首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Sella platform of the Dolomite Alps, the horizontal beds of the Raibl Formation directly overlie the Upper Schlern Dolomite (Cassian Dolomite of some authors). The Schlern Dolomite comprises steep clinoforms, together with a few tens of metres of horizontal topset beds in the platform interior. Two-dimensional seismic modelling techniques were used to determine the seismic-response of this interesting situation. To perform this, two different lithological models were constructed based on outcrops of the Sella south face. The first model is that of a rapidly prograding platform with slow aggradation in the platform interior. The second model shows clinoforms toplapping against the topset beds of the platform interior. P-wave velocities and bulk densities were assigned to the lithostratigraphical units in accordance with values from a similar study, involving the same formations. The vertical-incidence method was used to construct perfectly migrated time sections and depth sections of reflectivity. These were convolved with zero-phase Ricker wavelets of different peak frequencies to produce the final synthetic seismic sections. Using conventional, low frequencies (e.g. 25 Hz), the seismic response of the two models is almost identical. The topset beds and the Schlern-Raibl contact appear as one event. In a real seismic survey, both sections would be interpreted as toplap of Schlern clinoforms against the Raibl Formation. At higher frequencies (75 Hz), however, differences are revealed. The angle of progradation in the progradation & aggradation model becomes visible, as opposed to the horizontal surface in the progradation & toplap model. Topset beds are resolved separate from the Raibl Formation, but still appear to form a single dipping pseudo-toplap surface. Another modelling technique, simulating unmigrated sections, shows few differences between the two models even at high frequencies. In addition, the clinoforms are disturbed by the refraction of rays. This study demonstrates that, even under ideal acquisition and processing conditions, the seismic tool can introduce a pseudo-toplap. This implies that toplap in a seismic section is not necessarily toplap in outcrop.  相似文献   

2.
The onshore–offshore correlation of sedimentary successions is a common problem in basin analysis, but it becomes critical for the full understanding of the Messinian salinity crisis (MSC), a complex array of palaeoenvironmental events which affected the Mediterranean basin at the end of the Miocene. The outcrop records show that the Messinian stratigraphic architectures may be highly complex as the deposits of the different MSC evolutionary stages can be lithologically similar and separated by erosional surfaces and/or morphostructural highs. The correct definition of the nature and stratigraphic position of Messinian deposits in offshore areas through seismic data may be almost impossible, especially where core data are sparse. To bridge the gap between onshore and offshore records, we have built synthetic seismic sections from well‐constrained outcrop successions. Our results provide useful insights and warnings for the interpretation of offshore data, pointing out that MSC units having different age, nature and depositional settings, may show similar seismic facies and geometries. Conversely, the same deposit may result in different seismic facies, either with parallel and high‐amplitude reflections or even transparent or chaotic due to interference patterns of seismic reflections related to dominant frequency. It follows that a correct interpretation of the nature and age of deep‐seated Messinian deposits can only be obtained through the integration of seismic and core data, and considering the onshore record. The application of our approach to the Balearic Promontory results in an alternative interpretation with respect to previous models. We show that this offshore area has good analogues in the onshore of the Betic Cordillera and includes both shallow and intermediate depth sub‐basins that underwent a strong post‐Messinian subsidence.  相似文献   

3.
This paper uses three‐dimensional (3D) seismic data from the continental margin of Israel (Eastern Mediterranean) to describe a series of slump deposits within the Pliocene and Holocene succession. These slumps are linked to the dynamics of subsidence and deformation of the transform margin of the eastern Mediterranean. Repeated slope failure occurred during the post‐Messinian, when a clay‐dominated progradational succession was forming. This resulted in large‐scale slump deposits accumulating in the mid‐lower slope region of the basin at different stratigraphic levels. It is probable that the slumps were triggered by a combination of slope oversteepening, seismic activity and gas migration. The high spatial resolution provided by the 3D seismic data has been used to define a spectrum of internal and external geometries within slump deposits. Importantly, we recognise two main zones for many of the slumps on this margin: a depletion zone and an accumulation zone. The former is characterised by extension and translation, and the latter by complex imbricate thrusts and fold systems. Volume‐based seismic attribute analysis reveals transport directions within the slump deposits, which are predominately downslope, but with subtle variations particularly at the lateral margins. Basal shear surfaces are observed to ramp both up and down stratigraphy. Slump evolution occurs both by retrogressive upslope failure, and by downslope propagation (out‐of‐sequence) failure. Slump anatomy and the combination of factors responsible for slump failure and transport are relatively poorly understood, mainly because of the limited 3D of outcrop control; hence, this subsurface study is an example of how improved understanding of the mechanisms and products can be obtained using this 3D seismic methodology in unstable margin areas.  相似文献   

