generally fining upwards as tectonic activity waned: those in the east, including allochthonous sediments derived from the northeast, are dominated by turbidites. Early Cenomanian (ca. 96–98 Ma) injection of intraplate alkaline igneous rocks in central New Zealand caused updoming, resulting in shallowing and local uplift of the basin floor above sea level. A long (ca. 10 Ma) period of slow subsidence and transgressive marine sedimentation interrupted by episodic relative sea level changes followed.This pattern changed in the Late Coniacian (ca. 87–86 Ma), with a sudden influx of coarse, transgressive sands in eastern New Zealand. This was immediately preceded in parts of the region by uplift and erosion, probably driven by convective upwelling of the mantle just prior to sea-floor spreading, resulting in a ‘break-up’ unconformity. In the Late Santonian (ca. 85–84 Ma), development of a new, diachronous, widespread low-relief erosion surface, overlain by fine-grained deposits accompanying a rapid rise in relative sea level, coincided with the beginning of sea-floor spreading, rapid passive margin subsidence, and final separation of New Zealand from Gondwana.  相似文献   

2.

The Progress Granite is one of numerous S‐type granitoid plutons exposed in the Larsemann Hills region, southwest Prydz Bay, east Antarctica. The granite was emplaced into a migmatitised pelitic to felsic paragneiss sequence during a regional high‐grade transpressional event (D2) that pre‐dates high‐grade extension (D3). SHRIMP (II) U‐Pb dating for two occurrences of the Progress Granite from D2 and D3 structural domains gives 206Pb/238U ages of 516.2 ± 6.8 Ma and 514.3 ± 6.7 Ma, respectively. These ages are interpreted as crystallisation ages for the Progress Granite and confirm Early Palaeozoic orogenesis in the Larsemann Hills region. This orogen appears to have evolved during continental convergence and is probably responsible for widespread radiogenic isotopic resetting and the near‐complete exhumation of the adjacent northern Prince Charles Mountains which evolved during a ca 1000 Ma event. The identification of a major Early Palaeozoic orogen in Prydz Bay allows tentative correlation of other domains of Early Palaeozoic tectonism both within the east Antarctic Shield and other, once contiguous, Gondwana fragments and illustrates the potential complexity inherent within intercratonic mobile belts. One such possibility, tentatively offered here, suggests a continuous belt of Early Palaeozoic tectonism from Prydz Bay eastward to the West Denman Glacier region and into the Leeuwin complex of Western Australia.  相似文献   

3.
西藏北部申扎县永珠地区德日昂玛-下拉剖面中石炭系和二叠系地层发育完整,出露良好,化石丰富。该剖面中查果罗玛组碳酸盐岩地层(泥盆纪—早石炭世)和下拉组(中二叠世)碳酸盐岩地层之间的碎屑岩夹灰岩地层,在沉积上表现为冰海相杂砾岩,在古生物化石面貌上表现为特提斯-冈瓦纳古生物群混生。古生物群混生的现象为石炭纪—二叠纪的特提斯生物区与冈瓦纳生物区之间的地层和古生物对比建立了一座桥梁。永珠组中上部地层中同时产有牙形石和腕足类,牙形石的研究表明其时代为晚石炭世莫斯科期,而腕足类的研究则表明其为早二叠世萨克马尔期。这一矛盾预示着在(亲)冈瓦纳相地区晚石炭世晚期地层缺失的意见需要重新审视。  相似文献   

4.
The central–south domain of the Tibet Plateau represents an important part of the northern segment of Gondwana during the early Paleozoic. Here we present zircon U–Pb, Lu–Hf isotope, and whole–rock geochemical data from a suite of early Paleozoic magmatic rocks from the central Tibet Plateau, with a view to gain insights into the nature and geotectonic evolution of the northern margin of Gondwana. Zircon grains in four granitic rocks yielded ages of 532−496 Ma with negative εHf(t) values (−13.7 to −0.6). Zircon grains in meta–basalt and mafic gneiss yielded ages of 512 ± 5 Ma and 496 ± 6 Ma, respectively. Geochemically, the granitic rocks belong to high–K calc–alkaline and shoshonitic S–type granite suite, with the protolith derived from the partial melting of ancient crustal components. The mafic gneiss and meta–basalt geochemically resemble OIB (Oceanic Island Basalt) and E–MORB (Enriched Mid–Ocean Ridge Basalt), respectively. They were derived from low degree (∼5–10%) partial melting of an enriched mantle (garnet and spinel lherzolite) that was contaminated by upper crustal components. The parental magmas experienced orthopyroxene–dominated fractional crystallization. Sedimentological features of the Cambrian–Ordovician formations indicate that the depositional cycle transformed from marine regression to transgression leading to the formation of parallel/angular unconformities between the Cambrian and Ordovician strata. The hiatus associated with these unconformities are coupled with the peak of the early Paleozoic magmatism in Tibet Plateau, indicating a tectonic control. We conclude that the Cambrian–Ordovician magmatic suite and sedimentary rocks formed in an extensional setting, and we correlate this with the post–peak stage of the Pan–African orogeny. The post–collision setting associated with delamination, orogenic collapse or lithospheric extension along the northern margin of Gondwana, can account for the Cambrian–Ordovician magmatism and sedimentation, rather than oceanic subduction along the external margin. We thus infer a passive margin setting for the northern Gondwana during the Early Paleozoic.  相似文献   

