首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The high phosphorus levels cause the release of phosphorus from soils, thereby increasing the potential for phosphorus export to adjacent water bodies. The loss of phosphorus from soils to surface waters is a major source of water quality impairment. Therefore, soil phosphorus immobilization seems necessary. In this study, red mud (RM) was employed to immobilize phosphorus in a typical agricultural soil. It was found that phosphorus was effectively immobilized by RM. Batch leaching experiments showed that RM reduced phosphorus release from 14.38 to 2.56 mg/kg when soil was amended with 1% RM. Column leaching experiments showed that RM reduced the total amount of phosphorus released from 36.73 to 18.79 mg/kg during the investigated period. Sequential chemical extraction results indicated that RM amendment transformed H2O-P into more stable fractions. The results suggested that application of RM amendment to soils could significantly immobilize soluble phosphorus, reducing phosphorus release to the environment.  相似文献   

2.
Most arid and semi-arid soils, especially calcareous sandy soils, are widely distributed in the Middle East region; the deficiency in their content of many nutrients particularly phosphorus and organic matter limits crops production. This study aimed to assess the effects of adding biochar (B) with farmyard manure (FYM) and poultry manure (PM) on some soil properties, phosphorus (P) availability, and barley growth in calcareous sandy soil. The pot experiment includes the following treatments: Control, B, B?+?FYM (1:1), B?+?PM (1:1), B?+?FYM (2:1), B?+?PM (2:1), FYM?+?B (2:1), and PM?+?B (2:1). Biochar combined with FYM and PM enhanced the water holding capacity (WHC) and soil organic matter (SOM) content in calcareous sandy soil. Phosphorus availability was increased significantly by applying biochar mixed with farmyard manure and poultry manure at all treatments. Green biomass of barley improved because of adding biochar alone, poultry manure alone, and biochar co-applied with poultry manure at all mixing ratios. Biochar application caused significant increases in phosphorus use efficiency (PUE) by barley plants compared to all other treatments, except for the control. We recommend adding biochar either individually or mixed with poultry manure to improve the productivity of calcareous sandy soil.  相似文献   

3.
Sorption of three surfactants and personal care products in four types of commonly occurring Indian soils was extensively studied. The soils used in the study were red soil, clay soil, compost soil and sandy soil as classified by American Society for Testing and Materials (ASTM). The three surfactants used in the study were representative of cationic, non-ionic and anionic surfactant groups. The sorption of surfactants followed the descending order: sodium dodecyl sulphate (SDS) > trimethyl amine (TMA) > propylene glycol (PG). The maximum adsorption capacity (Qmax) was obtained in compost soil (28.6 mg/g for SDS; 9.4 mg/g for TMA and 4 mg/g for PG). The rate of adsorption was the maximum in compost soil followed by clay and red soils, and minimum for sandy soils. It is found that the Freundlich model fits the isotherm data better than the Langmuir model. Freundlich coefficient (K f) increased as the organic content of soils increased. Desorption of target pollutants in tap water was 20–50% whereas acid desorbs 40–90% of target pollutants from soil matrix. It was also found that the adsorption and desorption were significantly affected by the presence of clay and organic matter. The results also indicate that surfactants and personal care products, especially TMA and PG, are highly mobile in sandy soil followed by red soil. Therefore, immobilization of target pollutants is most economical and effective in compost and clayey soils whereas for other type of soils the combination of physiochemical and biological process will be effective option for remediation.  相似文献   

4.
朱长歧  周斌  刘海峰 《岩土力学》2014,35(6):1655-1663
自20世纪80年代起,国内就开展了关于岛礁钙质土岩土工程性质的研究工作,至今已经取得了大量的研究成果,但上述研究工作均是针对松散钙质土进行的,针对岛礁上广泛分布的胶结钙质土的研究工作尚未系统开展。而国外大量工程实践表明,胶结钙质土具有完全不同于松散钙质土的工程性状。针对天然胶结钙质土的空间各向异性,从微观角度研究影响其强度的主要参数,为今后的胶结钙质土的分类研究提供理论指导。文中采用多种试验研究方法,最后建立了天然胶结钙质土的密度、胶结度、孔隙度、颗粒大小等参数与强度间的对应关系,当前的研究结果表明,天然胶结钙质土的密度及胶结度与强度间存在良好的相关性。  相似文献   