4.
Though clinothem geometry represents a key control on fluid flow in reservoir modelling, tracing clinothem boundaries accurately is commonly limited by the lack of sufficiently precise outcrop or subsurface data. This study shows that in basin systems with strongly heterogeneous compositional signatures, the combination of bulk-sediment geochemistry and benthic foraminiferal distribution can help identify clinothem architecture and generate realistic models of 3D deltaic upbuilding and evolution. Middle-late Holocene deposits in the Po Delta area form an aggradational to progradational parasequence set that reveals the complex interaction of W–E Po Delta progradation, S-directed longshore currents (from Alpine rivers) and Apennines rivers supply. Unique catchment lithologies (ophiolite rocks and dolostones) were used to delineate basin-wide geochemical markers of sediment provenance (Cr and Mg) and to assess distinctive detrital signatures. The geochemical characterization of cored intervals across different components of the sediment routing system enabled a direct linkage between clinothem growth, transport pathways and provenance mixing to be established. On the other hand, abrupt microfaunal variations at clinothem boundaries were observed to reflect the palaeoenvironmental response to sharp changes in sediment flux and fluvial influence. This study documents the ability of an integrated geochemical and palaeoecological approach to delineate three distinct sources (Po, Alps and Apennines) that contributed to coastal progradation and to outline the otherwise lithologically cryptic geometries of clinothems that using conventional sedimentological methods it would be virtually impossible to restore.  相似文献   

5.
Utilizing two outcrop data sets with dip direction exposures of shallow-water (tens of meters) deltaic clinoforms, this paper quantifies sedimentary facies proportions and clinoform lengths and gradients, and links process regimes to delta clinoform dimensions. Both data sets are from foreland basins, the Cretaceous Chimney Rock Sandstone of the Rock Springs Formation from the US Western Interior, and the Eocene Brogniartfjellet Clinoform Complex 8 of the Battfjellet Formation from the Central Basin of Spitsbergen. Sedimentary facies indicate presence of both river- and wave-dominated clinothems in each data set. Facies characteristics and distribution implies that river-dominated clinothem progradation was primarily driven by deposition from weak hyperpycnal flow turbidity currents across the clinoforms, and minor slumps. Wave-dominated clinothems were constructed by wave processes rather than alongshore currents, and are also progradational subaerial clinoforms, with one exception, where the formation of a compound subaqueous clinoform set indicates erosion and sediment bypass above the wave base. Sediment distribution and lithological heterogeneity in the river-dominated clinothems is controlled by individual hyperpycnal flow events or mouth-bar collapse events, and thus by self-organization and minimal reworking that results in a heterogeneity that is difficult to predict (high entropy). The efficient reworking of river-derived sediments in wave-dominated clinothems results in predictable lithological sediment partitioning (low entropy). Clinoform dimension analyses show that although of similar sediment caliber, river-dominated clinoforms in both data sets are on average 3–4 times steeper and 3–4 times shorter than the wave-dominated clinoforms, with mean gradients of ca 4 degrees and ca 1 degree, respectively, and mean lengths of 150–230 m and 640–760 m. These results require corroboration from additional data sets, but do suggest that river- and wave-dominated delta clinoforms are likely to have distinct downdip extents (lengths) and gradients for given clinoform heights. Clinoform shape can thus be a method for differentiating ancient river- vs. wave-dominated deltaic clinoforms, in addition to their sedimentary facies, biogenic features and sandstone maturity, and helpful when incorporated into reservoir models.  相似文献   

6.
A multifold crustal-scale deep seismic near-vertical reflection profile generates a large number of single-ended shot gathers, which provide redundant data sets because of overlapping coverage of the shallow refractors. We present an approach for deriving the shallow velocity structure by modelling and inversion of single-ended seismic refraction first arrival traveltime data. We apply this method to a data set acquired with a 12-km long spread with 100 m spacing of shots and receivers, of the Neoproterozoic Marwar basin in the NW Indian shield. The approach is shown to be quite successful for delineating the shallow refractor depths, steep dips and velocities, even in the absence of regular reverse refraction profiles. The study reveals two-layered sedimentary formations, Malani volcanics and a complicated basement configuration of the Marwar basin, and provides a measure of resolution and uncertainty of the estimated model parameters. A seismic section of the near-trace gather is found to be qualitatively consistent with the derived structural features of the basin. The relative highs and lows, observed in the Bouguer gravity profile, further corroborate the derived velocity model. The present approach can be especially useful in offshore areas and elsewhere, where the single-ended multifold seismic profiles are the only available data sets.  相似文献   

