首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
基于1992—2015年国际共享的ECCO v4 (Estimating the Circulation and Climate of the Ocean Version 4)同化产品,利用热含量控制方程定量地诊断赤道太平洋(118°E—75°W, 5°S—5°N, 0~300m)和Ni?o 3.4区(170°W—120°W, 5°S—5°N,0~80m)这两块区域热含量变化机制。对于去掉季节平均后的年际变化,在赤道太平洋地区,时间趋势项主要由经向输送和海表热通量项共同驱动。通过5°N断面的输送决定了时间趋势项的幅值和正负符号。在Ni?o3.4区,时间趋势项主要由海表热通量项和热量输送项共同驱动,其中垂向输送对总输送贡献最大。赤道太平洋地区经向热量输送异常领先于Ni?o3.4区垂向热量输送异常,这解释了在年际尺度上赤道太平洋热含量异常领先Ni?o3.4指数变化的原因。尽管EP(Eastern Pattern)型El Ni?o和CP(Central Pattern)型El Ni?o有许多不同之处,合成分析表明,两类El Ni?o的共同点为:在赤道太平洋地区,两类El Ni?o事件的热量输送异常在发展期和衰退期由经向输送主导;在Ni?o 3.4区, EP型El Ni?o和CP型El Ni?o的热量输送在发展期和衰退期由垂向输送主导。  相似文献   

2.
北印度洋的经向热输送与热收支的季节与年际变化   总被引:3,自引:1,他引:3  
探讨赤道以北印度洋的热量收支及变化机制。根据积分10年(1987~1996)的全球海洋模式(MOM 2 )资料,利用积分形式的热量平衡方程,系统地研究了北印度洋的经向热输送和热量收支的季节与年际变化。主要结论为:在季节尺度上,越赤道的经向热输送和赤道以北印度洋热含量变化有年循环特征,而海面净热通量呈现半年周期变化特点;在年际尺度上,热含量的变化主要由经向热输送的变化引起,其它项的影响较小;经向热输送集中在上5 0 0m ,尤其在15 0m以上;在总的经向热输送中,经向翻转环流的贡献起主要作用,涡动项的贡献比较小;某一纬度上经向热输送异常以及此纬度以北印度洋总的海面净热通量异常与此纬度上纬向积分的纬向风应力异常有很好的相关关系;还分析了10°N阿拉伯海和10°N孟加拉湾的经向热输送与越赤道的经向热输送的关系,以及海面净热通量各分量的变化特点。  相似文献   

3.
基于卫星高度计数据、模式数据和同化资料揭示了东印度沿岸流(East India Coastal Current, EICC)年周期上的时空分布特征, 并探讨了其可能的影响机制及热盐输运。在年周期上EICC呈现3种分布状态, 受季风影响, 在东北季风前期(10—12月)和后期(2—5月)为一致的南向(北向)流动; 而6—8月EICC呈3段式分布, 与另外两个时间段明显不同, 表现为9°N以南、16°N以北区域的南向流动和9°—16°N区域的北向流动。前人研究认为印度东海岸的局地风应力是EICC的主要机制, 本研究发现除局地风应力外, 来自孟加拉湾中部的艾克曼抽吸(Ekman Pumping)在全年也发挥着重要作用, 并在2—5月(10—12月)驱动EICC的北向(南向)流动, 而局地风应力则在10—12月有利于EICC的南向流动。EICC是孟加拉湾低盐水向赤道东印度洋和阿拉伯海输运的一个因素, 在海盆间的热盐交换上发挥着重要作用。EICC的热输运在6—12月(2—5月)有利于(不利于)湾内温度的升高; 盐输运则在全年都有利于孟加拉湾内盐度的增加。此外, EICC的一致南向(北向)流动以及3段式结构促进了湾内热盐的再分配, 对于维持北印度洋的热量和盐度收支平衡具有重要作用。  相似文献   

