首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Sr isotope profiles across marble-silicate rock contacts are used in conjunction with previously published oxygen isotope profiles to constrain fluid movement, porosity and permeability contrasts in migmatitic rocks from Lizzies Basin in the East Humboldt Range, Nevada. The 18O/16O systematics in the high-grade sequence have been interpreted to reflect infiltration of ∼2×102 m3/m2 of a relatively low 18O hydrous fluid through the sequence, but with preservation of δ18O anomalies in thin marble bands due to a 30-fold lower porosity in the marble compared with silicate rocks (Wickham and Peters 1992). The Sr isotope profiles confirm that tracer exchange between marble and silicate rock was primarily by diffusion, and in one case, indicate that porosities differed by less than a factor of four in the ∼10 cm boundary layer which exhibits diffusive modification of 87Sr/86Sr ratios. This contrasts with modelling of the oxygen isotope profiles which imply porosity contrasts >10 for one marble band and >50 for a second marble band. Either strontium and oxygen isotope diffusion reflect different events (possible if fluid Sr contents varied with time) or porosity varied substantially with the silicate rocks. Oxygen isotope profiles in the deeper part of the metamorphic section in which δ18O values of silicate rocks have been homogenised and lowered, indicate similar diffusion distances (and thus porosity-time evolution) to oxygen isotopic profiles higher in the section. Comparison of strontium and oxygen isotope diffusion distances constrains fluid Sr contents to between ∼50 and ∼500 ppm deep in the section, but less than ∼10 ppm higher in the section. The difference is related to release of relatively saline, Sr-rich fluids, by the abundant leucogranites and associated skarns deep in the section (cf. Peters and Wickham 1995). Received: 9 December 1994/Accepted: 13 April 1995  相似文献   

2.
The relationships between the δ18O of quartz veins and veinlets pertaining to the main stage of gold mineralization at the Sukhoi Log deposit and metasomatically altered host slates are estimated. The oxygen isotopic composition of veined quartz and host slates is not uniform. The δ18O of quartz veins from the Western, Central, and Sukhoi Log areas of the deposit vary from +16 to + 18 ‰. The δ18O range of metasomatically altered slates in the Western and Sukhoi Log areas attains 6 ‰. The δ18O of quartz veins are always higher than those of host slates by 3–7‰. The regular difference in the δ18O between quartz veins and host slates indicates that the oxygen isotopic composition of the ore-bearing fluid forming the system of quartz veins and veinlets at the Sukhoi Log deposit could have formed as a result of interaction with silicate rocks, for instance, terrigenous slates enriched in δ18O. Such interaction, however, took place at deeper levels of the Sukhoi Log deposit. It is suggested that the fluid phase participating in the formation of the vein and veinlet system had initially high δ18O(>+10‰) due to interaction with the rocks enriched in δ18O at a low fluid/rock ratio. The oxygen isotope data indicate that the fluid participating in the formation of gold mineralization at the Sukhoi Log deposit was not in equilibrium with igneous rocks at high temperatures.  相似文献   

3.
In order to reconstruct the formation and exhumation mechanisms of UHP metamorphic terrains, the Chinese Continental Scientific Drilling Program (CCSD) has been carried out in Donghai of the Dabie-Sulu ultrahigh-pressure (UHP) metamorphic belt, East China. Eclogite, gneiss, amphibolite (retrograded from eclogite), ultramafic rocks, and minor schist and quartzite have been drilled. Aiming to reveal the fluid behaviour in a vertical sequence of an UHP slab, we investigated fluid inclusion and oxygen isotope characteristics of selected drillcores from the main hole and the pilot-holes PP2 and ZK 703 of the CCSD. More than 540 laser-ablation oxygen isotope analyses on garnet, omphacite, quartz, kyanite, amphibole, phengite, rutile, epidote, amphibole, plagioclase, and biotite from various rocks in the depth range of 0–3,000 m (mainly eclogite and gneiss) show that the investigated rocks can be divided into two groups: 18O-depleted rocks (as low as δ18O = −7.4‰ for garnet) indicate interaction with cold climate meteoric waters, whereas 18O-normal rocks (with bulk δ18O > +5.6‰) have preserved the O-isotopic compositions of their protoliths. Meteoric water/rock interaction has reached depths of at least 2,700 m. Oxygen isotope equilibrium has generally been achieved. Isotopic compositions of mineral phases are homogeneous on a mm to cm scale regardless of lithology, but heterogeneous on the scale of a few metres. Oxygen isotope distributions in the vertical sections favour an “in situ” origin of the UHP metamorphic rocks. The very negative δ18O eclogites usually have higher hydroxyl-mineral contents than the normal δ18O rocks, indicating higher water content during UHP metamorphism. Fluid inclusion data suggest that rocks with depleted 18O compositions have had different fluid histories compared to those with normal δ18O values. Rocks with depleted 18O mainly have primary medium-to-high salinity inclusions in omphacite, kyanite and quartz, and abundant secondary low-salinity or pure water inclusions in quartz, indicating a high-salinity-brine-dominated fluid system during peak UHP metamorphism; no carbonic inclusions have been identified in these rocks. By contrast, primary very high-density CO2 inclusions are commonly found in the rocks with normal δ18O values. These observations suggest that fluid and oxygen isotope composition of minerals are related and reflect variable degrees of alterations of the Dabie-Sulu UHP metamorphic rocks.  相似文献   