5.
Phosphorus (P) desorption characteristics may be altered due to the biosolids decomposition during the incubation period. In our previous work we studied the phosphorus release kinetics in biosolids-amended calcareous soils with no prior incubation. The objectives of this work were (1) to assess the phosphorus desorption behavior in soils as influenced by biosolids after 5 months of incubation and (2) to evaluate the influences of six levels of the biosolids on phosphorus availability and salinity of soil. The results showed that the biosolids addition significantly increased the soil available P and salinity. The P availability and salinity of the soils increased as level of the biosolids application increased. However, there was no significant difference between some application rates for some soils. The results indicated that the incubation can affect the factors controlling the P release rate. Also, the results showed that the soil organic matter negatively affected the P desorption rate in the biosolids-treated soils.  相似文献   

6.
采用间歇灌溉进行土壤盐分淋洗的适用性   总被引:1,自引:0,他引:1       下载免费PDF全文
为比较一次性灌溉和间歇灌溉在盐分淋洗效率方面的优劣,采用HYDRUS-1D两区模型模拟分析了不同频次灌溉条件下的土壤水盐运移过程。结果表明存在一个间歇灌溉具有更高淋洗效率的最大深度,并将其称为临界深度。对砂土的模拟显示在灌水总量为20 cm时,随着潜在蒸发强度从0 mm/d升高至6 mm/d,临界深度从60 cm以上降为0 cm;而在潜在蒸发强度为2 mm/d时,随着灌水总量从10 cm增加至40 cm,临界深度相应从20 cm增加至接近80 cm。比较而言,透水性好、不动水体占比高、两部分孔隙之间水分和溶质交换能力差的土壤,临界深度更大;对黏土、黏壤土、壤土、砂壤土和砂土分别进行模拟显示偏砂性土壤具有更大的临界深度,在灌水总量和潜在蒸发强度分别为30 cm和2 mm/d时,黏土和砂土的临界深度分别为56 cm和大于100 cm。总的来看,对于间歇灌溉是否能提高盐分淋洗效率不能一概而论,引入临界深度可以在一定程度上解释研究者们对于间歇灌溉是否能提高盐分淋洗效率的不同认识。  相似文献   

7.
A visually prominent desert soil with a horizon of clay accumulation (Typic Natrargid) has formed under an arid climate in Panamint Valley, California, in sandy, very calcareous, saline fan alluvium in less than about 3500 yr, and probably less than 2000 yr. Such soils can be used as stratigraphic markers, but could be confused with other desert soils with clay-accumulation horizons (Haplargids) which occur much more commonly on desert alluvial fans, are mostly late Pleistocene or older, and do not form in parent materials that are still calcareous. This Natrargid formed in a playa-margin environment, where clay for translocation and sodium salts that engender rapid clay movement probably were provided by dust fall.  相似文献   

8.
The study on the relationship between the soilmass deformation and water seepage under certain stress in North China was conducted through combined tests of the consolidation deformation and water seepage. The results showed that the actual deformation of the clay soil under stress is greater than the deformation induced by the seepage. On average, the deformation induced by seepage was about 60% of the actual clay deformation under stress. The actual deformation of sandy soil, however, is less than the deformation induced by seepage. On average, the seepage-induced deformation was approximately 125% of the actual sandy soil deformation. These results indicated that the sandy soil did not have complete plasticity. Clay had the highest amount of water seepage and deformation, while silty soil, calcareous highly cemented clayed soil and sandy soil had less water seepage and deformation. The underlying mechanisms were also discussed. The results of this study contribute to the understanding of land subsidence mechanism and rough estimation of groundwater exploitation.  相似文献   

