首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We document the characteristic time scales of variability for seven climate indices whose time-dependent behavior is sensitive to some aspect of the El Niño/Southern Oscillation (ENSO). The ENSO sensitivity arises from the location of these long-term records on the periphery of the Indian and Pacific Oceans. Three of the indices are derived principally from historical sources, three others consist of tree-ring reconstructions (one of summer temperature, and the other two of winter rainfall), and one is an annual record of oxygen isotopic composition for a high-elevation glacier in Peru. Five of the seven indices sample at least portions of the Medieval Warm Period (~ A.D. 950 to 1250).Time series spectral analysis was used to identify the major time scales of variability among the different indices. We focus on two principal time scales: a high frequency band (~ 2–10 yr), which comprises most of the variability found in the modern record of ENSO activity, and a low frequency band to highlight variations on decadal to century time scales (11 <P < 150 yr). This last spectral band contains variability on time scales that are of general interest with respect to possible changes in large-scale air-sea exchanges. A technique called evolutive spectral analysis (ESA) is used to ascertain how stable each spectral peak is in time. Coherence and phase spectra are also calculated among the different indices over each full common period, and following a 91-yr window through time to examine whether the relationships change.In general, spectral power on time scales of ~ 2–6 yr is statistically significant and persists throughout most of the time intervals sampled by the different indices. Assuming that the ENSO phenomenon is the source of much of the variability at these time scales, this indicates that ENSO has been an important part of interannual climatic variations over broad areas of the circum-Pacific region throughout the last millennium. Significant coherence values were found for El Niño and reconstructed Sierra Nevada winter precipitation at ~ 2–4 yr throughout much of their common record (late 1500s to present) and between 6 and 7 yr from the mid-18th to the early 20th century.At decadal time scales each record generally tends to exhibit significant spectral power over different periods at different times. Both the Quelccaya Ice Cap 18O series and the Quinn El Niño event record exhibit significant spectral power over frequencies ~ 35 to 45 yr; however, there is low coherence between these two series at those frequencies over their common record. The Sierra Nevada winter rainfall reconstruction exhibits consistently strong variability at periods of ~ 30–60 yr.  相似文献   

2.
We investigate the multidecadal variability of summer temperature over Romania as measured at 14 meteorological stations with long-term observational records. The dominant pattern of summer temperature variability has a monopolar structure and shows pronounced multidecadal variations. A correlation analysis reveals that these multidecadal variations are related with multidecadal variations in the frequency of four daily atmospheric circulation patterns from the North Atlantic region. It is found that on multidecadal time scales, negative summer mean temperature (TT) anomalies are associated with positive sea level pressure (SLP) anomalies centered over the northern part of the Atlantic Ocean and Scandinavia and negative SLP anomalies centered over the northern part of Africa. It is speculated that a possible cause of multidecadal fluctuations in the frequency of these four patterns are the sea surface temperature (SST) anomalies associated to the Atlantic Multidecadal Oscillation (AMO). These results have implications for predicting the evolution of summer temperature over Romania on multidecadal time scales.  相似文献   

3.
There has been a great deal of discussion about global warming from accumulation of anthropogenic greenhouse gases in the atmosphere (Houghton et al., 1990). Relatively less attention has been paid to spatial and/or temporal climatic variations that may be associated with a warmer climate (Rind et al., 1989) or with anthropogenic activities (Schneider, 1994). In this article, we show that an increase in climatic variability may have started. Fourteen isotopic time series of tree rings are presented. These trees were randomly collected from world-wide locations and cover time periods of 120 to over 200 years. The isotopic records show increasing D values that suggest a consistent and progressive warming occurred in the 19th century in all locations where the trees were sampled. The rate of warming is greater at relatively cold locations than at warm locations with two exceptions. The records also suggest greater climatic variations both temporally and spatially in the 20th century than in the 19th century.  相似文献   

