首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
积雪是地球上反射率较高的自然表面,对于中高纬度地区的水文和能量收支平衡发挥着重要作用。表层积雪中的黑碳和雪粒径变化可以显著影响积雪反照率,造成积雪对太阳辐射吸收的变化,进而对区域气候变化和水文循环产生反馈作用。利用遥感技术对季节性积雪表层黑碳和雪粒径进行定量评估,可以获取时空上连续系统的雪表黑碳浓度和雪粒径变化情况,这也是许多气候和水文模型的输入因子。以中国主要季节性积雪区北疆为研究区,基于MODIS(Moderate Resolution Imaging Spectroradiometer)数据的3(0.47 μm)、2(0.86 μm)和5(1.24 μm)波段,采用SGSP(Snow Grain Size and Pollution Amount)算法反演2000-2018年积雪期的雪表黑碳浓度和雪粒径,并结合地面观测数据对于反演结果进行了精度验证,综合分析北疆雪表黑碳浓度和雪粒径时空变化趋势。结果显示,SGSP算法能够同时反演雪表黑碳浓度和雪粒径,并且验证结果表明纯雪像元上反演结果具有较好的精度;2000-2018年北疆雪表年均黑碳浓度和年均雪粒径都随时间变化呈现微弱下降趋势;受地理位置和局部污染源的影响,北疆积雪黑碳浓度空间分布复杂,天山北坡经济带平均黑碳浓度最高,伊犁地区平均黑碳浓度最低,雪粒径的空间分布显示塔城地区平均雪粒径最大,伊犁地区最小。  相似文献   

2.
雪冰反照率能够改变冰川表面能量收支平衡,是影响冰川消融的重要因素之一。利用祁连山地区冰川面积矢量数据、MODIS逐日积雪反照率、气温和降水以及冰川物质平衡等数据,探讨了祁连山典型冰川区雪冰反照率特征及其对冰川物质平衡的影响。结果表明:祁连山地区冰川多年平均反照率为0.532,冰川区面积大小与其多年平均反照率之间呈显著正相关(R2=0.16,P<0.05,N=91),即冰川面积缩减1 km2,对应的平均反照率下降0.0025。祁连山老虎沟12号冰川反照率在夏季有明显的海拔效应,且强于其他时段,达到0.047?(100m)-1。典型冰川年均物质平衡量与冰川表面夏季(6—8月)平均反照率之间存在显著的正相关关系,老虎沟12号冰川和七一冰川决定系数R2分别达到了0.48(P<0.05)和0.66(P <0.05)。冰川表面夏季平均反照率这一指标能够较好地衡量青藏高原北部祁连山地区冰川物质平衡的变化。  相似文献   

3.
祁连山区冰沟流域积雪分布特征及其属性观测分析   总被引:8,自引:5,他引:3  
以祁连山冰沟流域为研究区,通过在流域内布设花杆观测积雪深度,渊查了山区积雪分布情况;利用雪特性分析仪测量了区内积雪密度、介电常数、液念水含量等积雪参数,光谱仪测量了不同类型积雪的光谱特征,手持反照率测量计观测积雪表面反照率,带刻度手持放大镜测量积雪粒径,红外温度计和针式温度计测量雪层的温度和实地测量积雪属性.同时,在研究区内选择加强观测区挖雪坑,对雪层内部属性和雪剖面分层特性作了进一步研究,计算民流域内积雪等效密度;最后对试验中所使用的野外实测积雪的各种方法进行了评价.研究表明:山区积雪分布很不均匀,在阴坡山谷雪深最深,阳坡雪积累最少,即使在同一样区,积雪分布也小均匀;研究Ⅸ的积雪属于潮雪,体秋含水量在3%以下;不同粒径、类型和表面粗糙度的积雪反射率不同,验证了积雪光谱是雪颗粒、污染物和地面粗糙度的函数;积雪反照率随太阳高度角升高逐步降低,在没有新降雪的情况下,日反照率也逐渐降低;雪分层比较明显,雪下冰晶层发育良好.当深度达剑20 cm时,积雪具有保温作用;冰沟流域的积雪等效密度随时间和空间变化不大,经汁算为0.16 g·cm-3.  相似文献   