4.
 Previous stable isotope studies at Lizzies Basin revealed that metasedimentary rocks are 18O-depleted relative to protolith values, particularly in the lower parts of the section (Lower Zone) where the rocks are also isotopically homogeneous on a scale of hundreds of meters (quartz δ18O=+9.0 to +9.6 per mil). In contrast, metasedimentary rocks at higher levels at Lizzies Basin (Upper Zone) are less 18O-depleted and more heterogeneous in δ18O. In order to understand more fully the isotopic evolution of this terrane, a series of detailed, meter-scale traverses across various metamorphic and igneous lithologies were completed at Lizzies Basin, and at the structurally higher Angel Lake locality. Traverses in the Lizzies Basin Lower Zone and in the lower parts of Angel Lake (Angel Lake Lower Sequence) across various silicate lithologies, including abundant granitoids, reveal similar degrees of homogeneity, although the average δ18O values are higher at Angel Lake. In contrast, traverses which include substantial thicknesses of marble and calc-silicate gneiss and very little granitoid have more heterogeneous quartz δ18O values (+11.9 to +13.4 per mil), and also have a higher average δ18O (+12.9 per mil), than observed elsewhere. The scale of 18O/16O homogeneity in quartz observed at Lizzies Basin and Angel Lake (meters to hundreds of meters) requires fluid-mediated isotope exchange, which accompanied Tertiary metamorphism. There is a correlation between the degree of 18O-depletion in metasedimentary rocks, 18O/16O homogenization between lithologies, and the proportion of granitoids (leucogranites in particular) within any part of the section, and a corresponding anticorrelation with the proportion of marble. This points to a causal relationship, whereby the leucogranites (as well as the Tertiary hornblende diorite and biotite monzogranite) acted as both a relatively low-18O reservoir and a source of fluids to enhance exchange, while the marbles hindered isotope depletion and homogenization by acting as relatively high-18O reservoirs and impermeable layers. Material balance calculations help delineate the plausible mechanisms of exchange between granitoids and metasediments. Single-pass infiltration of magmatic fluids from the granitoids is not capable of reproducing all of the observations. Fluid-mediated exchange by convective recirculation of magmatic fluids on a scale of meters is the mechanism which explains all of the observations. The generalized model for the isotopic evolution of the East Humboldt Range core complex provides an excellent opportunity to establish the main causes and controlling factors of 18O-depletion and 18O/16O homogenization during regional metamorphism. Received: 27 July 1993 / Accepted: 1 July 1994  相似文献   

5.
Using a recently developed ion microprobe technique, a detailed oxygen isotope map of calcite grains in a coarse-grained marble has been constructed, supported by trace element (Mn, Sr, Fe) analysis and cathodoluminescence (CL) imaging, in order to constrain scales of oxygen isotope equilibrium, timescales and mechanisms of metamorphic fluid infiltration, and fluid sources and pathways. Results are compared with a previous study of this sample (Wada 1988) carried out using a cryo-microtome technique and conventional oxygen isotope analysis. The marble, from the high temperature/low pressure Hida metamorphic belt in north-central Japan, underwent granulite facies followed by amphibolite facies metamorphic events, the latter associated with regional granite intrusion. The CL imaging indicates two types of calcite, a yellow luminescing (YLC) and a purple luminescing (PLC) variety. The YLC, which occupies grain boundaries, fractures, replacement patches, and most of the abundant deformation twin lamellae, post-dates the dominant PLC calcite and maps out fluid pathways. Systematic relationships were established between oxygen isotope and trace element composition, calcite type and texture, based on 74 18O/16O and 17 trace element analyses with 20–30 μ m spatial resolution. The YLC is enriched in Mn and Fe, and depleted in 18O and Sr compared to PLC, and is much more 18O depleted than is indicated from conventional analyses. Results are interpreted to indicate infiltration of 18O-depleted (metamorphic or magmatic) fluid (initial δ18O = 9‰–10.5‰) along grain boundaries, fractures and deformation twin lamellae, depleting calcite grains in Sr and enriching them in Mn and Fe. The sample is characterised by gross isotopic and elemental disequilibrium, with important implications for the application of chromatographic theory to constrain fluid fluxes in metacarbonate rocks. Areas of PLC unaffected by “short-circuiting” fluid pathways contain oxygen diffusion profiles of ∼10‰/∼200 μm in grain boundary regions or adjacent to fractures/patches. When correction is made for estimated grain boundary/fracture and profile orientation in 3D, profiles are indistinguishable within error. Modelling of these profiles gives consistent estimates of Dt (where D is the diffusion coefficient and t is time) of ∼0.8 × 10−8 m2, from which, using experimental data for oxygen diffusion in calcite, timescales of fluid transport along grain boundaries at amphibolite facies temperatures of ∼103 to ∼104 years are obtained. These short timescales, which are much shorter than plausible durations of metamorphism, imply that rock permeabilities may be transiently much higher during fluid flow than those calculated from time integrated fluid fluxes or predicted from laboratory measurements. The preservation of 18O/16O profiles requires either rapid cooling rates (∼100–600 °C/million years), or, more plausibly, loss of grain boundary fluid such that a dry cooling history followed the transient passage of fluid. The δ18O/trace element correlations are also consistent with volume diffusion-controlled transport in the PLC. Fluid transport and element exchange occurred by two inter-related mechanisms on short timescales and on different lengthscales – long-distance flow along cracks, grain boundaries and twin lamellae coupled to ∼200 μm-scale volume diffusion of oxygen. Received: 8 December 1997 / Accepted: 18 May 1998  相似文献   