7.
To quantify the seismic properties of lower crustal rocks and to better constrain the origin of the lower crustal seismic reflectivity, we determined the complete 3-D seismic properties of a lower crustal section. Eight representative samples of the main lithologic and structural units outcropping in the Val Sesia (Ivrea zone) were studied in detail. The seismic velocities were calculated using the single crystal stiffness coefficients and the lattice preferred orientation (LPO) of each mineral in all samples. The 21 stiffness coefficients characterizing the elastic behaviour of each rock are determined. Mafic and ultramafic rocks such as pyroxenite and pyroxene-bearing gabbros display complex shear wave properties. These rocks are weakly birefringent (maximum 0.1 kms−1) and it is difficult to find consistent relationships between the seismic properties and the rock structure. On the other hand, seismic properties of deformed felsic rocks are essentially controlled by mica. They display strong S -wave birefringence (0.3 km s−1) and relatively high V p anisotropy (7.6 per cent). Amphibole also strongly influences the rock birefringence patterns. For both kind of rocks, the foliation is highly birefringent and the fast polarized shear wave is systematically oriented parallel to the foliation. We show that the number of mineral phases in the rock strongly controls the anisotropy. The seismic anisotropy has a complex role in the P -wave reflectivity. Compared to the isotropic case, anisotropy enhances the reflection coefficient for about 60 per cent of the possible lithological interfaces. For 40 per cent of the interfaces, the reflection coefficient is much lower when one considers the medium as anisotropic.  相似文献   

8.
The Astrakhan Arch (ASAR) region contains one of the largest sub‐salt carbonate structures of the Pricaspian salt basin (located to the northwest of the Caspian Sea), where prospects for hydrocarbon generation and accumulation in the Devonian to Carboniferous deposits are considered to be high. We evaluate the regional vertical temperature gradient within stratigraphic units based on the analysis of 34 boreholes drilled in the region. To show that the thermal gradient is altered in the vicinity of salt diapirs, we study measured temperatures in six deep boreholes. We develop a three‐dimensional geothermal model of the ASAR region constrained by temperature measurements, seismic stratigraphic and lithological data. The temperatures of the sub‐salt sediments predicted by the geothermal model range from about 100 °C to 200 °C and are consistent with the temperatures obtained from the analysis of vitrinite reflectivity and from previous two‐dimensional geothermal models. Temperature anomalies are positive in the uppermost portions of salt diapirs as well as within the salt‐withdrawal basins at the depth of 3.5 km depth and are negative beneath the diapirs. Two areas of positive temperature anomalies in the sub‐salt sediments are likely to be associated with the deep withdrawal basins above and with the general uplift of salt/sub‐salt interface in the southern part of the study region. This implies an enhancement of thermal maturity of any organically rich source rocks within these areas. The surface heat flux in the model varies laterally from about 40 to 55 mW m?2. These variations in the heat flux are likely to be associated with structural heterogeneities of the sedimentary rocks and with the presence of salt diapirs. The results of our modelling support the hypothesis of oil and gas condensate generation in the Upper Carboniferous to Middle Devonian sediments of the ASAR region.  相似文献   

9.
Summary. Two-dimensional finite element modelling of underground structural anomalies at shallow depths has been done to obtain the response at the ground surface to damped, vertically incident, SH -waves. Power spectral ratios are examined to determine what effects the position, shape, depth and size of the anomaly have on the surface seismograms. Based on the results gathered from a number of models, inferences are made with respect to the inverse problem: given the seismic motion of the ground surface, what can be said about the underground structure?  相似文献   

10.
The stratigraphic, paleogeographic and tectonic evolution of the intracratonic Congo Basin in Central Africa has been revised on the basis of an integrated interpretation of gravity, magnetic and reflection seismic data, together with a literature review of papers sometimes old and difficult to access, map compilation and partial reexamination of outcrop and core samples stored in the Royal Museum for Central Africa (RMCA). The Congo Basin has a long and complex evolution starting in the Neoproterozoic and governed by the interplay of tectonic and climatic factors, in a variety of depositional environments.This multidisciplinary study involving 2D gravity and magnetic modeling as additional constraints for the interpretation of seismic profiles appears to be a powerful tool to investigate sedimentary basins where seismic data alone may be difficult to interpret. The tectonic deformations detected in the Congo Basin after the 1970–1984 hydrocarbon exploration campaign in the Democratic Republic of Congo (DRC) have been attributed to crustal contraction and basement uplift at the center of the basin, following a transpressional inversion of earlier graben structures. Two‐dimensional gravity and magnetic models run along key seismic lines suggest the presence of evaporite sequences in some of the deeper units of the stratigraphic succession, in the lateral continuity with those observed in the Mbandaka and Gilson exploration wells. The poorly defined seismic facies that led to the previous basement uplift interpretation of the crystalline basement is shown to correspond to salt‐rich formations that have been tectonically de‐stabilized. These features may be related to vertical salt‐tectonics connected to the near/far‐field effects of the late Pan‐African and the Permo‐Triassic compressive tectonic events that affected this African part of Gondwana.  相似文献   