4.
Marine proxy evidence linking decadal North Pacific and Atlantic climate   总被引:1,自引:1,他引:0  
Decadal- to multidecadal variability in the extra-tropical North Pacific is evident in 20th century instrumental records and has significant impacts on Northern Hemisphere climate and marine ecosystems. Several studies have discussed a potential linkage between North Pacific and Atlantic climate on various time scales. On decadal time scales no relationship could be confirmed, potentially due to sparse instrumental observations before 1950. Proxy data are limited and no multi-centennial high-resolution marine geochemical proxy records are available from the subarctic North Pacific. Here we present an annually-resolved record (1818–1967) of Mg/Ca variations from a North Pacific/Bering Sea coralline alga that extends our knowledge in this region beyond available data. It shows for the first time a statistically significant link between decadal fluctuations in sea-level pressure in the North Pacific and North Atlantic. The record is a lagged proxy for decadal-scale variations of the Aleutian Low. It is significantly related to regional sea surface temperature and the North Atlantic Oscillation (NAO) index in late boreal winter on these time scales. Our data show that on decadal time scales a weaker Aleutian Low precedes a negative NAO by several years. This atmospheric link can explain the coherence of decadal North Pacific and Atlantic Multidecadal Variability, as suggested by earlier studies using climate models and limited instrumental data.  相似文献   

5.
A large fraction of climatic varability on the Quaternary time scale can be explained by nonlinear interactions between the radiation balance of the global atmosphere-ocean system and the mass balance of Northern Hemisphere ice sheets. Recent analyses of paleoclimatic proxy data indicate a further important contribution to this variability from changes in deep-water formation occurring in the North Atlantic Subpolar Sea. We study the effects of these changes on variations in global temperature and ice volume characteristic of the late Quaternary. The novel framework of Boolean delay equations (BDEs) is used to formulate a conceptual model of the climatic system under study, and to analyze this formal model. Selfsustained oscillations in the intensity of the Atlantic Ocean's thermohaline circulation result from the interaction of sea-ice formation with the waxing and waning of continental ice sheets. The comparison of model results with paleoclimatic records suggests a considerable slowing down of the abyssal circulation during glacial episodes.  相似文献   

6.
A predictability study of simulated North Atlantic multidecadal variability   总被引:1,自引:1,他引:1  
 The North Atlantic is one of the few places on the globe where the atmosphere is linked to the deep ocean through air–sea interaction. While the internal variability of the atmosphere by itself is only predictable over a period of one to two weeks, climate variations are potentially predictable for much longer periods of months or even years because of coupling with the ocean. This work presents details from the first study to quantify the predictability for simulated multidecadal climate variability over the North Atlantic. The model used for this purpose is the GFDL coupled ocean-atmosphere climate model used extensively for studies of global warming and natural climate variability. This model contains fluctuations of the North Atlantic and high-latitude oceanic circulation with variability concentrated in the 40–60 year range. Oceanic predictability is quantified through analysis of the time-dependent behavior of large-scale empirical orthogonal function (EOF) patterns for the meridional stream function, dynamic topography, 170 m temperature, surface temperature and surface salinity. The results indicate that predictability in the North Atlantic depends on three main physical mechanisms. The first involves the oceanic deep convection in the subpolar region which acts to integrate atmospheric fluctuations, thus providing for a red noise oceanic response as elaborated by Hasselmann. The second involves the large-scale dynamics of the thermohaline circulation, which can cause the oceanic variations to have an oscillatory character on the multidecadal time scale. The third involves nonlocal effects on the North Atlantic arising from periodic anomalous fresh water transport advecting southward from the polar regions in the East Greenland Current. When the multidecadal oscillatory variations of the thermohaline circulation are active, the first and second EOF patterns for the North Atlantic dynamic topography have predictability time scales on the order of 10–20 y, whereas EOF-1 of SST has predictability time scales of 5–7 y. When the thermohaline variability has weak multidecadal power, the Hasselmann mechanism is dominant and the predictability is reduced by at least a factor of two. When the third mechanism is in an extreme phase, the North Atlantic dynamic topography patterns realize a 10–20 year predictability time scale. Additional analysis of SST in the Greenland Sea, in a region associated with the southward propagating fresh water anomalies, indicates the potential for decadal scale predictability for this high latitude region as well. The model calculations also allow insight into regional variations of predictability, which might be useful information for the design of a monitoring system for the North Atlantic. Predictability appears to break down most rapidly in regions of active convection in the high-latitude regions of the North Atlantic. Received: 28 October 1996 / Accepted: 21 March 1997  相似文献   

7.
Detailed records of past climatic changes, especially those related to water balance, can be used to study regional scale climatic changes associated with both natural and anthropogenic causes. Such ancient records are available from various locations around the globe. The four records presented here have sufficient time resolution to demonstrate short-lived global oscillations in parameters related to water balance during the last 7,000 y. The data indicate that sub-Milankovitch climatic events are not restricted to times of major climatic transitions but occurred throughout the Holocene. Most of the past changes due to natural variability are at least of the same order of magnitude as those predicted by various models to occur during the next century.  相似文献   

8.
Abstract

The climatic role of sea ice is assessed in a survey of the recent literature. Theoretical or model‐based results are compared with existing evidence of ice‐atmosphere interactions over scales ranging from the local and regional to the hemispheric and global.