6.
 Late Proterozoic to Cambrian carbonate rocks from Lone Mountain, west central Nevada, record multiple post-depositional events including: (1) diagenesis, (2) Mesozoic regional metamorphism, (3) Late Cretaceous contact metamorphism, related to the emplacement of the Lone Mountain granitic pluton and (4) Tertiary hydrothermal alteration associated with extension, uplift and intrusion of silicic porphyry and lamprophyre dikes. Essentially pure calcite and dolomite marbles have stable isotopic compositions that can be divided into two groups, one with positive δ13C values from+3.1 to +1.4 ‰ (PDB) and high δ18O values from +21.5 to +15.8 ‰ (SMOW), and the other with negative δ13C values from –3.3 to –3.6‰ and low δ18O values from +16.9 to +11.1‰. Marbles also contain minor amounts of quartz, muscovite and phlogopite. Brown and blue luminescent, clear, smooth textured quartz grains from orange luminescent calcite marbles have high δ18O values from +23.9 to +18.1‰, while brown luminescent, opaque, rough textured quartz grains from red luminescent dolomite marbles typically have low δ18O values from +2.0 to +9.3‰. The δ18O values of muscovite and phlogopite from marbles are typical of micas in metamorphic rocks, with values between +10.4 and +14.4‰, whereas mica δD values are very depleted, varying from −102 to −156‰. No significant lowering of the δ18O values of Lone Mountain carbonates is inferred to have occurred during metamorphism as a result of devolatilization reactions because of the essentially pure nature of the marbles. Bright luminescence along the edges of fractures, quartz cements and quartz overgrowths in dolomite marbles, low δD values of micas, negative δ13C values and low δ18O values of calcite and dolomite, and depleted δ18O values of quartz from dolomite marbles all indicate that meteoric fluids interacted with Lone Mountain marbles during the Tertiary. Partial oxygen isotopic exchange between calcite and low 18O meteoric fluids lowered the δ18O values of calcite, resulting in uniform quartz-calcite fractionations that define an apparent pseudoisotherm. These quartz-calcite fractionations significantly underestimate both the temperature of metamorphism and the temperature of post-metamorphic alteration. Partial oxygen isotopic exchange between quartz and meteoric fluids also resulted in 18O depletion of quartz from dolomite marbles. This partial exchange was facilitated by an increase in the surface area of the quartz as a result of its dissolution by meteoric fluids. The negative δ13C values in carbonates result from the oxidation of organic material by meteoric fluids following metamorphism. Stable isotopic data from Lone Mountain marbles are consistent with the extensive circulation of meteoric hydrothermal fluids throughout western Nevada in Tertiary time. Received: 1 February 1994/Accepted: 12 September 1995  相似文献   

