共查询到20条相似文献,搜索用时 62 毫秒
1.
松材线虫病在秦岭以南传播广、蔓延快,利用遥感技术提取病害松可为疫情防控提供数据支撑。以无人机获取的高分辨率、高光谱数据为基础,捕捉区分病害松与健康松的特征波段,提出一种结合植被指数与小波神经网络的林地分层分类新方法,用于提取病害松树冠图斑。病害松识别结果与实地核查数据对比表明,分层分类结果与实地核查情况基本一致,病害松识别总精度达到89.87%,优于单一使用支持向量机、小波神经网络的分类结果。林地分层分类新方法与传统分类方法相比,分类精度更高,所需的样本更少。无人机高光谱数据信息丰富,病害松、健康松在可见光、近红外范围内均有光谱敏感特征,后续应进行病害松时序光谱监测,进一步研究松材线虫病害影响因子。 相似文献
2.
3.
5.
提出一种新的结合面向对象分类方法进行同态滤波的薄云去除方法,该方法采用Ecognition软件,将无人机影像划分为有云区域和无云区域,并对无人机影像进行同态滤波,用滤波后影像的有云区域代替原影像的有云区域,无云区域保持不变.并对处理后的影像进行监督分类,再对整幅影像进行Wallis滤波匀光匀色处理,使得有云区域的色调、对比度和亮度与无云区域趋于相同.实验结果表明方法效果较好,能有效地消除或减弱薄云对无人机影像的影响. 相似文献
6.
针对现有方法检测无人机目标时精度与泛化能力不足,提出一种基于回归的多目标检测方法.使用密集连接增强层间信息传递,添加批量再规范化(Batch Renormalization,BRN)层加速模型训练,降低样本分布不均而导致的精度偏低,使用密集连接结构聚合上采样层不同层信息.以开源数据集Vision Drone为基础建立优化数据集训练模型.结果表明,提出模型检测精度达89.57%平均精度均值,相比(You Only Look Once v3,YOLOv3)模型和(Region Full Convolutional Network,R-FCN)分别提高6.53%和3.11%,检测速度达27每秒传输帧数,在不同场景表现稳定. 相似文献
7.
基于Harris与RANSAC算法的无人机影像拼接方法研究 总被引:1,自引:0,他引:1
针对Harris算法在进行无人机影像拼接时的特征点误匹配问题,利用RANSAC算法对误匹配的特征点进行剔除,进而实现无人机影像的无缝拼接。首先,基于Harris算法提取兴趣点,利用最短欧式距离进行特征匹配;然后,利用RANSAC算法实现对特征点的精确匹配;最后,利用RANSAC算法得到的单应性矩阵完成无人机影像拼接。实验结果表明:本文方法能够较好地剔除无人机影像拼接时误匹配的特征点,实现对无人机影像的拼接,拼接效果良好。 相似文献
8.
针对在泥石流区灾害应急中使用无人机高分辨率影像特征匹配时时效性较低的问题,本文提出了一种改进AKAZE无人机影像特征匹配的算法。该算法首先使用AKAZE特征点检测算法提取局部稳定不变特征,用二进制描述符BEBLID描述检测到的特征点,采用最近邻次近邻距离比(NNDR)完成初步匹配;然后采用核线几何约束计算变换矩阵,达到内点提纯、提高匹配质量的目的;最后选取5组同一无人机序列影像进行特征匹配试验,分别与经典SIFT算法、AKAZE算法、ORB算法进行比较。试验结果表明,该方法的匹配准确率与SIFT算法接近,略高于AKAZE算法,明显优于ORB算法,计算速度明显优于SIFT算法和AKAZE算法,基本达到ORB算法的计算效率。本文方法能较好地应用于对匹配精度和匹配时效均要求较高的泥石流场景无人机影像数据处理中。 相似文献
9.
10.
11.
分别利用多通道Gabor滤波器和HSV颜色模型对图像进行特征提取,得到两种特征空间。用顺序向前浮点法搜索,以J-M距离(Jeffreys-Matusitas distance)为评价指标进行特征选择,最后利用综合后的特征数据在SVM基础上实现图像的监督分类。上述方法提高了彩色纹理图像和遥感图像的分类正确率。实验表明,多特征融合的分类效果比单一特征要好。 相似文献
12.