4.
利用1971—2016年辽宁省61个气象站气温、地表温度、积雪日数和积雪深度资料,分析了积雪的保温作用及其对地气温差的影响。结果表明:更换自动站前后地表温度观测方式的差异导致地气温差显著增大,地气温差的增大程度受所在区域积雪日数、积雪深度的影响显著。在积雪期较长、积雪较厚的地区,积雪引起反照率增大,使得雪面温度降低,导致雪气温差减小,而雪的保温作用使得地气温差显著增大。因此,更换自动站前地(雪)气温差与积雪日数呈显著负相关,而更换自动站后地气温差与积雪日数呈显著正相关。各台站之间地气温差随积雪深度的变化系数差异较大,为0.045~0.858 ℃?cm-1,在年平均积雪日数<40 d、年平均极端积雪深度<10 cm的区域,积雪的保温作用随积雪深度增大而显著增大;在年平均积雪日数>40 d、年平均极端积雪深度>10 cm的区域,10 cm以下的积雪对土壤保温作用随积雪深度增大显著,当积雪深度>10 cm后,其保温作用随积雪深度增大的幅度明显减小。  相似文献   

5.
基于MODIS数据的青藏高原冰川反照率时空分布及变化研究   总被引:1,自引:1,他引:0  
冰川反照率对冰川融化具有重要影响,以2000-2013年MODIS的MOD10A1逐日积雪反照率数据资料为基础,分析了青藏高原冰川反照率的时空分布及变化。结果表明:冰川年平均反照率变化范围是0.42(枪勇冰川)~0.75(PT5冰川),其中夏季平均反照率变化范围是0.45(来古冰川)~0.69(东绒布冰川和古里雅冰川)。冰川反照率空间分布并没有明显的规律性,而冰川反照率的变化速率空间分布规律明显——南部较大往北减小,北部反照率出现增大现象。研究区内大部分冰川反照率呈波动降低的趋势,年平均反照率和夏季平均反照率变化速率最大值都出现在枪勇冰川,分别是-0.015 a-1和-0.019 a-1。木吉和木孜塔格冰川年平均和夏季平均冰川反照率都增大,木吉冰川是由于2012年的高反照率引起的,而木孜塔格冰川主要与该地区气温降低、降水增多有关。  相似文献   

6.
夏季消融期祁连山“七一”冰川反照率初步研究   总被引:4,自引:3,他引:1  
根据2006年夏季"七一"冰川自动气象站和光谱仪的反照率资料, 分析了夏季"七一"冰川反照率的时、空变化特征. 结果表明: 夏季"七一"冰川反照率的日际变化受气温影响明显, 冰川上、下部位反照率差值动态变化并具有一定的日变化特征. 冰川表层积雪随着变质作用的增强, 其光谱反射率不断下降, 其中紫外和红橙光波段反照率降幅较大(尤其是紫外波段), 在紫蓝波段降幅相对较小. 晴天时, 雪面上紫外及可见光波段反照率日变化幅度要比在冰面上的变幅大, 日变化曲线在雪面时也不对称. 冰面上各波段反照率日变化较平缓, 曲线则都比较对称. 无论在雪面还是冰面, 近红外波段反照率日变化曲线均比较对称. 冰川上全波段反照率的日变化曲线形式趋同于可见光波段反照率的日变化曲线. 同时, 文中还初步分析了反照率和积雪密度, 积雪污化浓度之间的关系, 以及反照率变化对径流的影响.  相似文献   

7.
石腾龙  崔杰粲  浦伟  王鑫  张学磊 《冰川冻土》2018,40(6):1120-1132
应用了一种新的模式spectral albedo model for dirty snow,简称SAMDS,研究了不同参数对于积雪反照率的影响,结果表明:在天顶角固定为60°的条件下,新雪的粒径从50 μm增大到800 μm,使其宽波段反照率从0.92减小到0.78;相对于非球形的雪粒,球形雪粒的积雪反照率更低;吸光性颗粒物对光谱反照率的影响主要在可见光和紫外波段。此外,雪粒径的增大能使吸光性颗粒物的光吸收效应增强。结合东北地区的实测数据,我们发现SAMDS模拟的积雪宽波段反照率与实测结果较为一致。同时,SAMDS模式模拟结果表明,在东北地区,积雪中0.1~1 μg·g-1的黑碳浓度导致积雪宽波段反照率减少2%~8%,造成的瞬时辐射强迫为9~35 W·m-2。  相似文献   