11.
Basement depth in the Arabian plate beneath eastern Syria is found to be much deeper than previously supposed. Deep-seated faulting in the Euphrates fault system is also documented. Data from a detailed 300 km long reversed refraction profile, with offsets up to 54 km, are analysed and interpreted, yielding a velocity model for the upper 9 km of continental crust. The interpretation integrates the refraction data with seismic-reflection profiles, well logs and potential field data, such that the results are consistent with all available information. A model of sedimentary thicknesses and seismic velocities throughout the region is established. Basement depth on the north side of the Euphrates is interpreted to be around 6 km, whilst south of the Euphrates basement depth is at least 8.5 km. Consequently, the potentially hydrocarbon-rich pre-Mesozoic section is shown, in places, to be at least 7 km thick. The dramatic difference in basement depth on adjacent sides of the Euphrates graben system may suggest that the Euphrates system is a suture/shear zone, possibly inherited from Late Proterozoic accretion of the Arabian plate. Gravity modelling across the southeast Euphrates system tends to support this hypothesis. Incorporation of previous results allows us to establish the first-order trends in basement depth throughout Syria  相似文献   

12.
边界条件对曲流发育影响的过程响应模型实验研究   总被引:7,自引:0,他引:7  
金德生 《地理研究》1986,5(3):12-21
基于系统论模型化原理及地貌演化类比性法则的过程响应模型,有利于研究河型演化,河道过程及控制因素的作用。运用该模型所进行的边界条件对曲流发育影响的实验表明,河漫滩物质结构及河床上的抗蚀露头对曲流发育具有控制作用。  相似文献   

13.
During May 1990 and January-February 1991, an extensive geophysical data set was collected over the Côte d'Ivoire-Ghana continental margin, located along the equatorial coast of West Africa. The Ghana margin is a transform continental margin running subparallel to the Romanche Fracture Zone and its associated marginal ridge—the Côte d'Ivoire-Ghana Ridge. From this data set, an explosive refraction line running ∼ 150 km, ENE-WSW between 3°55'N, 3°21'W and 4°23'N, 2°4'W, has been modelled together with wide-angle airgun profiles, and seismic reflection and gravity data. This study is centred on the Côte d'Ivoire Basin located just to the north of the Côte d'Ivoire-Ghana Ridge, where bathymetric data suggest that a component of normal rifting occurred, rather than the transform motion observed along the majority of the equatorial West African margin.
Traveltime and amplitude modelling of the ocean-bottom seismometer data shows that the continental Moho beneath the margin rises in an oceanward direction, from ∼ 24 km below sea level to ∼ 17 km. In the centre of the line where the crust thins most rapidly, there exists a region of anomalously high velocity at the base of the crust, reaching some 8 km in thickness. This higher-velocity region is thought to represent an area of localized underplating related to rifting. Modelling of marine gravity data, collected coincident with the seismic line, has been used to test the best-fitting seismic model. This modelling has shown that the observed free-air anomaly is dominated by the effects of crustal thickness, and that a region of higher density is required at the base of the crust to fit the observed data. This higher-density region is consistent in size and location with the high velocities required to fit the seismic data.  相似文献   

14.
Multivariate analysis is employed to investigate the structure of variations within highly heterogeneous data. Traditionally, principal component analysis (PCA) is run by analyzing the entire wireline log and using PCA scores to characterize variability within and between lithologies. In this paper, we propose a technique using only specific subsets of all well records to quantify reservoir heterogeneity due to second order lithological variability. These subsets are chosen from uniform lithofacies parts of the wireline log in order to reduce the variability in the correlation matrix that otherwise would cause lithological changes. The purpose is to assess the efficiency of structured PCA in analyzing small-scale heterogeneity that is captured by wireline logs but often masked by traditional PCA approaches. This paper shows that a structured PCA procedure based upon special lithological units is superior to an unstructured PCA, when the focus is within lithology variations. This structured procedure is applied to data from the Heidrun field, offshore mid-Norway. The results demonstrate clear benefits from added insight into the variability of a complex fluviodeltaic heterolithic sequence that poses great challenges to hydrocarbon development.  相似文献   