4.
SST年循环对El Niño事件局地海气过程的影响   总被引:2,自引:0,他引:2  
利用Hadley中心逐月海表温度、欧洲中心ERA-40的10 m风场及CMAP降水资料探讨了年循环对热带太平洋El Niño海气相互作用过程的影响。尽管El Niño对应的海表温度异常主要出现在赤道东太平洋,经向上呈南北对称分布,然而其对应的大气响应在El Niño年衰减阶段却有着强的向南移动特征。在El Niño发展年的11月之前,强的西风和降水异常主要出现在赤道中太平洋;在12月份之后,赤道上的西风和降水异常迅速南移至5°S,随后西风一直维持在该位置直至衰亡。同时,西太平洋负降水和反气旋异常向北移动。这种SST异常与其大气响应的经向移动不一致,主要是由热带中太平洋气候态SST的季节性南移导致的。由于对流与海温之间存在非线性关系,即当总SST超过一定的阈值,对流降水才会迅速增强;因此相应的对流响应也随着总海温的南移而南移,风场响应也同时南移。此外,南半球增强的对流会通过经向环流进一步抑制北半球的降水,从而使西太平洋负降水和反气旋异常增强并北移。通过分析有/无年循环的两组数值试验结果验证了上述结论,即有年循环的试验较真实地模拟出了观测中异常西风南移和西北太平洋反气旋异常的出现;无年循环试验尽管能模拟出El Niño年赤道中太平洋的西风异常,但其却没有南北向的移动,西北太平洋的反气旋也没有出现。因此,热带中太平洋气候态暖海温的季节循环对El Niño事件大气响应有着至关重要的作用。  相似文献   

5.
海洋再分析资料中IOD-ENSO遥相关的海洋通道机制分析   总被引:1,自引:1,他引:0  
徐腾飞  周慧 《海洋学报》2016,38(12):23-35
本文利用滞后相关分析,研究了海洋再分析资料(SODA、ORAS4和GODAS)中的IOD-ENSO滞后遥相关关系,并与观测资料进行对比。结果显示,3套再分析资料中热带东南印度洋秋季海表温度/海表高度异常和赤道太平洋冷舌次年秋季海表温度/海表高度异常之间显著相关,与观测结果一致。在次表层,观测和再分析资料均显示,热带东南印度洋秋季海表温度异常与赤道太平洋次表层海温异常之间的显著相关关系在冬季至次年秋季沿赤道太平洋垂向剖面向东移动,并于次年夏季和秋季在冷舌区上升至海表。热带东南印度洋和赤道太平洋冷舌滞后1年的相关关系是由海洋通道机制引起的,即IOD事件引起印尼贯穿流流量异常,导致赤道太平洋温跃层异常,激发赤道Kelvin波向东传播,从而影响赤道中-东太平洋冷舌海表温度异常。观测及SODA与ORAS4资料中,热带东南印度洋和赤道太平洋冷舌滞后1年的相关关系在去除ENSO信号后仍然显著,表明海洋通道机制是独立于ENSO事件的;而在GODAS资料中,这些显著相关关系在去除ENSO信号后消失。印尼贯穿流流量异常和Niño3.4及DMI(Dipole Mode Index)指数之间超前-滞后12个月的相关关系显示,在SODA和ORAS4资料中,印尼贯穿流流量同时受到ENSO和IOD的影响,与观测结果一致;而在GODAS中,印尼贯穿流流量异常仅与Niño3.4指数显著相关,极少受到IOD事件的影响,这部分解释了GODAS资料中去除ENSO信号后,IOD-ENSO滞后遥相关关系消失的原因。  相似文献   

6.
全球变暖背景下, 2015/2016年超强厄尔尼诺(El Ni?o)事件倍受关注, 此次事件是中部型和东部型El Ni?o的混合。研究发现, 西风爆发和北太平洋经向模态对触发此次事件均有所贡献。通过对比2015/2016年、1997/1998年与中部型事件可知, 2015/2016年事件在暖背景中产生, 其发展形态与中部型事件较为相似, 后期海表面温度异常迅速衰退主要与赤道东太平洋海域持续的东风异常以及纬向平流较弱有关。较之1997/1998年事件, 2015/2016年事件的海洋动力调整较弱, 表现为较弱的温跃层反馈和海洋波动, 纬向平流反馈的贡献大于温跃层反馈, 大气强迫影响显著, 中部海域相关要素异常值较大。在2015/2016年事件期间, 赤道海域以及近赤道海域海洋上层热含量的变化基本呈负相关, 且变化较为同步; 衰退阶段热含量的流失主要集中在5°S—5°N海域, 向两极的热输送明显。  相似文献   