The evidence shows that sea‐ice fluctuations are meteorologically important locally, primarily through associations with air temperature. On the regional and hemispheric scales, atmospheric and sea‐ice fluctuations are correlated according to both observational evidence and model experiments. While the causal links have not been evaluated quantitatively, there is evidence that the stronger signal occurs in the response of the ice to the atmosphere. On the longer time‐scales, model experiments and qualitative arguments suggest that sea ice may play a major role in the climatic change. However, the results of large‐scale coupled model simulations contain deficiencies and must be viewed with caution pending more realistic treatments of sea‐ice dynamics, leads, ice thickness variations, and the areally‐integraled effects of the small‐scale features of sea ice.  相似文献   

9.
Summary  This study shows that precipitation over the United States has two time scales of intraseasonal variation at about 37 days and 24 days. The results are derived from the application of a combination of statistical methods including principal component analysis (PCA), singular spectrum analysis (SSA), and multi-channel singular spectrum analysis (MSSA) to over 10 years of gridded daily precipitation records. Both oscillations have largest amplitude during the cold season. The 37-day oscillation has larger interannual variability. Intraseasonal oscillations are most significant in the Pacific Northwest. The 37-day oscillation has opposite phases between the western and eastern United States, while the 24-day oscillation has the same phases. These intraseasonal time scale precipitation variations may be associated with previously revealed mid-tropospheric circulation anomalies that oscillate at similar time scales. Received February 7, 2000 Revised October 20, 2000  相似文献   

10.
The climate, as represented by the mean Northern Hemisphere temperature, has shown substantial changes within the past century. The temperature record is utilized as a means of elucidating the relative importance of anthropogenic CO2 increase, volcanic aerosols, and possible solar insolation variations in externally forcing climate changes. Solar luminosity variations, suggested by observed solar radius variations on an ≈ 80 yr time scale, allow a self-consistent explanation of the hemispheric temperature trends. Evidence for solar influences on the climate is also found on the shorter 11 and 22 yr time scales present in solar activity cycles. The author is a staff scientist at the High Altitude Observatory, P.O. Box 3000, Boulder, CO 80307, of the National Center for Atmospheric Research. This work was completed while the author was a postdoctoral fellow in the Advanced Study Program of NCAR. Any opinions, findings and conclusions or recommendations expressed in this paper are those of the author and do not necessarily reflect the views of the National Science Foundation. The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

11.
Central Mexico contains a large number of lake basins offering opportunities for climatic reconstruction. The area has, however, also been the focus for human settlement since the time of the earliest occupation of the Americas, as well as being subject to tectonic and volcanic activity. A number of methodological issues arise including the susceptibility of common palaeoecological proxies (pollen, diatoms) to multiple forcing factors and problems of obtaining reliable chronologies. Published lake records indicate that the last 1,500 years have been marked by strong climatic variability, superimposed on continuing high levels of anthropogenic impact. Dry conditions, probably the driest of the Holocene, are recorded over the period 1400 to 800 14C yr BP (ca. AD 700–1200). Climatic change over the last 1,000 years is not well represented, but there are indications of drier conditions corresponding to the ‘Little Ice Age’ of mid- to high latitudes. A range of mechanisms (e.g. solar cycles, ENSO variability) have been proposed to explain climatic variability over the last 1,500 years, but current lake records are inadequate to test these. The developing dendroclimatology for the Mexican highlands and the rich historical archives of the Hispanic period (from AD 1521) offer new opportunities and challenges to palaeolimnologists.  相似文献   