8.
钱昊  柯长青 《冰川冻土》2015,37(6):1515-1523
使用FieldSpec4便携式地物光谱仪获取了南京地区冬季湿雪的光谱数据, 并从太阳高度角、坡度、坡向、下垫面及混合雪几个方面进行了分析. 结果表明: 积雪的反射率在可见光区变化平稳, 在近红外区下降迅速, 1 020 nm、1 250 nm附近是积雪反射率的吸收区; 湿雪状态下, 太阳高度角增大的同时积雪反射率逐渐降低, 而在水湿雪状态下太阳高度角对反射率影响减弱, 积雪含水率成为其变化的主要影响因素; 积雪反射率随着坡度的增大而增大; 积雪在朝阳坡的反射率远高于背阴坡, 背阴坡积雪反射率在可见光谱区受影响较大; 当积雪厚度达到一定值后下垫面的差异对反射率影响有限, 否则会对反射率产生较大影响; 在可见光波段纯雪反射率最高, 近红外波段植被/积雪混合反射率最高, 林下雪的光谱反射率较低. 南京地区湿雪光谱测量和分析对了解南方湿雪光谱特性和变化规律, 以及对于积雪定量遥感及其参数反演具有重要意义.  相似文献   

9.
地形对天山积雪冻融变化的影响分析   总被引:1,自引:0,他引:1  
胡伟杰  刘海隆  王辉  赵文宇 《冰川冻土》2016,38(5):1227-1232
天山积雪是新疆水资源的重要来源,地形对积雪的空间分布和消融有重要影响,分析地形对天山积雪冻融过程的影响具有重要的理论意义.基于2005-2014年的MODIS/Terra积雪8 d合成数据(MOD10A2)与数字高程模型(DEM)数据,分析了天山积雪覆盖随高程、坡度和坡向的季节变化规律.分析结果表明:(1)在不同季节里,不同高程中的融雪和积雪过程同步发生,其中在春季和冬季,雪盖变化较大的区域主要分布在低海拔和高海拔地区;而在夏、秋两季,雪盖变化较大的区域主要分布在中海拔地区.(2)在不同季节,不同坡度的积雪冻融过程也同步进行,但春季和冬季积雪呈线性变化,在缓坡和陡坡地区变化明显;夏季和秋季积雪变化缓慢,在中坡变化显著.(3)天山积雪变化随坡向具有对称性和周期性.积雪变化呈现北坡大、南坡小,春、冬季大,夏、秋季小的特点.在波动周期内,夏秋季积雪变化波动较大,变化趋势与春、冬季相反.研究结果可为融雪型洪水预报提供科学依据.  相似文献   

10.
新疆北部地区季节性积雪密度变化特征分析   总被引:4,自引:1,他引:3  
选取新疆北部地区季节性积雪期的定点站和典型区域,应用北疆20个气象站点观测资料和使用便携式测雪仪(Snow Fork),在不同地域、不同雪层和不同时间进行观测与测量,并且在积雪稳定期中的一次降雪过程对新雪密度变化过程中影响它的诸多因子进行观测,对新疆北部地区冬季季节性积雪密度变化特征进行的观测和分析.结果表明:雪面辐射热量和雪层内温度梯度对积雪密度起主要作用,变化主要是通过雪层内深霜和粗粒雪层的温度减小而实现的;在隆冬期全层积雪密度最大的为深霜层,入春2月下旬回暖期以后,由于雪层含水率的增加,季节性积雪密度最大层则为粒雪层.  相似文献   

11.
松嫩平原是松辽地下水系统区的一部分,是一个多层叠置的地下水盆地,西部以大兴安岭山地为界,西南部以松辽分水岭为界,东南部以长白山山地为界,北部、东部以吉黑省界为界,是一个相对完整的一级地下水系统。本文主要叙述潜水地下水系统的补给、径流、排泄特征。  相似文献   

12.
天山典型区卫星雪盖时空特征研究   总被引:6,自引:4,他引:2  
基于2000—2010年的MODIS/Terra积雪8 d合成数据(MOD10A2),研究了我国天山典型区积雪覆盖的空间分布特征和年际变化趋势.结果表明:年平均积雪概率和1月积雪概率均呈西高东低、北高南低的分布格局,4月、7月、10月的积雪概率与高程呈显著的正相关;冬季积雪分布主要受大气环流控制,使得西坡和北坡的积雪明...  相似文献   