7.
在北半球的春季,热带三大洋的海洋–大气系统年际变化会对同期太平洋厄尔尼诺–南方涛动(ElNi?o-Southern oscillation,ENSO)产生响应,同时也能通过区域海洋–大气耦合过程影响ENSO的发展。基于国际公开使用的海表温度资料和降水资料,通过联合正交经验分解方法分析,可以发现全球大洋春季存在两种显著的海气耦合模态。第一模态表现为:在热带中东太平洋,海表温度增暖、降水增多;在热带大西洋和热带印度洋,降水呈现经向偶极型分布以及跨赤道的海表温度梯度异常;即伴随ENSO在春季消亡期的空间型态,大西洋出现经向模态,印度洋出现反对称模态。第二模态表现为:太平洋经向海表温度和降水模态,即太平洋经向模态。回归分析结果表明, ENSO盛期的大气环流调整引起了热带大西洋和印度洋降水辐合带异常,并通过海面风场异常激发海盆内部的海洋–大气反馈,引起春季经向模态。进一步研究发现,冬、春季大西洋和印度洋热带辐合带分别位于赤道以北和以南,导致两个海盆经向模态的降水异常相对赤道呈反对称分布。在春季,太平洋经向模态的暖中心延伸到赤道上,引起西风异常,为后续El Ni?o的发展提供了有利条件。文章揭示了...  相似文献   

8.
文章使用2019年7月5日—20日在珠江河口伶仃洋定点连续观测的海表面叶绿素a质量浓度、海表面气温、气压、风速、风向、海表温度、盐度、流速、流向、遥感降雨量数据和中等分辨率成像光谱仪可见光波段影像, 利用小波分析和集成经验模态分解方法分析了观测期间内伶仃洋海表面叶绿素a的时间变化特征及其影响因子。分析结果表明, 观测期间海水表层叶绿素a质量浓度的变化范围为0.44~1.75µg·L-1, 平均值为0.80µg·L-1, 其变化周期主要为6h、12h和24h。其与相对应周期的潮流存在明显的相位关系, 并且在降雨后两者的相位关系发生了转换。7月5日—12日, 叶绿素a与潮流基本呈反相位关系, 涨急时叶绿素a质量浓度低, 落急时叶绿素a质量浓度较高, 浓度相差约为0.3µg·L-1。珠江流域在7月8日—13日发生了一次强降雨过程, 降雨前后海水表层叶绿素a质量浓度在6h、12h和24h周期波段的振幅由0.02~0.09µg·L-1增加到0.15µg·L-1左右。同时, 降雨对珠江河口的叶绿素a质量浓度造成了一个持续80h的增加过程, 浓度增加了0.3µg·L-1。发生降雨后, 7月13日—20日期间潮流滞后于叶绿素a约6h, 水位最高时叶绿素a质量浓度最低, 水位最低时叶绿素a质量浓度最高。由以上结果可以看出, 降雨不仅引起了河口区叶绿素a质量浓度的增加, 还造成了叶绿素a和潮流间相位关系的转换。  相似文献   

9.
利用 Sea WiFS卫星遥感叶绿素质量浓度及TRMM微波遥感海表温度产品, 研究了南海海表叶绿素a的季节变化特征及其同海表温度的关系。研究结果表明, 南海叶绿素质量浓度具有很强的季节变化:通常低叶绿素质量浓度(<0.12 mg·m-3)出现在弱风高海表温度(>28°C)的春、夏季节;高叶绿素质量浓度(>0.13 mg·m-3)通常出现在有较强风速和较低海表温度(<27°C)的冬季。线性回归分析显示, 南海叶绿素质量浓度同海表温度呈显著负相关。尽管在南海南部、南海中部、南海西部及吕宋西北部4个代表子区域的显著性有所差异, 但都暗示温度变化所反映的垂向层化调控了营养盐质量浓度和浮游植物量变化。可见, 温度可能是影响海洋上层稳定程度及垂向交换强度的重要指标, 从而可能调控营养盐及浮游植物的变化。  相似文献   