15.
The Queen Charlotte Fault zone is the transpressive boundary between the North America and Pacific Plates along the northwestern margin of British Columbia. Two models have been suggested for the accommodation of the ∼20 mm yr−1 of convergence along the fault boundary: (1) underthrusting; (2) internal crustal deformation. Strong evidence supporting an underthrusting model is provided by a detailed teleseismic receiver function analysis that defines the underthrusting slab. Forward and inverse modelling techniques were applied to receiver function data calculated at two permanent and four temporary seismic stations within the Queen Charlotte Islands. The modelling reveals a ∼10 km thick low-velocity zone dipping eastward at 28° interpreted to be underthrusting oceanic crust. The oceanic crust is located beneath a thin (28 km) eastward thickening (10°) continental crust.  相似文献   

16.
17.
There have been several claims that seismic shear waves respond to changes in stress before earthquakes. The companion paper develops a stress-sensitive model (APE) for the behaviour of low-porosity low-permeability crystalline rocks containing pervasive distributions of fluid-filled intergranular microcracks, and this paper uses APE to model the behaviour before earthquakes. Modelling with APE shows that the microgeometry and statistics of distributions of such fluid-filled microcracks respond almost immediately to changes in stress, and that the behaviour can be monitored by analysing seismic shear-wave splitting. The physical reasons for the coupling between shear-wave splitting and differential stress are discussed.
In this paper, we extend the model by using percolation theory to show that large crack densities are limited at the grain-scale level by the percolation threshold at which interacting crack clusters lead to pronounced increases in rock-matrix permeability. In the simplest formulation, the modelling is dimensionless and almost entirely constrained without free parameters. Nevertheless, APE modelling of the evolution of fluid-saturated rocks under stress reproduces the observed fracture criticality and the narrow range of shear-wave azimuthal anisotropy in crustal rocks. It also reproduces the behaviour of temporal variations in shear-wave splitting observed before and after the 1986, M = 6, North Palm Springs earthquake, Southern California, and several other smaller earthquakes.
The agreement of APE modelling with a wide range of observations confirms that fluid-saturated crystalline rocks are stress-sensitive and respond to changes in stress by critical fluid-rock interactions at the microscale level. This means that the effects of changes in stress and other parameters can be numerically modelled and monitored by appropriate observations of seismic shear waves.  相似文献   

18.
Data modelling is a critical stage of database design. Recent research has focused upon object-oriented data models, which appear more appropriate for certain applications than either the traditional relational model or the entity-relationship approach. The object-oriented approach has proved to be especially fruitful in application areas, such as the design of geographical information systems which have a richly structured knowledge domain and are associated with multimedia databases. This article discusses the key concepts in object-oriented modelling and demonstrates the applicability of an object-oriented design methodology to the design of geographical information systems. In order to show more clearly how this methodology may be applied, the paper considers the specific object-oriented data model IFO. Standard cartographic primitives are represented using IFO, which are then used in the modelling of some standard administrative units in the United Kingdom. The paper concludes by discussing current research issues and directions in this area.  相似文献   

19.
A crack model in antiplane shear configuration is shown representing creep processes interpreted in terms of 'viscous' deformation of a narrow plastic layer, characterized by inhomogeneous rheological properties, embedded within a homogeneous elastic medium. The evolution in time of slip and stress over the crack plane is studied through a truncated expansion in Chebyshev polynomials, and convergence is proved to be fast in the simple examples considered. Finite-stress solutions are found which are compatible with constitutive relations of elasto-plastic materials and furthermore these allow us to simulate creep propagation and stress transfer between locked and unlocked fault segments. This model provides a simple interpretation of the shallow depth of the seismogenic layer observed in several areas of the world and lends itself to modelling creep processes during either post-seismic rebound or pre-seismic stress buildup. Stress transfer is accomplished mostly by the slow extension of the creeping section. During a seismic cycle it is envisaged that different regimes dominate over deep, intermediate and shallow sections of faults: (i) slow pre-seismic stress build-up accompanied by creep and stress migration toward intermediate depths; (ii) brittle fracture over shallow and intermediate sections of faults; (iii) post-seismic rebound over intermediate and deep sections of faults. The present crack model, while providing finite-stress solutions, allows a better understanding of how stress may accommodate at different depths over a fault plane during a seismic cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号