7.
The Biwabik Iron Formation of Minnesota (1.9 Ga) underwent contact metamorphism by intrusion of the Duluth Complex (1.1 Ga). Apparent quartz–magnetite oxygen isotope temperatures decrease from ∼700°C at the contact to ∼375°C at 2.6 km distance (normal to the contact in 3D). Metamorphic pigeonite at the contact, however, indicates that peak temperatures were greater than 825°C. The apparent O isotope temperatures, therefore, reflect cooling, and not peak metamorphic conditions. Magnetite was reset in δ18O as a function of grain size, indicating that isotopic exchange was controlled by diffusion of oxygen in magnetite for samples from above the grunerite isograd. Apparent quartz–magnetite O isotope temperatures are similar to calculated closure temperatures for oxygen diffusion in magnetite at a cooling rate of ∼5.6°C/kyr, which suggests that the Biwabik Iron Formation cooled from ∼825 to 400°C in ∼75 kyr at the contact with the Duluth Complex. Isotopic exchange during metamorphism also occurred for Fe, where magnetite–Fe silicate fractionations decrease with increasing metamorphic grade. Correlations between quartz–magnetite O isotope fractionations and magnetite–iron silicate Fe isotope fractionations suggest that both reflect cooling, where the closure temperature for Fe was higher than for O. The net effect of metamorphism on δ18O–δ56Fe variations in magnetite is a strong increase in δ18OMt and a mild decrease in δ56Fe with increasing metamorphic grade, relative to the isotopic compositions that are expected at the low temperatures of initial magnetite formation. If metamorphism of Iron Formations occurs in a closed system, bulk O and Fe isotope compositions may be preserved, although re-equilibration among the minerals may occur for both O and Fe isotopes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Partially turbid alkali feldspars from hydrothermally altered Tertiary granites on the Isle of Skye (the Red Hills granites) were studied using light microscopy, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy. Limpid cores and turbid rims of individual crystals were compared to determine the causes of the turbidity. The limpid cores were cryptoperthitic, with lamellar widths of 0.1–0.3 μm. In contrast, the turbid rims contained K-rich and Narich areas coarsened to >0.5 μm. Turbid regions contained abundant inclusions, whereas limpid regions did not. Two generations of turbidity were recognized. Feldspars from the Beinn an Dubhaich granite, a granite with near-normal values for 18O/16O possessed limpid cores surrounded by turbid rims that cast a reddish-brown hue in transmitted light. When viewed in darkfield light microscopy, the regions with the reddish-brown turbidity were blue. This is consistent with the hypothesis that the cloudy appearance of these turbid regions arises from the scattering of light by micrometerto submicrometer-sized inhomogeneities in refractive index caused by fluid-filled cavities. Feldspars from the Loch Ainort granite, a granite with low values for 18O/16O possessed limpid and reddish-brown-turbid cores surrounded by turbid rims that cast a blackish hue in transmitted light. Ion thinning of the turbid areas produced an abundance of small holes (≤1–2 μm) apparently the remains of fluid inclusions. Transmission electron microscopy revealed that some holes from regions of reddish-brown turbidity contained non-feldspar material, including halite and metal-rich phases of various compositions. In contrast, blackish turbid regions contained cavities filled with alteration products, such as kaolinite. Hence, the feldspars from granites on the Isle of Skye apparently record interactions with at least two fluids: a saline fluid (possibly a late-stage magmatic fluid) and a meteoric fluid.  相似文献   

9.
Calcsilicate and garnet-pyroxene rocks with dolomite and Mg-calcite matrices occur with UHPM diamondiferous biotite gneisses and schists of the Kokchetav Massif. The calcsilicates are characterized by high diamond grade, K-bearing diopside, and very high Mg-garnets (Mg# > 77) with variable Ca contents (Ca# = 42.5–80). A rare calcsilicate sample with alternating layers of different bulk compositions was selected for oxygen isotope and electron probe microanalysis of garnets and pyroxenes. A grain of fresh garnet with a brownish-yellow luminescent inner domain (Mg# 94) and a non-luminescent outer part (Mg# 88) was selected for in situ analysis of δ18O by ion microprobe (10 μm spot). The profile demonstrates a δ18O gradient of 1.5‰/200 μm, from 11.3 (rim) to 12.8‰ (core) VSMOW. Additional 2 mg samples of hand-picked garnet and clinopyroxene fragments from different parts of the same sample (selected by color and chemical differences) were analyzed for δ18O by laser fluorination, yielding even larger differences in δ18O: 6.3–10.6‰ in garnets and 6.1–8.1 in clinopyroxenes. The zonation in δ18O among grains of the same mineral in different lithologies may in part reflect initial heterogeneities of the finely layered sedimentary precursors. The δ18O values for the garnets are among the highest observed for UHP-origin (both for crustal or mantle rocks), confirming a sedimentary origin for these carbonate-bearing rocks, and ruling out a primitive mantle-derived protolith. Oxygen diffusion in garnet at peak metamorphism temperature (1,000°C) was arrested by rapid cooling.  相似文献   

10.
Whole rock oxygen isotope data are presented for the Panorama district, in the Archean Pilbara Craton of Western Australia, where near-perfect exposure reveals a cross section through a complete volcanogenic massive sulfide (VMS) hydrothermal alteration system. The δ18O values decrease with depth in the volcanic pile, across semi-conformable alteration zones, to values below 6‰ immediately above a large (180 km2) subvolcanic intrusion. Altered rocks in the upper parts of the subvolcanic intrusion have lower δ18O values (6–8‰) than least altered granite (8‰), apart from sericite–quartz altered zones, which are slightly higher (8–10‰). Corridors of low δ18O values crosscut this regional zonation, and are coincident with transgressive feldspar-destructive alteration zones, which underlie VMS mineralization. The whole rock oxygen isotope distribution patterns are interpreted to represent alteration temperature, where high δ18O values correspond to low temperature alteration and low δ18O values correspond to high temperature alteration. Alteration temperatures, which were calculated using modal alteration mineral abundances and an assumed fluid δ18O, are consistent with this interpretation. Increasing temperatures with depth in the volcanic pile and high temperatures in transgressive corridors leading up to VMS deposits, are consistent with a convective hydrothermal model, in which heat from the subvolcanic intrusion drove seawater through the volcanic pile. Granite-hosted sericite–quartz alteration zones are 18O-enriched, and are tentatively interpreted to have formed from a mixed magmatic-evolved seawater fluid. Received: 12 April 1999 / Accepted: 6 April 2000  相似文献   