13.
滇池湖滨带叶绿素a与营养盐空间分布特征   总被引:2,自引:0,他引:2  
凌祯 《水文》2020,40(1):76-80
为探讨滇池湖滨带叶绿素a与营养盐空间分布特征及其对滇池水体富营养化的影响,在滇池湖滨带设置21个采样点进行水质调查,采集滇池水样,分析测定总氮(TN)、总磷(TP)、化学需氧量(CODCr)、叶绿素a(Chla)和悬浮固体(SS)。结果表明:滇池湖滨带水体TN、TP、CODCr、Chla、SS浓度均值的空间分布存在差异,叶绿素a空间分布呈现北高南低,西高东低的趋势。滇池湖滨带的北部和东部水体Chla与TN极显著相关,TN具有强变异性。南部和西部TN与CODCr、TP显著相关,南部Chla与营养盐空间变异性较小,污染风险相对较小。按照"一区一策"的原则,滇池北部和东部湖滨带富营养化以控制TN的水平为主,南部、西部的富营养化防控则需要控制整体营养盐元素浓度。  相似文献   

14.
阿克苏河洪水类型及其形成的500hPa环流特征   总被引:15,自引:6,他引:9  
利用阿克苏河两条支流和干流的月径流量以及年最大洪峰流量资料,分析了阿克苏河的洪水特征.阿克苏河西支托什干河主汛期在5~8月,北支库玛拉克河与阿克苏河干流的主汛期在7~8月,库玛拉克河的洪水对阿克苏河干流洪水作用更大.托什干河洪水以融雪型、融雪叠加暴雨型两种类型为主,库玛拉克河洪水以融雪(冰)型、融雪(冰)叠加冰湖溃坝型为主,阿克苏河干流洪水以混合型最多见,其次是融雪(冰)型.年最大流量排名前15位的洪水中,阿克苏河两条支流与干流在1987年以后分别出现了7~9a,在此基础上分析归纳了三类形成阿克苏河流域主要洪水的500hPa环流模型.阿克苏河流域主汛期形成混合型洪水的500hPa环流特征为:新疆高压脊稳定在天山山区中部及以东地区,5880gpm等高线北界稳定在天山上空或天山以北,西部边界在帕米尔高原以东的南疆盆地上空,中亚地区为副热带低槽活动区,环流形势相对稳定.主汛期形成融雪(冰)型洪水的500hPa环流特征为:新疆高压脊向北发展且稳定维持3d以上,5880gpm等高线北界稳定在天山以北,西部边界在帕米尔高原以西.春季形成融雪型洪水的500hPa环流特征为:帕米尔高原及西天山受新疆高压脊控制,稳定维持3d以上,高压脊内5840gpm等高线北边界维持在40°N以北.  相似文献   

15.
利用东北地区1961—2016年164个气象台站逐日平均气温和最低气温数据,根据国家标准《寒潮等级》(GB/T 21987—2017)的单站冷空气等级,计算近56年来各单站不同等级冷空气过程的频次、强度、持续日数,应用趋势系数、Mann-Kendall检验、小波分析、相似系数等统计方法,研究了东北地区三种类型寒潮(超强寒潮、强寒潮、寒潮)的气候变化特征。结果表明:三种类型寒潮日数空间分布存在明显的地区差异,高海拔地区相对偏多,低海拔和平原地区相对偏少。年尺度上,1961—2016年三种类型寒潮日数和站次呈减少趋势,减少速率呈现为超强寒潮>强寒潮>寒潮;年代尺度上,三者均在20世纪60年代到70年代末期相对偏多,1980年开始进入一个相对偏少的时段,21世纪00年代中期以后有小幅度增加;寒潮日数和站次均存在明显的3~5 a短周期性变化。1961—2016年东北地区冬季气温在空间变化上全区呈一致的增加趋势,66%的站点增温显著,检测到冬季气温的突变点为1981年。东北地区气候变暖后,三种类型寒潮日数和站次均有明显的减少。  相似文献   

16.
青藏高原雪冰中碳质气溶胶含量变化   总被引:7,自引:0,他引:7  
文中采用供氧两步加热的方法对过滤到石英膜上的雪冰中碳质气溶胶含量进行分析,其中有机碳(OC)和元素碳(EC)分别在340和650℃的条件下进行热解、氧化分离,生成的CO2转化成CH4并由气相色谱仪氢火焰离子化检测器(FID)检测其含量。空白测试表明,该系统的OC本底值为(0·50±0·04)(1σ)μgC,EC为(0·38±0·04)(1σ)μgC。利用这套分析系统对青藏高原8条冰川的34个雪冰和降水样品中OC和EC的含量进行了测试。结果表明,在青藏高原雪冰中OC和EC含量自东向西、自北向南呈明显的下降趋势(西昆仑除外)。在高原东北部EC的质量分数相对较高,平均为79·2ng·g-1;在喜马拉雅西段EC的质量分数最低,平均为4·3ng·g-1。在冰川表面,雪的融化使雪冰中碳质气溶胶聚集,并导致其含量明显升高,该过程降低了雪表面的反照率,加速了冰川的消融。  相似文献   