5.
The northernmost part of the oil-producing Austral Basin, known as Aisén Basin or Río Mayo Embayment (in central Patagonian Cordillera; 43–46°S), is a special area within the basin where the interplay between volcanism and the initial stages of its development can be established. Stratigraphic, paleontologic and five new U–Pb SHRIMP age determinations presented here indicate that the Aisén Basin was synchronous with the later phases of volcanism of the Ibáñez Formation for at least 11 m.yr. during the Tithonian to early Hauterivian. In this basin marine sedimentary rocks of the basal units of the Coihaique Group accumulated overlying and interfingering with the Ibáñez Formation, which represents the youngest episode of volcanism of a mainly Jurassic acid large igneous province (Chon Aike Province). Five new U–Pb SHRIMP magmatic ages ranging between 140.3 ± 1.0 and 136.1 ± 1.6 Ma (early Valanginian to early Hauterivian) were obtained from the Ibáñez Formation whilst ammonites from the overlying and interfingering Toqui Formation, the basal unit of the Coihaique Group, indicate Tithonian, early Berriasian and late Berriasian ages. The latter was a synvolcanic shallow marine facies accumulated in an intra-arc setting, subsequently developed into a retro-arc basin.  相似文献   

6.
The Jurassic and Cretaceous sedimentary history of northern Somalia and the Morondava Basin of south-western Madagascar have been studied. Both regions display an independent facial development; however, a comparison of the sequential evolution of the Mesozoic sedimentary successions in these two presently widely separated areas reveals a surprisingly high level of similarity, which probably reflects major events during the disintegration of Eastern Gondwana during the Jurassic and Cretaceous. Although in Jurassic times the onset of transgressions and regressions in both areas compares well with eustatic development, major deviations in combination with the tectonic activities of different degrees are observed in the Early and Late Cretaceous synchronously in both regions. Transgressions are observed in Toarcian, Bajocian (not dated in northern Somalia), Callovian, Valanginian (Madagascar only), Aptian and Campanian times. Tectonism is noted before the Aptian and Campanian transgressions in northern Somalia and the Morondava Basin of south-western Madagascar.  相似文献   

7.
Detrital zircons are important proxies for crustal provenance and have been widely used in tracing source characteristics and continental reconstructions. Southern Peninsular India constituted the central segment of the late Neoproterozoic supercontinent Gondwana and is composed of crustal blocks ranging in age from Mesoarchean to late Neoproterozoic–Cambrian. Here we investigate detrital zircon grains from a suite of quartzites accreted along the southern part of the Madurai Block. Our LA-ICPMS U-Pb dating reveals multiple populations of magmatic zircons, among which the oldest group ranges in age from Mesoarchean to Paleoproterozoic (ca. 2980–1670 Ma, with peaks at 2900–2800 Ma, 2700–2600 Ma, 2500–2300 Ma, 2100–2000 Ma). Zircons in two samples show magmatic zircons with dominantly Neoproterozoic (950–550 Ma) ages. The metamorphic zircons from the quartzites define ages in the range of 580–500 Ma, correlating with the timing of metamorphism reported from the adjacent Trivandrum Block as well as from other adjacent crustal fragments within the Gondwana assembly. The zircon trace element data are mostly characterized by LREE depletion and HREE enrichment, positive Ce, Sm anomalies and negative Eu, Pr, Nd anomalies. The Mesoarchean to Neoproterozoic age range and the contrasting petrogenetic features as indicated from zircon chemistry suggest that the detritus were sourced from multiple provenances involving a range of lithologies of varying ages. Since the exposed basement of the southern Madurai Block is largely composed of Neoproterozoic orthogneisses, the data presented in our study indicate derivation of the detritus from distal source regions implying an open ocean environment. Samples carrying exclusive Neoproterozoic detrital zircon population in the absence of older zircons suggest proximal sources in the southern Madurai Block. Our results suggest that a branch of the Mozambique ocean might have separated the southern Madurai Block to the north and the Nagercoil Block to the south, with the metasediments of the khondalite belt in Trivandrum Block marking the zone of ocean closure, part of which were accreted onto the southern Madurai Block during the collisional amalgamation of the Gondwana supercontinent in latest Neoproterozoic–Cambrian.  相似文献   