11.
The origin of monzonitic intrusions that are associated with Proterozoic massif-type anorthosite complexes is controversial. A detailed oxygen isotope study of the Sybille intrusion, a monzonitic intrusion of the Laramie Anorthosite Complex (Wyoming), indicates that either derivation from a basaltic magma of mantle origin with a metasedimentary component (∼20%) incorporated early in its magmatic history, or a partial melt of lower crustal rocks is consistent with the data. The oxygen isotope compositions of plagioclase, pyroxene and zircon from the Sybille monzosyenite, the dominant rock type in the Sybille intrusion, were analyzed in order to establish the isotopic composition of the source of the magma. Plagioclase δ18O values range from 6.77 to 9.17‰. We interpret the higher plagioclase δ18O values (average 8.69 ± 0.30‰, n = 19) to be magmatic in origin, lower plagioclase δ18O values (average 7.51 ± 0.44‰, n = 22) to be the result of variable subsolidus alteration, and pyroxene δ18O values (average 6.34 ± 0.38‰, n = 19) to be the result of closed-system diffusional exchange during cooling. Low magnetic zircons, which have been shown to retain magmatic oxygen isotope values despite high grade metamorphism and extensive subsolidus hydrothermal alteration, have δ18O values (7.40 ± 0.24‰, n = 11) which are consistent with our interpretation of the plagioclase and pyroxene results. Oxygen isotope data from all three minerals indicate that the magmatic oxygen isotope composition of the Sybille intrusion is enriched in 18O relative to the composition of average or “normal” mantle-derived magmas. This enrichment is approximately twice the oxygen isotope enrichment that could result from closed-system fractionation, rendering a closed-system, comag- matic petrogenetic model between the Sybille intrusion and the mantle-derived anorthositic lithologies of the Laramie Anorthosite Complex improbable. Received: 7 April 1998 / Accepted: 19 January 1999  相似文献   

12.
Oxygen isotope ratios have been measured by ion microprobe and millimeter-scale dental drill along detailed sampling traverses across the boundary between periclase-bearing (δ18O = 11.8‰) and periclase-free (δ18O = 17.2‰) marble layers in the periclase (Per) zone of the Alta Stock aureole, Utah. These data define a steep, coherent gradient in δ18O that is displaced a short distance (~4 cm) into the periclase-free (Cal + Fo) layer. SEM and ion microprobe analyses show two isotopically and texturally distinct types of calcite at the grain scale. Clear (well polished) calcite grains are isotopically homogeneous (within analytical uncertainty; ±0.27‰, 2SD). More poorly polished (pitted), texturally retrograde ‘turbid’-looking calcite has lower and more variable δ18O values, and replaces clear calcite along fractures, cleavage traces or grain boundaries. Despite significant lowering of the δ18O values in calcite throughout both layers during prograde metamorphism, ion microprobe analyses indicate that individual clear calcite grains are now isotopically homogeneous across the entire gradient in δ18O. Diffusion calculations indicate that conservative time scales required for isotopic homogenization of calcite grains by volume diffusion, 30,000–62,000 years at 575–600°C, exceed significantly the timescale (~1,250 years) estimated for the prograde development of the δ18O gradient at the boundary between these two marble layers. The ion microprobe data and these diffusion calculations suggest instead that surface reaction mechanisms accompanying recrystallization are responsible for the observed oxygen isotope homogeneity of these calcite grains. Thus, the ion microprobe data are consistent with the formation of calcite in oxygen isotope exchange equilibrium with infiltrating fluid during prograde reaction and recrystallization. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
The Géant Dormant gold mine is a sulfide-rich quartz vein gold deposit hosted by a volcano-sedimentary sequence and an associated felsic endogenous dome and dikes. The auriferous quartz-sulfide veins were preceded by two synvolcanic gold-bearing mineralizing events: early sulfidic seafloor-related and later disseminated pyrite in the felsic dome. This deposit differs from classical Archean auriferous quartz vein deposits by the low carbonate and high sulfide contents of the veins and by their formation prior to ductile penetrative deformation. The δ18O values of quartz associated with seafloor-related auriferous sulfides average 11.9 ± 0.6‰ (n = 3). The seafloor hydrothermal fluids had a δ18O value of 3.2‰ calculated at 250 °C. The oxygen isotope composition of quartz and chlorite from veins average 12.5 ± 0.3‰ (n = 20) and 5.9 ± 1.1‰ (n = 4) respectively. Assuming oxygen isotope equilibrium between quartz and chlorite, the veins formed at a temperature of ∼275 °C, which is consistent with the calculated temperature of 269 ± 10 °C from chlorite chemistry. The gold-bearing fluids had a δ18O value of 4.7‰ calculated at 275 °C. The δ34S values of sulfides from the three gold events range from 0.6 to 2.8‰ (n = 32) and are close to magmatic values. Sulfur isotope geothermometry constrains the sulfide precipitation in the gold-bearing veins at a temperature of ∼350 °C. The similarity of the isotope data, the calculated δ18O of the mineralizing fluids and the likely seawater fluid source suggest that the three mineralizing events are genetically related to a volcanogenic hydrothermal system. The high value of the auriferous fluids (δ18O = 4.7‰) is attributed to a significant magmatic fluid contribution to the evolved seawater-dominated convective hydrothermal system. The two-stage filling of veins at increasing temperature from quartz-chlorite (275 °C) to sulfides (350 °C) may reflect the progressive maturation of volcanogenic hydrothermal systems. These results, together with field and geochemical data, suggest that formation of gold-rich volcanogenic systems require specific conditions that comprise a magmatic fluid contribution and gold from arc-related felsic rocks, coeval with the mineralizing events. This study shows that some auriferous quartz-vein orebodies in Archean terranes are formed in volcanogenic rather than mesothermal systems. Received: 12 December 1998 / Accepted: 5 July 1999  相似文献   