高光谱影像的冗余信息给影像的分类效果带来一定的负面影响。本文利用CB法(CfsSubsetEval评估器结合Best-First搜索策略)与PCA变换两种降维方法,分别结合随机森林分类器对4种多特征融合方案(共8种组合)进行高光谱影像分类对比,基于分类的总体精度、Kappa系数探究提高高光谱影像分类的最佳组合方法。结果表明:①多特征融合可提升高光谱影像的分类效果,两种降维方法的分类精度均随地理特征、纹理特征、指数特征的加入而逐渐提高。②两种降维方法中,经CB法降维后的分类精度均比通过PCA变换降维的分类精度高。在构造的8种组合中,基于所有特征信息(光谱特征、地理特征、纹理特征、指数特征)的CB法分类精度最高,其总体精度为98.01%;Kappa系数为0.969 9。 相似文献
13.
SIFT算法是基于尺度空间的特征匹配方法,该算法为每个关键点指定了方向参数,具备旋转不变性,对图像倾斜的适应性很强.本文采用SIFT算法对无人机图像提取特征点,利用欧氏距离粗匹配,通过距离中误差精匹配.在对拼接误差原因分析的基础上,提出了采用最优路径的拼接方法来降低误差. 相似文献
14.
15.
无人机影像匹配过程中,粗差是不可避免的,因此,获取稳健性较高的特征点进行无人机影像匹配至关重要。传统的方法是采用经典的RANSAC算法进行粗差剔除,该算法受抽样次数、误差阈值的影响,还会残存部分误匹配的特征点。利用图论原理,对SIFT算法提取的特征点进行预处理,通过构建特征点的能量函数剔除能量较低的特征点,可以提高匹配特征点的稳健性,减少特征点的粗差。本文提出了一种新的方法,将图论算法与经典的RANSAC算法相结合进行粗差剔除。该方法命名为GSIFT-RANSAC算法,利用该算法可以提高特征点的稳健性,获取高精度的单应矩阵。采用两组无人机影像进行验证,本文提出的算法与单独利用图论剔除特征点的算法相比,粗差剔除率分别提高了5.31%和14.29%,说明该方法效果较好。 相似文献
16.
17.
18.
无人机影像具有数量多、畸变大、POS数据不准确等特点,导致其在拼接过程中会产生大量的累积误差,要快速地获得大范围准确的全景图有一定的困难。基于此,提出一种既精确又高效的无人机序列影像拼接方法。首先计算大致的影像匹配区域,减少特征搜索和匹配的时间,同时记录匹配区域中心位置的特征点坐标,引入平差理论,区分平地、丘陵、山区等不同区域加权纠正匹配特征点的坐标位置。同时针对航带间重叠率小、姿态差异大等特点,采用"先航带间再航带内、旁边航带向中间航带靠拢"的拼接方式,减少整体区域的累积误差产生,最终完成全局影像的拼接。 相似文献
19.
南方平原耕地具有地块破碎、农作物种植品种多且空间分布混杂程度高等特点,运用传统的遥感技术方法精确监测农作物面积较为困难。无人机航拍具有拍摄时间灵活、空间分辨率高、成本低等优势,为解决这一难题提供了有利途径。本文通过地面样地调查,获取杭州市余杭区瓶窑镇农作物样地的位置及种植品种数据,利用面向对象的多尺度分割方法与随机森林的分类方法对无人机航拍数据进行分割、分类,深入挖掘高分辨率遥感数据信息,用于提取农作物种植品种及其空间分布信息,实现高精度的农作物种植面积遥感监测,推进无人机遥感在农业中的深入应用,提高农业遥感应用效益。 相似文献
20.
无人机影像以其低成本、获取容易、信息量大等优点得到了广泛的应用。影像匹配是影像数据处理的重要环节,常用影像匹配的方法存在误匹配多或剔除大量正确匹配的问题。LMed S算法比其他稳健方法更严格,"5点算法"得到的本质矩阵可用于匹配点对共面的场景。本文使用LMedS算法结合"5点算法"求解本质矩阵作为剔除误差的模型,同时利用ORB算法提取速度快的特点,构建了一种精准同时兼顾了效率的匹配方法。本文对该算法开展了试验研究,并与其他常规算法进行比较。试验结果表明,本文算法保留的匹配点数数量多,分布较均匀,适用于多种场景,是一种有效、快速精准的影像匹配算法。 相似文献