8.
Cambrian orogenesis (550–490 Ma) in the Lambert Province of the southern Prince Charles Mountains resulted in three successive stages of deformation. The earliest of these deformations resulted in the development of a layer‐parallel foliation (S1) that was folded into macro‐scale recumbent folds (F2). Subsequent deformation buckled the rocks into long‐wavelength (c. 20 km), SW‐ to NW‐trending antiformal closures (F3) mostly separated from each other by west to SW trending, steeply dipping, high‐strain zones. Metapelitic rocks from the region are divisible into two compositional types: a high‐Al, ‐Fe and ‐K type and a high‐Mg, ‐Ca and ‐Na type. In rocks of both composition, relic staurolite preceded the formation of upper amphibolite facies garnet + biotite + sillimanite ± muscovite mineral assemblages that record peak pressures and temperatures of c. 650–700 °C and 6–7 kbar. Subsequent decompression of c. 3 kbar is implied from texturally late plagioclase and a reduction in the modal abundance of garnet in the high‐Al, ‐Fe and ‐K metapelites, and from texturally late cordierite in the more magnesium rocks. This clockwise P–T–t path, with prograde heating followed by rapid decompression, is: (i) equivalent to that recorded in the same‐aged rocks at Prydz Bay located 600 km to the north, and (ii) similar to the modelled response of the crust to thickening following continent–continent collision. These results indicate that large areas of East Antarctica were thickened and rapidly exhumed, probably in response to collisional orogenesis during the Early Cambrian. This supports the inference that Early Cambrian orogenesis in the Prydz Bay–Prince Charles Mountains region of East Antarctica marks one of the fundamental lithospheric boundaries within Gondwana.  相似文献   

9.
A study of the abundant and undescribed isolated and associated bones and teeth from the La Amarga Formation (Barremian of Neuquén, Argentina) permitted the recognition of additional clades of sauropod dinosaurs: basal titanosauriforms, both basal and derived titanosaurs, and rebbachisauroid diplodocoids, which are now added to the already known dicraeosaurids and a recently published basal diplodocoid. These forms substantially increase the knowledge on the Early Cretaceous sauropod diversity in Gondwana.  相似文献   

10.
The Sinuiju Formation in Paekto-dong, Sinuiju City in the Democratic People's Republic of Korea has yielded Mesozoic nonmarine bivalve fossils, which is the first occurrence of such in the DPRK. Based on these fossil specimens, a new Cretaceous bivalve assemblage, the Arguniella yanshanensis-Sphaerium anderssoni Assemblage is erected. This assemblage includes Arguniella yanshanensis, A. lingyuanensis and Sphaerium anderssoni and can be compared with the Jehol Biota. The age of the Sinuiju Formation is also clarified and on the basis of the bivalves and the presence of a Eosestheria–Ephemeropsis–Lycoptera(E–E–L) assemblage, the formation is not Upper Jurassic, but Lower Cretaceous in age.  相似文献   