14.
 Grain boundary diffusion rates of oxygen, potassium and calcium in fine-grained feldspar aggregates were determined experimentally. The starting materials were a natural albite rock from the Tanco pegmatite and aggregates hot-pressed from fragments of Amelia albite or Ab, Or and An composition glasses. The technique employed isotopic tracers (18O, 41K, 42Ca) either evaporated onto the surface or in an aqueous solution surrounding the sample, and depth profiling using an ion microprobe (SIMS). From the depth profiles, the product of the grain boundary diffusion coefficient (D′) and effective boundary width (δ) was calculated using numerical solutions to the appropriate diffusion equation. The experimental reproducibility of D′δ is a factor of 3. A separate determination of D′ independent of δ yields an effective grain boundary width of ∼3 nm, consistent with high resolution TEM observations of a physical grain boundary width <5 nm. Oxygen (as molecular water) grain boundary diffusion rates were determined in the Ab and Or aggregates at 450°–800° C and 100 MPa (hydrothermal), potassium rates in Or aggregates at 450°–700° C both at 0.1 MPa (in air) and at 100 MPa (hydrothermal), and calcium rates in An aggregates at 700°–1100° C and 0.1 MPa (in air). Oxygen grain boundary diffusion rates are similar in all three of the Ab aggregates and in the Or aggregate. Potassium and oxygen depth profiles measured in the same samples yield different D′δ values, confirming a diffusional transport mechanism. Potassium diffusion in the Or aggregate has a greater activation energy (216 vs 78 kJ/mol) than oxygen, and the Arrhenius relations cross at ∼625° C. Potassium D′δ values in Or aggregates are about a factor of five greater in hydrothermal experiments at 100 MPa than in experiments at 0.1 MPa in air. Calcium grain boundary diffusion rates in An aggregates are 4 to 5 orders of magnitude slower than potassium in Or and have a greater (291 kJ/mol) activation energy. This suggests that differences in formal charge and/or size of diffusing species may play an important role in their relative grain boundary diffusion rates. Received: 24 December 1993 / Accepted: 16 June 1994  相似文献   

15.
 Hydrogen and oxygen isotope analyses have been made of hydrous minerals in gabbros and basaltic xenoliths from the Eocene Kap Edvard Holm intrusive complex of East Greenland. The analyzed samples are of three types: (1) primary igneous hornblendes and phlogopites that crystallized from partial melts of hydrothermally altered basaltic xenoliths, (2) primary igneous hornblendes that formed during late–magmatic recrystallization of layered gabbroic cumulates, and (3) secondary actinolite, epidote and chlorite that formed during subsolidus alteration of both xenoliths and gabbros. Secondary actinolite has a δ18O value of −5.8‰ and a δD value of −158‰. These low values reflect subsolidus alteration by low–δ18O, low–δD hydrothermal fluids of meteoric origin. The δD value is lower than the −146 to −112‰ values previously reported for amphiboles from other early Tertiary meteoric–hydrothermal systems in East Greenland and Scotland, indicating that the meteoric waters at Kap Edvard Holm were isotopically lighter than typical early Tertiary meteoric waters in the North Atlantic region. This probably reflects local climatic variations caused by formation of a major topographic dome at about the time of plutonism and hydrothermal activity. The calculated isotopic composition of the meteoric water is δD=−110 ± 10‰, δ18O ≈−15‰. Igneous hornblendes and phlogopites from pegmatitic pods in hornfelsed basaltic xenoliths have δ18O values between −6.0 and −3.8‰ and δD values between −155 and −140‰. These are both much lower than typical values of fresh basalts. The oxygen isotope fractionations between pegmatitic hornblendes and surrounding hornfelsic minerals are close to equilibrium fractionations for magmatic temperatures, indicating that the pegmatites crystallized from low–δ18O partial melts of xenoliths that had been hydrothermally altered and depleted in 18O prior to stoping. The pegmatitic minerals may have crystallized with low primary δD values inherited from the altered country rocks, but these values were probably overprinted extensively by subsolidus isotopic exchange with low–δD meteoric–hydrothermal fluids. This exchange was facilitated by rapid self–diffusion of hydrogen through the crystal structures. Primary igneous hornblendes from the plutonic rocks have δ18O values between +2.0 and +3.2‰ and δD values between −166 and −146‰. The 18O fractionations between hornblendes and coexisting augites are close to equilibrium fractionations for magmatic temperatures, indicating that the hornblendes crystallized directly from the magma and subsequently underwent little or no oxygen exchange. The hornblendes may have crystallized with low primary δD values, due to contamination of the magma with altered xenolithic material, but the final δD values were probably controlled largely by subsolidus isotopic exchange. This inference is based partly on the observation that coexisting plagioclase has been extensively depleted in 18O via a mineral–fluid exchange reaction that is much slower than the hydrogen exchange reaction in hornblende. It is concluded that all hydrous minerals in the study area, whether igneous or secondary, have δD values that reflect extensive subsolidus isotopic equilibration with meteoric–hydrothermal fluids. Received: 22 March 1994 / Accepted: 26 January 1995  相似文献   