10.
ENSO循环相联系的北太平洋低纬度异常西边界流   总被引:1,自引:1,他引:0  
用SODA海洋同化和NCEP大气再分析资料,分析了热带太平洋次表层海温异常主要模态与北太平洋低纬度西边界流海域上层海洋环流和亚洲-北太平洋地区大气垂直和水平流场变化之间的关系,得到以下结果:(1) 在热带太平洋海洋次表层ENSO事件具有两种模态,二者组合构成ENSO循环。第一模态为ENSO成熟期,主要出现在冬季,第二模态为ENSO过渡期,主要出现夏季。(2) ENSO循环对北太平洋低纬度西边界流区上层海洋环流有重要影响。在El Niño发展期或La Niña 衰退期,该区出现气旋性异常环流,北赤道流(NEC)加强,NEC分叉位置北移,棉兰老海流(MC)加大,菲律宾以东黑潮(KC)减小,北赤道逆流(NECC)最强。在El Niño(La Niña)成熟期,该区气旋性(反气旋性)异常环流达最强,NEC最强(最弱),NEC分叉位置最北(最南),MC最大(最小),KC最小(最大),NECC减弱(加强)。在El Niño衰退期或La Niña发展期与El Niño发展期相反,该区出现反气旋性异常环流,由此导致相应流系异常发生反位相变化。(3) ENSO循环对北太平洋低纬度西边界流海域上层海洋环流的影响是通过ENSO事件期间热带太平洋热力状况异常改变上空大气环流来实现的。ENSO事件首先造成热带太平洋海洋热力状况异常,导致其上空对流活动异常,后者直接或间接通过“大气桥”能量传输引起相关地区大气环流场的变化,致使海面风应力场异常,进而强迫上层海洋环流场的相应变化。文章最后还分析了ENSO事件期间菲律宾附近异常反气旋或异常气旋性风场的产生和持续原因,讨论了北太平洋低纬度西边界流海域海气相互作用在ENSO循环中的贡献。  相似文献   

11.
The impact of quasi-decadal (QD: 8 to 18 years) variability in the tropical Pacific on ENSO events is investigated. It is found that there is a significant difference in the behavior of ENSO events between the phases of positive and negative anomalies of the QD Niño-3.4 index. During the period of negative QD-scale Niño-3.4 index, ENSO events, especially La Niña events, occur more frequently, and larger amplitudes of thermal anomalies related to El Niño events appear over the central to eastern equatorial Pacific. Furthermore, propagations of upper ocean heat content anomaly and a phase relationship between upper ocean heat content and Niño-3 index in the equatorial Pacific, which have been pointed out by previous studies, are clearly detected during the period of negative QD Niño-3.4 index.  相似文献   

12.
Tropical Pacific interannual variability is examined in nine state-of-the-art coupled climate models, and compared with observations and ocean analyses data sets, the primary focus being on the spatial structure and spectral characteristics of El Niño-Southern Oscillation (ENSO). The spatial patterns of interannual sea surface temperature (SST) anomalies from the coupled models are characterized by maximum variations displaced from the coast of South America, and generally extending too far west with respect to observations. Thermocline variability is characterized by dominant modes that are qualitatively similar in all the models, and consistent with the “recharge oscillator” paradigm for ENSO. The meridional scale of the thermocline depth anomalies is generally narrower than observed, a result that can be related to the pattern of zonal wind stress perturbations in the central-western equatorial Pacific. The wind stress response to eastern equatorial Pacific SST anomalies in the models is narrower and displaced further west than observed. The meridional scale of the wind stress can affect the amount of warm water involved in the recharge/discharge of the equatorial thermocline, while the longitudinal location of the wind stress anomalies can influence the advection of the mean zonal temperature gradient by the anomalous zonal currents, a process that may favor the growth and longer duration of ENSO events when the wind stress perturbations are displaced eastwards. Thus, both discrepancies of the wind stress anomaly patterns in the coupled models with respect to observations (narrow meridional extent, and westward displacement along the equator) may be responsible for the ENSO timescale being shorter in the models than in observations. The examination of the leading advective processes in the SST tendency equation indicates that vertical advection of temperature anomalies tends to favor ENSO growth in all the CGCMs, but at a smaller rate than in observations. In some models it can also promote a phase transition. Longer periods tend to be associated with thermocline and advective feedbacks that are in phase with the SST anomalies, while advective tendencies that lead the SST anomalies by a quarter cycle favor ENSO transitions, thus leading to a shorter period.  相似文献   

13.
赤道西风爆发现象(西风爆发)是指赤道表面西风突然增大的现象,已有研究表明赤道太平洋西风爆发与ENSO (El Niño-Southern Oscillation) 有密切的关系。本文就西风爆发现象在CMIP5中的模拟情况进行了相关评价,并将其与观测结果进行对比;同时对西风爆发与ENSO的关系、西风爆发与MJO的关系进行了细致的分析与评价。研究结果表明,模式可以很好地再现西风爆发随厄尔尼诺事件发生而向东移动的现象,这主要是由于赤道太平洋西风爆发与赤道太平洋海表温度有很好的对应关系。在大部分模式中,西风爆发领先于厄尔尼诺的发生,并对厄尔尼诺的发展有着相应的影响。与前人的研究结果不同,利用蒙特卡洛验证法证明MJO不能显著地增加西风爆发发生的概率,这一点也在大部分CMIP5模式中有所体现。  相似文献   