11.
Mg-Al-rich rocks from the Palghat-Cauvery Shear Zone System (PCSZ) within the Gondwana suture zone in southern India contain sodicgedrite as one of the prograde to peak phases, stable during = 900–990°C ultrahigh-temperature metamorphism. Gedrite in these samples is Mg-rich (Mg/[Fe + Mg] = X Mg = 0.69–0.80) and shows wide variation in Na2O content (1.4–2.3 wt.%, NaA = 0.33–0.61 pfu). Gedrite adjacent to kyanite pseudomorph is in part mantled by garnet and cordierite. The gedrite proximal to garnet shows an increase in NaA and AlIV from the core (NaA = 0.40–0.51 pfu, AlIV = 1.6–1.9 pfu) to the rim (NaA = 0.49–0.61 pfu, AlIV = 2.0–2.2 pfu), suggesting the progress of the following dehydration reaction: Ged + Ky → Na-Ged + Grt + Crd + H2O. This reaction suggests that, as the reactants broke down during the prograde stage, the remaining gedrite became enriched in Na to form sodicgedrite, which is regarded as a unique feature of high-grade rocks with Mg-Al-rich and K–Si-poor bulk chemistry. We carried out high-P-T experimental studies on natural sodicgedrite and the results indicate that gedrite and melt are stable phases at 12 kbar and 1,000°C. However, the product gedrite is Na-poor with only <0.13 wt.% Na2O (NaA = 0.015–0.034 pfu). In contrast, the matrix glass contains up to 8.5 wt.% Na2O, suggesting that, with the progressive melting of the starting material, Na was partitioned into the melt rather than gedrite. The results therefore imply that the occurrence of sodicgedrite in the UHT rocks of the PCSZ is probably due to the low H2O activity during peak P-T conditions that restricted extensive partial melting in these rocks, leaving Na partitioned into the solid phase (gedrite). The occurrence of abundant primary CO2-rich fluid inclusions in this rock, which possibly infiltrated along the collisional suture during the final amalgamation of the Gondwana supercontinent, strengthens the inference of low water activity.  相似文献   

12.
A brief review and discussion of baissine wasps of Gasteruptiidae, Hymenoptera is given. Eight fossil specimens of wasps from the Laiyang Formation in Laiyang, Shandong, China are described. One new genus, Mesepipolaea, and four new species, M. nanligezhuangica, Humiryssus specialis, H. cancellatus and H. vulgatus are established, and two new combinations are proposed: Humiryssus laiyangensis (Hong and Wang, 1990) (originally Aulocopsis laiyangensis Hong and Wang , 1990), H. oculatissimus (Rasnitsyn and Jarzembowski, 1998) (originally Manlaya oculatissima Rasnitsyn and Jarzembowski, 1998). Sinowestratia communicata Zhang and Zhang, 2000 is a junior synonym of Manlaya flexuosa (Ren et al.,1995) (originally Manlaya flexuosus Ren et al.,1995). Stratigraphic inferences from these finds are briefly discussed.  相似文献   

13.
14.
The Brasília belt borders the western margin of the São Francisco Craton and records the history of ocean opening and closing related to the formation of West Gondwana. This study reports new U–Pb data from the southern sector of the belt in order to provide temporal limits for the deposition and ages of provenance of sediments accumulated in passive margin successions around the south and southwestern margins of the São Francisco Craton, and date the orogenic events leading to the amalgamation of West Gondwana.Ages of detrital zircons (by ID–TIMS and LA-MC-ICPMS) were obtained from metasedimentary units of the passive margin of the São Francisco Craton from the main tectonic domains of the belt: the internal allochthons (Araxá Group in the Áraxá and Passos Nappes), the external allochthons (Canastra Group, Serra da Boa Esperança Metasedimentary Sequence and Andrelândia Group) and the autochthonous or Cratonic Domain (Andrelândia Group). The patterns of provenance ages for these units are uniform and are characterised as follows: Archean–Paleoproterozoic ages (3.4–3.3, 3.1–2.7, and 2.5–2.4 Ga); Paleoproterozoic ages attributed to the Transamazonian event (2.3–1.9 Ga, with a peak at ca. 2.15 Ga) and to the ca. 1.75 Ga Espinhaço rifting of the São Francisco Craton; ages between 1.6 and 1.2 Ga, with a peak at 1.3 Ga, revealing an unexpected variety of Mesoproterozoic sources, still undetected in the São Francisco Craton; and ages between 0.9 and 1.0 Ga related to the rifting event that led to the individualisation of the São Francisco paleo-continent and formation of its passive margins. An amphibolite intercalation in the Araxá Group yields a rutile age of ca. 0.9 Ga and documents the occurrence of mafic magmatism coeval with sedimentation in the marginal basin.Detrital zircons from the autochthonous and parautochthonous Andrelândia Group, deposited on the southern margin of the São Francisco Craton, yielded a provenance pattern similar to that of the allochthonous units. This result implies that 1.6–1.2 Ga source rocks must be present in the São Francisco Craton. They could be located either in the cratonic area, which is mostly covered by the Neoproterozoic epicontinental deposits of the Bambuí Group, or in the outer paleo-continental margin, buried under the allochthonous units of the Brasília belt.Crustal melting and generation of syntectonic crustal granites and migmatisation at ca. 630 Ma mark the orogenic event that started with westward subduction of the São Francisco plate and ended with continental collision against the Paraná block (and Goiás terrane). Continuing collision led to the exhumation and cooling of the Araxá and Passos metamorphic nappes, as indicated by monazite ages of ca. 605 Ma and mark the final stages of tectonometamorphic activity in the southern Brasília belt.Whilst continent–continent collision was proceeding on the western margin of the São Francisco Craton along the southern Brasília belt, eastward subduction in the East was generating the 634–599 Ma Rio Negro magmatic arc which collided with the eastern São Francisco margin at 595–560 Ma, much later than in the Brasília belt. Thus, the tectonic effects of the Ribeira belt reached the southernmost sector of the Brasília belt creating a zone of superposition. The thermal front of this event affected the proximal Andrelândia Group at ca. 588 Ma, as indicated by monazite age.The participation of the Amazonian craton in the assembly of western Gondwana occurred at 545–500 Ma in the Paraguay belt and ca. 500 Ma in the Araguaia belt. This, together with the results presented in this work lead to the conclusion that the collision between the Paraná block and Goiás terrane with the São Francisco Craton along the Brasília belt preceded the accretion of the Amazonian craton by 50–100 million years.  相似文献   