9.
岩溶区和碎屑岩区林地和农田土壤氮矿化过程对比研究   总被引:1,自引:1,他引:0  
通过15N标记法和MCMC氮素转化模型,研究了岩溶区(石灰性土壤)和碎屑岩区(红壤)林地和农田土壤易分解有机氮矿化(M易)、难分解有机氮矿化(M难)和总有机氮矿化(M总)速率。结果发现,土壤矿化速率受土壤类型和土地利用方式的显著影响。林地石灰性土壤M总(3.71 mg N/kg)显著低于林地红壤(5.57 mg N/kg),石灰性土壤MNlab(1.81 mg N/kg)与MNrec(1.90 mg N/kg)相近,而红壤M易(4.60 mg N/kg)显著高于M难(0.96 mg N/kg)。林地变为农田后,石灰性土壤M总 显著提高,而红壤显著降低。与林地相比,岩溶区农田土壤M易提高了72.5%,而M难下降了33.7%。碎屑岩区农田土壤M易和M难分别降低至2.47和0.46 mg N/kg。岩溶区土壤CaO和MgO含量与M易呈显著负相关,而与M难呈显著正相关,表明岩溶区土壤钙镁含量是影响氮矿化速率的重要因素。   相似文献   

10.
方法采用0.5 mol/L NaHCO3浸提石灰性土壤中的有效磷,电感耦合等离子体原子发射光谱法测定。研究了土壤滤液的酸化、颜色、浸提温度以及振荡时间等对浸提结果的影响,方法检出限(3s)为0.18 mg/kg,定量限(6s)为0.36 mg/kg,通过对石灰性土壤有效态标准物质GBW07413a、GBW07459和GBW07460的12次测定,方法准确度和精密度均小于4.5%。  相似文献   

11.
Effects of sheet flow rate and slope gradient on sediment load   总被引:2,自引:0,他引:2  
Sheet erosion is known as one of the most important forms of erosion, particularly in agricultural land. The purpose of this study was to investigate the effect of flow rate and slope gradient on runoff and sediment discharges in two different soils. Experiments were conducted using a tilting flume facility with the test area of 0.2?×?1.0 m. Overall, 24 experiments on two soils (clay loam and sandy clay loam textures) including six flow rates (75, 100, 125, 150, 175, and 200 ml/s) and two slope gradients (1.5 and 2 %) were performed. The selected flow rates and flume slopes were generated to simulate sheet erosion. The results showed that for both soils and slopes, unit flow discharge (q) and sediment concentration increased with increasing flow rate; however, the effect of slope gradient on flow discharge depends on soil type. In addition, sandy clay loam exhibited higher values of q and sediment concentration and consequently, it showed greater amounts of sediment load. At the start of event, sediment concentration was high but it decreased to approach a steady state. In addition, the time needed to reach a steady state condition was shorter for sandy clay loam than that for clay loam soil and in lower flow rates than higher flow rates. For each soil and slope, there was a direct relationship between sediment load and flow rate. The result implied that the effect of slope gradient on sediment load was almost greater in sandy clay loam soil than clay loam soil. Moreover, the differences between sediment loads of two soils are enlarged at slope 2 %.  相似文献   

12.
The phosphorus (P) resources worldwide are limited, and the prices of commercial P fertilizer continue to increase. Therefore, the use of P containing wastes is important for P recycling in agriculture. The P fractionation methods have been widely applied to characterize the effect of land use practice on soil P dynamics. Information about effect of organic manures on available P and inorganic P (Pi) fractions in calcareous soils of Chaharmahal va Bakhtiari province is limited. The objectives of this research were to study the effect of municipal compost (MC) on available P and Pi forms in five calcareous soils. Municipal compost was applied at the rates of 0, 0.5, 1.0, 1.5 and 2.0% (w/w). Samples were incubated at 25?±?1°C and 20% moisture content for 150?days. At the end of incubation, available P in MC-treated soils was extracted by Olsen, AB-DTPA and 0.01?M CaCl2 methods. Also, phosphorus was fractionated chemically into labile P (LP), non-occluded P(NP), re-adsorbed P (RP), occluded P (OP), calcium phosphates (CaP) and residual P. The results showed that there was a linear increase in soil available P with MC application. There was a significant positive relationship between Olsen-P, AB-DTPA-P and 0.01?M CaCl2-P, and MC additions with slopes ranged from 0.471 to 0.583, 0.032 to 0.106, and 0.033 to 0.081, respectively. The increase in soil test P (STP) from MC additions was not related to the initial STP of the soils. A sharp increase in LP, NP and CaP and decrease in residual P concentration occurred in all soils with MC application. It can be concluded that MC applied to calcareous soils may enhance P nutrition of plants. Furthermore, applied P partitioning into the relatively available forms means the potential erosion losses of P to streams and other bodies of water.  相似文献   