14.
中国科学院气候系统模式模拟的ENSO循环   总被引:1,自引:1,他引:0  
On the basis of more than 200-year control run, the performance of the climate system model of Chinese Academy of Sciences(CAS-ESM-C) in simulating the El Ni?o-Southern Oscillation(ENSO) cycle is evaluated, including the onset, development and decay of the ENSO. It is shown that, the model can reasonably simulate the annual cycle and interannual variability of sea surface temperature(SST) in the tropical Pacific, as well as the seasonal phase-locking of the ENSO. The model also captures two prerequisites for the El Ni?o onset, i.e., a westerly anomaly and a warm SST anomaly in the equatorial western Pacific. Owing to too strong forcing from an extratropical meridional wind, however, the westerly anomaly in this region is largely overestimated. Moreover, the simulated thermocline is much shallower with a weaker slope. As a result, the warm SST anomaly from the western Pacific propagates eastward more quickly, leading to a faster development of an El Ni?o. During the decay stage, owing to a stronger El Ni?o in the model, the secondary Gill-type response of the tropical atmosphere to the eastern Pacific warming is much stronger, thereby resulting in a persistent easterly anomaly in the western Pacific. Meanwhile, a cold anomaly in the warm pool appears as a result of a lifted thermocline via Ekman pumping. Finally, an El Ni?o decays into a La Ni?a through their interactions. In addition, the shorter period and larger amplitude of the ENSO in the model can be attributed to a shallower thermocline in the equatorial Pacific, which speeds up the zonal redistribution of a heat content in the upper ocean.  相似文献   

15.
Using the high-resolution Hybrid Coordinate Ocean Model and the Navy Coupled Ocean Data Assimilation Global 1/12° Analysis (GLBa0.08), and the Objectively Analyzed Air–Sea Fluxes and the International Satellite Climatology Cloud Project products, we investigated the seasonal and interannual evolutions of heat budget, including the pseudo-heat content change, the net air–sea heat flux and the eddy heat transport (EHT), based on the time-dependent heat budget analysis in the western Pacific warm pool (WPWP). The results show that the pseudo-heat content change has significant semi-annual variation, which peaks in April–May and September. There is strong positive feedback between EHT and the net air–sea heat flux. EHT is important in balancing the sea surface heat flux into the WPWP. The seasonal EHT variability is dominated by its meridional component. On the interannual time scale, the zonal and vertical components of EHT show comparable amplitudes with the meridional one. The observed net air–sea heat flux in the WPWP is highly correlated with EHT and the pseudo-heat content change on the interannual time scale. The net air–sea heat flux leads the pseudo-heat content change by about half a month and leads EHT by about one month. The variations of the air–sea heat flux and EHT are connected to the El Niño Southern Oscillation events: during the development of El Niño (La Niña) events, the warm pool expanded eastward (retreated westward), the net air–sea surface flux into the WPWP increased (decreased) and EHT enhanced (weakened) significantly.  相似文献   

16.
The spatiotemporal variability of equatorial Pacific upper ocean heat content (HC) and subsurface heat during two types of El Niño-Southern Oscillation (ENSO), namely eastern and central Pacific (EP and CP) types, is investigated using subsurface ocean heat budget analysis. Results show that HC tendencies during both types of ENSO are mainly controlled by oceanic heat advection beneath the mixed layer to the thermocline, and the role of net surface heat flux can be neglected. The most important three terms are the zonal and vertical advections of anomalous heat by climatological currents (QU 0 T′, QW 0 T′) and zonal advection of climatological heat by anomalous current (QUT 0). The large contribution of QU 0 T′ extends from west to east along the equatorial Pacific. The considerable contribution of QUT 0 is confined to the east of 160°W, and that of the QW 0 T′ is observed in the central Pacific between 180°E and 120°W. In particular, a major contribution of QW 0 T′ is also observed in the far eastern Pacific east of 100°W during EP ENSO. There is also a small contribution from meridional advection of climatological heat by anomalous current (QVT 0). In contrast, the meridional advection of anomalous heat by climatological currents (QV 0 T′) and vertical advection of climatological heat by anomalous current (QWT 0) are two damping factors in the HC tendency, with the former dominating. Differences in spatial distribution of the heat advection associated with the two types of ENSO are also presented. We define a warm water heat index (WWH) as integrated heat content above 26 kg m?3 potential density (26σ ? ) isopycnal depth within 130°E–80°W and 5°S–5°N. Further examination suggests that the recharge–discharge of WWH is involved in both types of El Niño, though with some differences. First, it takes about 42 (55) months for the evolution of a recharge–discharge cycle during an EP (CP) ENSO. Second, the EP El Niño event peaks during the discharge phase, 7–8 months after the recharge time. The CP El Niño peaks during the recharge phase, 4–5 months before the recharge time. The locations of HC anomalies in the El Niño mature phase relative to those at recharged time explain why the EP and CP El Niño peak in different stages of the recharge–discharge process.  相似文献   