15.
《China Geology》2021,4(1):67-76
The Pamir Plateau comprises a series of crustal fragments that successively accreted to the Eurasian margin preceded the India-Asia collision, is an ideal place to study the Mesozoic tectonics. The authors investigate the southern Tashkorgan area, northeastern Pamir Plateau, where Mesozoic metamorphic and igneous rocks are exposed. New structural and biotite 40Ar-39Ar age data are presented. Two stages of intense deformation in the metamorphic rocks are identified, which are unconformably covered by the Early Cretaceous sediment. Two high-grade metamorphic rocks yielding 128.4 ± 0.8 Ma and 144.5 ± 0.9 Ma 40Ar-39Ar ages indicate that the samples experienced an Early Cretaceous cooling event. Combined with previous studies, it is proposed that the Early Cretaceous tectonic records in the southern Tashkorgan region are associated with Andean-style orogenesis. They are the results of the flat/low-angle subduction of the Neotethyan oceanic lithosphere.©2021 China Geology Editorial Office.  相似文献   

16.
The contact between the Silurian black phyllite and the Cambro–Ordovician underlying rocks has been investigated over different tectonic units, affected by green-schist facies metamorphism, in the inner nappe zone of the Sardinia Variscides. In spite of strain and metamorphism, the field work highlighted the occurrence of diamictic sediments. In the Canaglia Tectonic Unit the diamictite consists of dark, massive metamorphic claystone bearing chamositic ooliths, chamositic nodules and millimetre to centimetre sized clasts, dispersed, or gathered in clusters, within the muddy matrix. In the Argentiera Tectonic Unit the diamictite consists of angular clasts, ranging in size from few millimetres to several decimetres, scattered within a finely laminated black sericitic meta-argillite. Field data, textural and compositional analyses suggest a glacio-marine environment for the formation of the diamictites.

The Canaglia diamictite deposited in a protected, glacial-influenced, shore. Compositionally it can be defined as ironstone; in the Upper part it hosts a horizon of clast-supported conglomeratic hard ironstone, mostly made of magnetite, which testifies for sub-aerial reworking. The source of the iron is to be related to local, glacio-eustatic driven, emergence of Upper Ordovician alkaline mafic volcanics. These are widespread in the uppermost Ordovician of the Canaglia Unit, possibly linked to the rifting stage that invested the north Gondwana margin, before the uppermost Ordovician–early Silurian sea level rise.