12.
A cumulonimbus cloud may ascend and spawn its anvil cloud, precipitation, and downdrafts within an hour or so. This paper inquires why a similar progression of events (life cycle) is observed for tropical weather fluctuations with time scales of hours, days, and even weeks. Regressions using point data illustrate the characteristic unit of rain production: the mesoscale convective system (MCS), covering tens of kilometers and lasting several hours, with embedded convective rain cells. Meanwhile, averages over larger spatial areas indicate a self-similar progression from shallow to deep convection to stratiform anvils on many time scales.Synthetic data exercises indicate that simple superpositions of fixed-structure MCS life cycles (the Building Block hypothesis) cannot explain why longer period life cycles are similar. Rather, it appears that an MCS may be a small analogue or prototype of larger scale waves. Multiscale structure is hypothesized to occur via a Stretched Building Block conceptual model, in which the widths (durations) of zones of shallow, deep, and stratiform anvil clouds in MCSs are modulated by larger scale waves.Temperature (T) and humidity (q) data are examined and fed into an entraining plume model, in an attempt to elucidate their relative roles in these large-scale convection zone variations. T profile variations, with wavelengths shorter than troposphere depth, appear important for high-frequency ( 2–5-day period) convectively coupled waves, as density directly links convection (via buoyancy) and large-scale wave dynamics (via restoring force). Still, the associated q anomalies are several times greater than adiabatic, suggesting a strong amplification by shallow convective feedbacks. For lower frequency (intraseasonal) variability, q anomalies are considerably larger compared to T, and may be dominant.  相似文献   

13.
Annual Northern Hemisphere surface temperature departures for the past 300 yr were reconstructed using eleven tree-ring chronologies from high-latitude, boreal sites in Canada and Alaska, spanning over 90 degrees of longitude. This geographic coverage is believed to be adequate for a useful representation of hemispheric-scale temperature trends, as high northern latitudes are particularly sensitive to climatic change. We also present a reconstruction of Arctic annual temperatures. The reconstructions show a partial amelioration of the Little Ice Age after the early 1700's, an abrupt, severe renewal of cold in the early 1800's and a prolonged wanning since approximately 1840. These trends are supported by other proxy data. Similarities and differences between our Northern Hemisphere reconstruction and other large-scale proxy temperature records depend on such factors as the data sources, methods, and degree of spatial representation. Analyses of additional temperature records, as they become available, are needed to determine the degree to which each series represents fluctuations for the entire hemisphere. There appear to be relationships between trends observed in our Northern Hemisphere reconstruction and certain climatic forcing functions, including solar fluctuations, volcanic activity and atmospheric CO2. In particular, our reconstruction supports the hypothesis that the global warming trend over the past century of increasing atmospheric CO2 has exceeded the recent level of natural variability of the climate system.Of Columbia University Department of Geological Sciences.  相似文献   

14.
Foreword     
Abstract

Climatic simulations suggest that only slight changes in climatic variability are likely to be induced owing to greenhouse warming, and that these changes will project onto existing modes of climatic variability. A lesser studied aspect of the interaction of climatic variability with climatic change is how such a mutual interaction manifests itself as interannual climatic fluctuations. A number of examples are examined in this paper using simulations made with the Commonwealth Scientific and Industrial Research Organization (CSIRO) Mark 2 coupled climatic model. The simulations included an ensemble based on four Special Report on Emission Scenarios (SRES) cases, as well as individual ensembles for two selected SRES cases. In general, the intra‐ensemble variability for a given SRES case was quite similar to the inter‐ensemble variability of the four individual SRES cases. Time series of selected climatic variability and probability density function displays are used to illustrate the character of climatic variability for simulations out to 2100. Other examples include variations in droughts and pluvial events, and associated runoff, as the greenhouse effect progresses. The differing responses in the frequency of dry events among four SRES cases are also illustrated. The outbreak of cold events around 2050 is used to highlight the impact of climatic variability. Finally, case studies involving two large‐scale climatic phenomena are used to show the ongoing dominance of climatic variability.  相似文献   