17.
内蒙古自治区牙克石市西尼气林场一带出露的面积型安山岩,前人多划为早白垩世次火山岩或早白垩世的浅成侵入岩。本次安山岩U-Pb测年结果为226.0±1.9 Ma,为晚三叠世的产物,是大兴安岭中北部地区首次识别出三叠纪安山岩。结合地质特征,将其划为晚三叠世浅成侵入岩,说明在三叠纪大兴安岭中北部存在火山活动。本次测年结果对大兴安岭中北部火山岩地区面积型安山岩及安山玢岩的归属划分具有参照意义。  相似文献   

18.
王萍  赵慧颖  闫平  朱海霞  翟墨  李秀芬 《冰川冻土》2021,43(6):1764-1772
黑龙江省春季土壤冻融剧烈,土壤湿度和温度受土壤冻融影响较大,利用黑龙江省64个气象观测站1961—2018年的逐日最高气温、最低气温、平均气温、降水量、地温资料及34个农气观测站人工观测的1981—2018年的土壤湿度资料,分析土壤冻结期间的气象要素变化,研究春季土壤冻融过程中湿度和温度的变化。结果表明:土壤冻结期从北向南缩短,且逐年缩短,冻结期平均气温从北向南升高,逐年上升,降水量西部少、东部和北部多,逐年增加;春季冻融次数平原少、山区多,逐年减少。春季融雪开始日期由北向南提前,并且呈现逐年提前的趋势,融雪期升温速率北部、东部低,中部、南部高;在春季冻融过程中,土壤湿度随着土壤深度的增加而增多,东部土壤湿度受土壤融冻影响最大;在整个冬季土壤冻结期间,北部、中部及东部土壤湿度是增加的,且随着土壤深度的增加,土壤湿度增加的越多,而西部土壤湿度是减少的,且随着土壤深度的增加,土壤湿度减少的越少;春季土壤冻融期间,0 cm平均地温全省平均在-17.3~22.1 ℃之间,南部与全省变化趋势基本一致,升温趋势明显,而北部升温速度明显慢于南部。  相似文献   

19.
兴胜岩金矿处于大兴安岭中段东西向金银钼成矿带上,位于火山盆地边缘隆起带,火山期后热液活动强烈,构造都很发育,控制着矿(化)体的分布。火山期后次火山岩、花岗斑岩、似斑状花岗闪长岩和闪长岩等岩浆热液活动是重要的成矿热源,成矿与近东西向次级构造有关,矿体产于蚀变破碎带石英脉及蚀变角砾岩中。通过对金矿床地质特征及矿床成因分析,认为构造、岩浆活动在成矿过程中起着重要作用,对大兴安岭中段东坡找矿起到指导作用,明确了本区找矿方向。  相似文献   

20.
以天山山区为研究区,利用MODIS 8d最大积雪合成数据MOD10A2,分析天山山区积雪的时间变化和空间变化情况以及不同高程带的积雪覆盖率的变化情况;结合SSM/I亮温数据和站点观测数据建立的雪深反演模型并反演研究区的雪深,根据研究区的地势起伏情况,提取特殊地形进行分析其雪深变化情况,进一步分析整个天山山区的积雪深度的时空特征,并对结果进行验证,并且对不同高程带的积雪深度进行分析.研究结果表明:1)天山山区积雪面积分布的趋势表现为自西向东、自北向南减少,总体是呈波动中减少的趋势,到了2012年天山山区年最大积雪面积为37.69×104 km2.2)积雪覆盖率与高程呈正比,在高山区可达70%以上.积雪深度分布呈自西向东、由北向南减少,深度最大的是在天山北部的博格达峰、河源峰附近,可以达到80 cm以上,最小在哈密地区的托木尔提峰附近积雪深度仅在10 cm左右.积雪深度与海拔呈正相关,最大雪深出现在4500 m以上的高山区.3)对雪深反演结果的精度评价表明,模型在10~30 cm雪深范围内,反演平均误差为-2.47 cm;在雪深<10 cm或>30 cm的局部地区存在较大偏差.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号