13.
Architectural mortar from two ancestral Pueblo sites (Spruce Tree House and Nordenskiöld's Ruin 12) located in Mesa Verde National Park was investigated using visual, mineralogical, and geochemical techniques. Results indicate ancestral Pueblo people had a preference for mortars composed of sand and clay contents that produce a USDA textural class of sandy clay loam to clay loam. A temporal trajectory of soil selection is observed at Spruce Tree House, with mesa‐top soils being preferred during the early period of occupation, but with soils below cliff dwellings preferred during later periods. Mortar geochemical composition is found to differ between cliff dwellings, and sometimes between households within a cliff dwelling, due to local soil differences and/or potential amendment additions. Results from Spruce Tree House indicate that contemporaneous households shared access to mortar sources. The prevalence and possible origins of gypsum found in mortar are discussed. Finally, this research examines the possibility that land tenure rights may have extended beyond those lands used exclusively for agricultural purposes. © 2011 Wiley Periodicals, Inc.  相似文献   

14.
INTRODUCTIONLargeareasofaridandsemiaridregionsoftheworldareaf fectedbywinderosion .Approximately 2 8.4%ofthisareaareaffectedbysevereandveryseverewinderosion (Katesetal.,1977) .InIraq ,thearidandsemiaridregionsrepresentnearly 75%ofthetotalland .5 0 %ofthislandissubjec…  相似文献   

15.
Horizontal soil column method was used to determine the horizontal diffusion rate of sandy loam, loam and clay loam under the same bulk density. The results showed that the migration rates of different lithological wet fronts were different. The sandy loam had the fastest migration rate, the loam followed, and the clay loam was the slowest, but the law of change is the same among the three lithologies. The volumetric water content affects the change of Boltzmann parameter λ. When the volumetric water content is between 0.35-0.45 cm3/cm3, λ approaches stability. When the volumetric water content is less than 0.35 cm3/cm3, the λ value decreases rapidly with the decrease of water content. The water diffusion rate is related to the volumetric water content and particle size. The greater the moisture content is, the greater the diffusion rate will be. The larger the particle size, the larger the diffusion rate. The diffusivity of sandy loam is 10-30 times larger than that of loam and clay loam. The relationship between water content and diffusion rate is in accordance with the exponential function.  相似文献   

16.
Horizontal soil column method was used to determine the horizontal diffusion rate of sandy loam, loam and clay loam under the same bulk density. The results showed that the migration rates of different lithological wet fronts were different. The sandy loam had the fastest migration rate, the loam followed, and the clay loam was the slowest, but the law of change is the same among the three lithologies. The volumetric water content affects the change of Boltzmann parameter λ. When the volumetric water content is between 0.35-0.45 cm~3/cm~3, λ approaches stability. When the volumetric water content is less than 0.35 cm~3/cm~3, the λ value decreases rapidly with the decrease of water content. The water diffusion rate is related to the volumetric water content and particle size. The greater the moisture content is, the greater the diffusion rate will be. The larger the particle size, the larger the diffusion rate. The diffusivity of sandy loam is 10-30 times larger than that of loam and clay loam. The relationship between water content and diffusion rate is in accordance with the exponential function.  相似文献   

17.
对石桥小流域碳酸盐岩土壤进行理化性质分析,结果表明: 灌草丛地、水保幼林荒草地、坡耕地土壤砂粒含量依次减少,物理性粘粒含量依次增多,说明坡耕地土壤粘质化最严重;灌草丛地水稳性团粒含量最多,粒级较大,土壤水稳性最好;灌草丛地有机质含量较多,结构破坏率较低,坡耕地土壤分散率、侵蚀率、受蚀指数分别是灌草丛地、水保幼林荒草地的1. 11、1. 14, 1. 04、1. 13, 1. 87、1. 82倍,耕地土壤团聚度、团聚状况分别是灌草丛地、水保幼林荒草地的0. 83、0. 84, 0. 69、0. 64倍,说明坡耕地分散率最大,土壤团聚状况最差,土壤抗分散能力弱;小流域内土壤的容重、毛管孔隙度较我国其它地区低,约分别为1. 0g /cm3 ,和39. 86% ,而非毛管孔隙度则较我国其它地区的高,均值为25. 88%。区内碳酸盐岩土壤孔隙的这种组合特征很容易导致上层土壤粘粒向下淋失淀积,堵塞下层土壤孔隙,造成土壤上下层间饱和渗透率的显著差异,对于土壤抵抗流水侵蚀很不利。   相似文献   