The Argentiera diamictite deposited beyond the iron-rich diamictite in the outer euxinic shelf that was reached by rain out of rafted debris.  相似文献   


17.
The Menderes Massif is a major polymetamorphic complex in Western Turkey. The late Neoproterozoic basement consists of partially migmatized paragneisses and metapelites in association with orthogneiss intrusions. Pelitic granulite, paragneiss and orthopyroxene-bearing orthogneiss (charnockite) of the basement series form the main granulite-facies lithologies. Charnockitic metagranodiorite and metatonalite are magnesian in composition and show calc-alkalic to alkali-calcic affinities. Nd and Sr isotope systematics indicate homogeneous crustal contamination. The zircons in charnockites contain featureless overgrowth and rim textures representing metamorphic growth on magmatic cores and inherited grains. Charnockites yield crytallization age of ~590 Ma for protoliths and they record granulite-facies overprint at ~ 580 Ma. These data indicate that the Menderes Massif records late Neoproterozoic magmatic and granulite-facies metamorphic events. Furthermore, the basement rocks have been overprinted by Eocene Barrovian-type Alpine metamorphism at ~42 Ma. The geochronological data and inferred latest Neoproterozoic–early Cambrian palaeogeographic setting for the Menderes Massif to the north of present-day Arabia indicate that the granulite-facies metamorphism in the Menderes Massif can be attributed to the Kuunga Orogen (600–500 Ma) causing the final amalgamation processes for northern part of the Gondwana.  相似文献   

18.
New SHRIMP radiogenic isotope dating on zircons in tuffs (280.8 ± 1.9 Ma) confirms the Early Permian (Artinskian) age of the uppermost section of the Tunas Formation. Tuff-rich levels in the Tunas Formation are exposed in the Ventana foldbelt of central Argentina; they are part of a deltaic to fluvial section corresponding to the late overfilled stage of the Late Paleozoic Sauce Grande foreland basin. Recent SHRIMP dating of zircons from the basal Choiyoi volcanics exposed in western Argentina yielded an age of 281.4 ± 2.5 Ma (Rocha-Campos et al., 2011). The new data for the Tunas tuffs suggest that the volcanism present in the Sauce Grande basin can be considered as the distal equivalent of the earliest episodes of the Choiyoi volcanism of western Argentina. From the palaeoclimatic viewpoint the new Tunas SHRIMP age confirms that by early Artinskian glacial conditions ceased in the Sauce Grande basin and, probably, in adajacent basins in western Gondwana.  相似文献   

19.
A new genus and species of an Aptian–Albian sauropod from the Itapecuru Formation, northern Brazil, Amazonsaurus maranhensis, is described. It is known from an incomplete, but diagnostic postcranial skeleton. The new taxon possesses several autapomorphies, such as the anterior caudal vertebrae with lateral laminae formed by the coalescence of the spinoprezygapophyseal and postzygodiapophyseal laminae and, to a lesser extent, of the postzygodiapophyseal laminae. It exhibits many synapomorphies supporting its inclusion in the Diplodocoidea. These include high caudal neural arches and anterior caudal neural arches with spinoprezygapophyseal laminae on the lateral aspect of the neural spine. This record is consistent with previous hypotheses on the existence of a community of Afro-South American dinosaurs.  相似文献   

20.
The Neoproterozoic to Early Cambrian amalgamation of SW Gondwana through the Brasiliano/Pan-African orogeny is reviewed with emphasis on the role of the Río de la Plata craton of South America in the light of new evidence from a borehole at the eastern end of the Tandilia belt (38°S). U–Pb, Hf and O isotope data on zircon indicate that this un-reworked Palaeoproterozoic craton abuts against a distinct continental terrane to the east (Mar del Plata terrane). The craton is bounded everywhere by transcurrent faults and there is no evidence to relate it to the Neoproterozoic mobile belts now seen on either side. The Punta Mogotes Formation at the bottom of the borehole contains 740–840 Ma detrital zircons that are assigned to a widespread Neoproterozoic rifting event. The data suggest that the Mar del Plata terrane rifted away from the southwestern corner of the Angola block at c. 780 Ma. Negative εHft values and δ18O > 6.5‰ suggest derivation by melting of old crust during a protracted extensional episode. Other continental terranes may have formed in a similar way in Uruguay (Nico Pérez) and southeastern Brazil, where the Schist Belt of the Dom Feliciano orogenic belt is probably a correlative of the Punta Mogotes sequence, implying that the Dom Feliciano belt must extend at least as far as 38°S. A new geodynamic scenario for West Gondwana assembly includes at least two major oblique collisional orogenies: Kaoko–Dom Feliciano (580–680 Ma) and Gariep–Saldania (480–580 Ma), the latter resulting from oblique impingement of the Rio de la Plata craton against the Kalahari craton. Assembly of this part of South-West Gondwana was accomplished before the Ordovician (to Silurian?) siliciclastic platform sediments of the Balcarce Formation in the Tandilia Belt covered the southern sector of Río de la Plata craton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号