16.
Peraluminous granitoids provide critical insight as to the amount and kinds of supracrustal material recycled in the central Sierra Nevada batholith, California. Major element concentrations indicate Sierran peraluminous granitoids are high-SiO2 (68.9–76.9) and slightly peraluminous (average molar Al2O3/(CaO + Na2O + K2O)=1.06). Both major and trace element trends mimic those of other high-silica Sierran plutons. Garnet (Grt) in the peraluminous plutons is almandine–spessartine-rich and of magmatic origin. Low grossular contents are consistent with shallow (<4 kbar) depths of garnet crystallization. Metasediments of the Kings Sequence commonly occur as wallrocks associated with the plutons, including biotite schists that are highly peraluminous (A/CNK=2.25) and have high whole rock (WR) δ18O values (9.6–21.8‰, average=14.5±2.9‰, n=26). Ultramafic wallrocks of the Kings–Kaweah ophiolite have lower average δ18O (7.1±1.3‰, n=9). The δ18O(WR) of the Kings Sequence is variable from west to east. Higher δ18O values occur in the west, where quartz in schists is derived from marine chert; values decrease eastward as the proportion of quartz from igneous and metamorphic sources increases. Peraluminous plutons have high δ18O(WR) values (9.5–13‰) consistent with supracrustal enrichment of their sources. However, relatively low initial 87Sr/86Sr values (0.705–0.708) indicate that the supracrustal component in the source of peraluminous magmas was dominantly altered ocean crust and/or greywacke. Also, plutons lack or have very low abundances (<1% of grains) of inherited zircon (Zrc) cores. Average δ18O(Zrc) is 7.9‰ in peraluminous plutons, a higher value than in coeval metaluminous plutons (6–7‰). Diorites associated with peraluminous plutons also have high δ18O(Zrc), 7.4–8.3‰, which is consistent with the diorites being derived from a similar source. Magmatic garnet has variable δ18O (6.6–10.5‰, avg.=7.9‰) due to complex contamination and crystallization histories, evidenced by multiple garnet populations in some rocks. Comparison of δ18O(Zrc) and δ18O(Grt) commonly reveals disequilibrium, which documents evolving magma composition. Minor (5–7%) contamination by high δ18O wallrocks occurred in the middle and upper crust in some cases, although low δ18O wallrock may have been a contaminant in one case. Overall, oxygen isotope analysis of minerals having slow oxygen diffusion and different times of crystallization (e.g., zircon and garnet), together with detailed textural analysis, can be used to monitor assimilation in peraluminous magmas. Moreover, oxygen isotope studies are a valuable way to identify magmatic versus xenocrystic minerals in igneous rocks. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

17.
Diorite plutons at Al Hadah Saudi Arabia, which constitute part of the pan-African magmatic sequence (ca. 600 Ma), exhibit extensive development of epidote. The epidote alteration is concentrated along veins and dyke margins, and is characterised by transformation of plagioclase (Ab 67)+hornblende+biotite+quartz to epidote+hornblende+tremolite−actinolite+plagioclase (Ab 99)±quartz. The reactions involve addition of CaO and total Fe2O3, depletion of MgO, Na2O and K2O, with variable gains or losses of SiO2. Epidotised alteration products are hydrated and oxidised relative to the diorite precursor. The whole rock δ18O of fresh diorite is + 8.2‰ to + 8.8‰, whereas epidote domains have δ18O whole rock of +9.8‰ to +10.48‰ and negative Δ18Oquartz-plagioclase, implying oxygen isotope exchange with fluids at low temperatures. Epidotisation is considered to have accompanied influx of fluids into plutons during cooling and contraction. The fluids were probably deep formation waters with relatively high Ca2+/Na+ ratios, moving up thermal gradient.  相似文献   