18.
Disturbances have the potential to reduce soil water and nutrient retention capacity by decreasing soil organic matter (SOM), which is particularly true for sandy soils characterized by an inherent low capacity to retain nutrients and water. To restore degraded areas, several works have shown positive effects of organic matter inputs on soil properties and plant growth. Despite these promising results, it is still unclear how organic matter inputs and plant growth modify the balance between soil nutrient and water supply. The objectives of the present work were (1) to evaluate the effects of biosolids compost and municipal compost addition on plant available water (PAW), soil moisture and soil temperature in a burned sandy soil of NW Patagonia (Argentina), and (2) to relate PAW and soil moisture with bulk density, soil organic carbon, nutrient availability (inorganic and potential mineralized nitrogen (N), extractable phosphorous) and aboveground phytomass. An experiment with excised vegetation and watering was also conducted. Compost application increased SOM, but it was insufficient to increase PAW. The increase in potential mineralized N in the amended soils indicated that during moist periods (and adequate temperatures), N uptake was increased, enhancing plant growth. As a consequence, higher plant water consumption in amended treatments resulted in lower soil moisture than in non-amended plots during the vegetative growth period that coincides with decreasing precipitation. Results indicate that a relatively high dose of compost (40 Mg ha?1) applied to a sandy soil, contributed to increase nutrient availability and consequently, aboveground phytomass and water consumption.  相似文献   

19.
为研究土壤与植物根系生长及有机碳输入之间的关系,2011年分别将构树(Broussonetia papyrifera)、铁仔(Myrsine africana)、紫花苜蓿(Medicago sativa)、皇竹草(Pennisetum sinese)移栽入贵州大学林学院苗圃基地,采用石灰土(岩溶地区土壤)与硅质黄壤(非岩溶地区土壤)进行培育,然后对根系生长特征和根系对土壤有机碳积累进行了研究。研究结果表明,构树根系在岩溶地区土壤比非岩溶地区土壤发达,即岩溶地区土壤根系碳沉积比非岩溶高。岩溶地区土壤上,紫花苜蓿死亡根系体积最大,其根系对土壤有机碳积累贡献最大。构树根系生长无论在哪种土壤均随土层深度增加而增加,使得森林土壤深层有机碳含量比草地高。因此,可确定土壤有机碳积累与植被生长环境和植被种类密切相关。   相似文献   

20.
Adsorption and precipitation reactions often dictate the availability of phosphorus in soil environments. Tripolyphosphate (TPP) is considered a form of slow release P fertilizer in P limited soils, however, investigations of the chemical fate of TPP in soils are limited. It has been proposed that TPP rapidly hydrolyzes in the soil solution before adsorbing or precipitating with soil surfaces, but in model systems, TPP also adsorbs rapidly onto mineral surfaces. To study the adsorption behavior of TPP in calcareous soils, a short-term (48 h) TPP spike was performed under laboratory conditions. To determine the fate of TPP under field conditions, two different liquid TPP amendments were applied to a P limited subsurface field site via an in-ground injection system. Phosphorus speciation was assessed using X-ray absorption spectroscopy, total and labile extractable P, and X-ray diffraction. Adsorption of TPP to soil mineral surfaces was rapid (< 48 h) and persisted without fully hydrolyzing to ortho-P. Linear combination fitting of XAS data indicated that the distribution of adsorbed P was highest (~ 30–40%) throughout the site after the first TPP amendment application (high water volume and low TPP concentrations). In contrast, lower water volumes with more concentrated TPP resulted in lower relative fractions of adsorbed P (15–25%), but a significant increase in total P concentrations (~ 3000 mg P kg soil) and adsorbed P (60%) directly adjacent to the injection system. This demonstrates that TPP application increases the adsorbed P fraction of calcareous soils through rapid adsorption reactions with soil mineral surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号