15.
 A tree-ring chronology network recently developed from the subantarctic forests provides an opportunity to study long-term climatic variability at higher latitudes in the Southern Hemisphere. Fifty long (1911–1985), homogeneous records of monthly mean sea-level pressure (MSLP) from the southern latitudes (15–65 °S) were intercorrelated on a seasonal basis to establish the most consistent, long-term Trans-Polar teleconnections during this century. Variations in summer MSLP between the South America-Antarctic Peninsula and the New Zealand sectors of the Southern Ocean are significantly correlated in a negative sense (r=−0.53, P<0.001). Climatically sensitive chronologies from Tierra del Fuego (54–55°) and New Zealand (39–47°) were used to develop verifiable reconstructions of summer (November to February) MSLP for both sectors of the Southern Ocean. These reconstructions, which explain between 37 and 43% of the instrumentally recorded pressure variance, indicate that inverse trends in MSLP from diametrically opposite sides of Antarctica have prevailed during the past two centuries. However, the strength of this relationship varies over time. Differences in normalized MSLP between the New Zealand and the South America-Antarctic Peninsula sectors were used to develop a Summer Trans-Polar Index (STPI), which represents an index of sea-level pressure wavenumber one in the Southern Hemisphere higher latitudes. Tree-ring based reconstructions of STPI show significant differences in large-scale atmospheric circulation between the nineteenth and the twentieth centuries. Predominantly-negative STPI values during the nineteenth century are consistent with more cyclonic activity and lower summer temperatures in the New Zealand sector during the 1800s. In contrast, cyclonic activity appears to have been stronger in the mid-twentieth than previously for the South American sector of the Southern Ocean. Recent variations in MSLP in both regions are seen as part of the long-term dynamics of the atmosphere connecting opposite sides of Antarctica. A detailed analysis of the MSLP and STPI reconstructions in the time and frequency domains indicates that much of the interannual variability is principally confined to frequency bands with a period around 3.3–3.6 y. Cross spectral analysis between the STPI reconstruction and the Southern Oscillation Index suggests that teleconnections between the tropical ocean and extra-tropical MSLP variations may be influencing climate fluctuations at southern latitudes. Received: 18 December 1996/Accepted: 10 January 1997  相似文献   

16.
气候序列的层次结构   总被引:15,自引:4,他引:11  
刘式达  荣平平  陈炯 《气象学报》2000,58(1):110-114
一个气候时间序列含有多个时间尺度 ,形成不同尺度的气候层次。气候是冷还是暖是随着尺度而变化的。文中用北半球地表月平均气温气候资料的子波变换分析表明 :气候突变点既随尺度有规律的变化 ,也具有随尺度变化而不变的性质 ,即标度不变性。不论什么尺度 ,气候总是有冷暖之分 ,这种自相似性可以帮助笔者从气候资料的子波变换中建立一个一维映射动力系统 ,它反映出气候突变时间的演变规律和气候的层次结构。  相似文献   

17.
The relative contributions of atmospheric fluctuations on 6 h?2 d,2?8 d,and 8 d?1 month time scales to the changes in the air?sea fluxes,the SO circulation,and Antarctic sea ice are investigated.It was found that the imposed forcing variability on the three time scales creates a significant increase in wind power input,and hence an increase of about 50%,97%,and 5%of eddy kinetic energy relative to the simulation driven by monthly forcing,respectively.Also,SO circulation and the strength of the upper cell of meridional overturning circulation become strengthened.These results indicate more dominant effects of atmospheric variability on the 2?8 d time scale on the SO circulation.Meanwhile,the 6 h?2 d(2?8 d)atmospheric variability causes an increase in the total sea-ice extent,area,and volume,by about 33%,30%,and 19%(17%,20%,and 25%),respectively,relative to those in the experiment forced by monthly atmospheric variables.Such significant sea-ice increases are caused by a cooler ocean surface and stronger sea-ice transports owing to the enhanced heat losses and air-ice stresses induced by the atmospheric variability at 6 h?2 d and 2?8 d,while the effects of the variability at 8 d?1 month are rather weak.The influences of atmospheric variability found here mainly result from wind fluctuations.Our findings in this study indicate the importance of properly resolving high-frequency atmospheric variability in modeling studies.  相似文献   