17.
利用美国联合台风预警中心的热带气旋最佳路径数据集、美国国家海洋和大气管理局的扩展重构海表温度数据、全球海洋数据同化系统的温度、盐度数据及美国国家环境预报中心/国家大气研究中心的再分析资料, 分析了1981—2019年南印度洋热带气旋快速增强事件的气候特征和年际变率。结果表明, 南印度洋热带气旋快速增强事件产生频率呈现单峰分布, 主要产生在每年的12月至次年4月。南印度洋热带气旋增强事件的产生位置呈带状分布, 其中3个高值中心分别位于马达加斯加岛东北海域、南印度洋中部海域和澳大利亚西北海域, 这主要是由于热带气旋热潜和垂直风切变两个大尺度环境变量决定的。年际变率方面, 厄尔尼诺-南方涛动对南印度洋热带气旋增强事件产生频率的调制作用是不对称的, 厄尔尼诺年与拉尼娜年南印度洋热带气旋快速增强事件均减少, 但使其减少的物理机制不同。厄尔尼诺年, 热带气旋快速增强事件减少主要是较高的垂直风切变造成的; 拉尼娜年, 热带气旋快速增强事件减少主要是由于热带气旋热潜的降低, 而海表温度、垂直风切变和相对湿度也存在一定贡献。  相似文献   

18.
用美国马里兰大学提供的海洋同化(SODA)月平均资料,分析了赤道太平洋次表层海温异常年际和年代际变率的演化特征,讨论了它们对ENSO循环的影响.结果指出,赤道太平洋次表层海温异常年际和年代际变率具相似的ENSO模分布和演变过程,二者均以赤道西太平洋暖池次表层海温显著的异常中心与赤道东太平洋表层海温异常中心显著反号为主要分布特征,其演变过程通过赤道西太平洋暖池次表层海温异常中心沿海洋气候温跃层向东向上传播来完成.赤道西太平洋暖池次表层海温异常年际变率决定了ENSO循环,年代际变率对ENSO循环也有重要影响,其影响主要在中太平洋, 造成ENSO模的年代际变化.当年代际变率处于正常状态时,ENSO循环基本上是东部型冷暖事件之间的转换;当年际和年代际变率位相相同时,ENSO事件强度将会加强和持续,并出现中部型ENSO事件;当二者位相相反时, ENSO事件强度将会减弱.  相似文献   

19.
The Pacific interior subtropical?tropical cells (STCs) and their relation to the two types of El Niño-Southern Oscillation (ENSO) are investigated by using GODAS reanalysis ocean data for the period of 1980–2017. The results show that the interior STC transport into the equatorial region across 9°S and 9°N has a close relationship with the eastern Pacific (EP) ENSO, while it is much weaker with the central Pacific (CP) ENSO. It is suggested that the effect of interior STCs on the tropical Pacific climate is reflected in its relation with the western Pacific thermocline depth or SSHA. During the EP El Niño, the anomalous interior STCs at 9°S and 9°N converge to the equatorial region from the lag months of ? 25 to ? 8, leading to an accumulation of heat content in the equatorial Pacific; from the lag months of ? 8 to 10, they diverge poleward, inducing a discharge of equatorial heat content. The peak poleward interior STC anomaly first appears at 9°N at a zero-lag time, while that at 9°S is observed 4–5 months later. But there is also no appearance of a time lag between the interior STCs at 9°N and 9°S in recharging the period during the EP La Niña mature phase. However, during CP El Niño, only the conspicuous anomalous interior STC divergence appears during the mature and decay phases for the lag months of ? 2 to 10, with being symmetric at 9°N and 9°S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号