18.
Epidote occurs in four textural varieties in the Mount Lowe intrusion of southern California: euhedra, anhedra, intergrowths and cross-cutting veins. Of these, conspicuous elongate euhedra, which range up to 3 cm in length, meet most of the established textural criteria for magmatic epidote. Equant anhedral grains, which are ˜5 mm in diameter, are texturally ambiguous although rare allanite cores are suggestive of a magmatic origin. Epidote intergrowths with hornblende and biotite also meet certain textural criteria for crystallization from a magma, notably, euhedral faces against biotite. Finally, late-stage veins of epidote cross-cut all phases in the rock and are likely subsolidus. Oxygen isotopic compositions of these four textural varieties of epidote determined using the laser probe indicate that the use of textural criteria alone in establishing epidote parageneses can be misleading. Intracrystalline δ18O variations in the euhedra document both magmatic and subsolidus compositions. Oxygen isotope compositions are bimodal averaging 5.36 ± 0.13‰ (n = 11) and 4.66 ± 0.23‰ (n = 21). These data combined with plagioclase and zircon δ18O values are interpreted to indicate that magmatic oxygen isotopic compositions have been preserved where epidote δ18O is greater than 5‰. Significant portions of each euhedral crystal have been affected by subsolidus exchange and are characterized by epidote δ18O values less than 5‰. Intracrystalline δ18O values of epidote anhedra range from 4.50 to 6.08‰ and thus also document both magmatic and subsolidus compositions. Subsolidus exchange is volumetrically less significant in the anhedra than in the euhedra. Values of δ18O for intergrowths and late-stage cross-cutting veins of epidote average 3.81 ± 0.22‰ and document clearly subsolidus growth. The data confirm that in the Mount Lowe intrusion, large euhedra of epidote are magmatic in origin, consistent with textural evidence. The data also indicate that equant anhedra of epidote are also magmatic in origin and thus the absence of good crystal faces does not necessarily indicate subsolidus growth. The subsolidus origin of intergrowths of epidote with euhedral faces against biotite indicates that well developed crystal faces do not require growth from a magma. Finally, the subsolidus origin of the vein epidote is consistent with textural evidence. The increased resolution available with laser-based oxygen isotope measurements offers an important test for documenting whether epidote is of magmatic or subsolidus origin. Given the barometric significance of magmatic epidote, oxygen isotope compositions can be used to aid in the interpretation of epidote-bearing plutons. Received: 9 April 1996 / Accepted: 3 August 1996  相似文献   

19.
The oxygen and hydrogen isotope compositions of minerals and whole rock were determined for two types of gneiss (biotite gneiss and granitic gneiss) associated with ultrahigh pressure (UHP) eclogites in the Shuanghe district of the eastern Dabie Mountains. There are significant differences in δ18O between the two gneisses: the UHP biotite gneiss varying from −4.3‰ to 10.6‰ similar to the associated eclogites, whereas the non-UHP granitic gneiss ranges only from −3.8‰ to 1.2‰. The δD values are similar in the two gneisses with −37 to −64‰ for epidote/zoisite, −92 to −83‰ for amphibole, and −63 to −109‰ for biotite/phengite. Hydrogen isotope disequilibrium among the coexisting hydroxyl-bearing minerals is ascribed to retrograde exchange subsequent to amphibolite-facies metamorphism. Oxygen isotopic equilibrium has been preserved among various minerals in both gneisses regardless of the large variation in rock δ18O. Oxygen isotopic geothermometers yield different but regular temperatures corresponding to the closure temperatures of oxygen diffusion in the minerals. The metamorphic temperatures of both eclogite facies and amphibolite facies have been recovered in mineral pairs from the biotite gneiss. The isotopic temperatures for the granitic gneiss are mostly in accordance with amphibolite-facies metamorphism. However, high temperatures of 550 to 650 °C are obtained from those minerals resistant to retrograde oxygen isotope exchange, implying that the granitic gneiss may have experienced higher temperature metamorphism than expected from petrologic thermometers. The 18O-depletion of both gneisses is interpreted to result from meteoric-hydrothermal exchange before/during plate subduction. Therefore, the measured δ18O values of the gneisses reflect the oxygen isotope compositions of their protoliths prior to the UHP metamorphism. It is inferred that the UHP unit is in foreign contact with the non-UHP unit like a tectonic melange, but both of them experienced the two common stages of geodynamic evolution: (1) 18O-depletion prior to the UHP metamorphism, (2) uplifting since the amphibolite-facies metamorphism. Received: 5 May 1998 / Accepted: 27 August 1998  相似文献   

20.
Deuterium, δ 18O, major ions and dissolved silica in groundwater from semi-arid Mayo-Tsanaga river basin in the Far North Province, Cameroon were used to trace hydrogeochemical processes that control their concentrations and to explore for usability of the water. Electrical conductivity ranges from 57–2,581 μs/cm with alternating low and high values along the hydraulic gradient. Waters from piedmont alluvium show low concentrations in major cations, which peak in Mg within basalt, Na within plain alluvium, and Ca within basalt and the sandy Limani-Yagoua ridge. The initial dominant groundwater composition is CaHCO3, which did not evolve within the basalt and piedmont alluvium, but evolved to NaHCO3 in the granite and plain alluvium. The main processes controlling the major ions composition include the following: (1) dissolution of silicates and fluorite; (2) precipitation of fluorite and carbonate; (3) cation exchange of Ca in water for Na in clay; (4) and anthropogenic activities. The δD and δ 18O ratios vary from −35 to 0.7 and −5.3 to 1.1‰, respectively. The lowest and highest isotope ratios are observed in groundwater within the downstream sandy Limani-Yagoua ridge and the upstream graintes respectively. Variation in isotope ratios depends on altitude effect of −0.48‰ per 100 m between 600 and 850 m asl, and on evaporation, which had insignificant effect on the water salinity. Seventy percent of the groundwater shows poor drinking quality and 90% is suitable for irrigation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号