18.
R. Krishnan  M. Sugi 《Climate Dynamics》2003,21(3-4):233-242
Recent studies have furnished evidence for interdecadal variability in the tropical Pacific Ocean. The importance of this phenomenon in causing persistent anomalies over different regions of the globe has drawn considerable attention in view of its relevance in climate assessment. Here, we examine multi-source climate records in order to identify possible signatures of this longer time scale variability on the Indian summer monsoon. The findings indicate a coherent inverse relationship between the inter-decadal fluctuations of Pacific Ocean sea surface temperature (SST) and the Indian monsoon rainfall during the last century. A warm (cold) phase of the Pacific interdecadal variability is characterized by a decrease (increase) in the monsoon rainfall and a corresponding increase (decrease) in the surface air temperature over the Indian subcontinent. This interdecadal relationship can also be confirmed from the teleconnection patterns evident from long-period sea level pressure (SLP) dataset. The SLP anomalies over South and Southeast Asia and the equatorial west Pacific are dynamically consistent in showing an out-of-phase pattern with the SLP anomalies over the tropical central-eastern Pacific. The remote influence of the Pacific interdecadal variability on the monsoon is shown to be associated with prominent signals in the tropical and southern Indian Ocean indicative of coherent inter-basin variability on decadal time scales. If indeed, the atmosphere–ocean coupling associated with the Pacific interdecadal variability is independent from that of the interannual El Niño-Southern Oscillation (ENSO), then the climate response should depend on the evolutionary characteristics of both the time scales. It is seen from our analysis that the Indian monsoon is more vulnerable to drought situations, when El Niño events occur during warm phases of the Pacific interdecadal variability. Conversely, wet monsoons are more likely to prevail, when La Niña events coincide during cold phases of the Pacific interdecadal variability.  相似文献   

19.
Solar radiation cycles, earth-orbital changes, and continental drift drive long to very long term (103–106 years) climatic changes. Lin and North used the stationary solutions of a simple energy balance model (EBM) to study the equilibrium climatic stages. In this paper, we study time dependent solutions and, in particular, transition processes. We make use of two time scales: a seasonal cycle (fast variation) and a long term time change (slow variation). Variations over short time scales are solved using a Fourier transform in time and long term variations are studied using a 4th order Runge-Kutta method. The energy balance equation is a parabolic type equation and it is well posed. Climate changes depend mainly on external forcing and the state of the climate is determined by the slow time scale forcing. In other words, transitions from one climate stage (snow-covered) to another (snow-free) at bifurcation points are monotonic, despite 20% to 50% shortperiod random fluctuations in the solar energy. This smooth transition is especially noticeable when the land bands lie close to the north pole (70° N to 90° N) or at high latitudes (50° N to 75° N).Now at Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723, USA  相似文献   

20.
Summary The impact of pronounced positive and negative sea surface temperature (STT) anomalies in the tropical Pacific associated with the El Niño/Southern Oscillation (ENSO) phenomenon on the atmospheric circulation in the Northern Hemisphere extratropics during the boreal winter season is investigated. This includes both the impact on the seasonal mean flow and on the intraseasonal variability on synoptic time scales. Moreover, the interaction between the transient fluctuations on these times scales and the mean circulation is examined. Both data from an ensemble of five simulations with the ECHAM3 atmospheric general circulation model at a horizontal resolution of T42 each covering the period from 1979 through 1992 and operational analyses from ECMWF for the corresponding period are examined. In each of the simulations observed SSTs for the period of investigation are given as lower boundary forcing, but different atmospheric initial conditions are prescribed.The simulations with ECHAM3 reveal a distinct impact of the pronounced SST-anomalies in the tropical Pacific on the atmospheric circulation in the Northern Hemisphere extratropics during El Niño as well as during La Niña events. These changes in the atmospheric circulation, which are found to be highly significant in the Pacific/North American as well as in the Atlantic/European region, are consistent with the essential results obtained from the analyses. The pronounced SST-anomalies in the tropical Pacific lead to changes in the mean circulation, which are characterized by typical circulation patterns. These changes in the mean circulation are accompanied by marked variations of the activity of the transient fluctuations on synoptic time scales, that are changes in both the kinetic energy on these time scales and the atmospheric transports of momentum and heat accomplished by the short baroclinic waves. The synoptic disturbances, on the other hand, play also an important role in controlling the changes in the mean circulation associated with the ENSO phenomenon. They maintain these typical circulation patterns via barotropic, but counteract them via baroclinic processes.The hypothesis of an impact of the ENSO phenomenon in the Atlantic/European region can be supported. As the determining factor the intensification (reduction) of the Aleutian low and the simultaneous reduction (intensification) of the Icelandic low during El Niño and during La Niña events respectively, is identified. The changes in the intensity of the Aleutian low during the ENSO-events are accompanied by an alteration of the transport of momentum caused by the short baroclinic waves over the North American continent in such a way that the changes in the intensity of the Icelandic low during El Niño as well as during La Niña events are maintained.With 16 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号