首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
对流层延迟是影响全球卫星导航系统(GNSS)定位精度的主要误差源之一,模型修正法是目前削弱对流层延迟影响的主要方法. 以简单易用的角度为切入点,综合UNB3模型的简易性和GPT2w模型的高精度特点,构建一种简易且精度较高的对流层天顶延迟融合模型(FZTD). 并利用多年的国际GNSS服务(IGS) 对流层天顶延迟(ZTD)数据对该模型精度进行了验证. 结果表明FZTD模型的均方根(RMS)与平均偏差(bias)值分别为4.4 cm和?0.3 cm,均小于传统模型UNB3m(RMS:5.1 cm,bias:1.1 cm)和EGNOS(RMS:5.1 cm,bias:0.3 cm),定位精度提高了14%,而且在南半球提高尤为明显,特别在南极地区,精度提高了近3倍,弥补了传统模型在南北半球精度差异大的不足. 新模型总气象参数仅为120个比GPT2w模型急剧减少,与传统模型相当,为GNSS实时导航定位终端的预定义对流层延迟改正提供了更优的选择.   相似文献   

2.
对流层延迟是全球导航卫星系统(GNSS)计算的主要误差之一,其模型精度对测站坐标解算有较大影响,在高程方向尤为明显。因此,有必要对不同的对流层延迟改正模型的适用性进行评估。采用SHA解算了中国陆态网GNSS跟踪站的对流层天顶延迟数据,对常用的对流层改正模型EGNOS/UNB3m/GPT/GPT2的天顶延迟量在中国不同区域、不同季节的适用性进行了分析。结果显示,4种模型的RMS均为4~5cm,各模型RMS之差小于1cm,其中GPT2模型的RMS最小;4种模型的平均偏差(BIAS)为1cm左右,GPT2模型的BIAS最大,为1.5cm;时间上,各个模型在夏季精度普遍较低,这是因为夏季水汽丰富,对流层湿延迟变化较大;空间上,各模型在东南沿海精度较低,因为东南沿海气候湿润,湿延迟变化较大;各模型精度对测站高程不敏感,精度在比较高的测站并无明显降低。通过对不同模型在中国区域的精度分析,验证该改正模型可以为中国区域用户的对流层模型的选择提供一定的参考。  相似文献   

3.
融合全球卫星导航系统(GNSS)与风云气象卫星FY-4A可获得高精度高空间分辨率的水汽分布信息.利用中国大陆构造环境监测网络(CMONOC)提供的GNSS观测资料开展京津冀地区FY-4A水汽校正研究.首先对京津冀地区进行区域划分,按区域分季节开展GNSS水汽与FY-4A水汽的相关性分析;其次分区域、分季节选择不同的函数模型结合GNSS水汽资料构建FY-4A水汽校正模型;然后采取区域模型、单站点模型与实测GNSS水汽开展模型的可靠性检验;最后通过分区域FY-4A水汽校正和图像叠加,获得校正后的京津冀地区FY-4A水汽分布.研究表明:FY-4A水汽与GNSS水汽的相关性较好,区域FY-4A水汽校正模型精度与单站点模型精度相当,可取代单站点模型用于FY-4A的水汽校正.基于CMONOC的分区域函数模型在一定程度上提高FY-4A水汽精度,为短期天气预报和合成孔径雷达(InSAR)大气校正提供参考.  相似文献   

4.
通过全球导航卫星(GNSS)系统获取对流层天顶延迟对于气象和电波折射修正具有重要应用价值。利用自主研发的静态精密单点定位软件CRPPP,基于国际GNSS地球动力学服务局(IGS)发布的北斗系统(BDS)精密星历和精密钟差,给出了BDS估算天顶延迟结果。以IGS发布的全球定位系统(GPS)结果为参考对比,BDS估算天顶延迟结果平均偏差优于5mm,均方根误差(rms)优于2.3cm.同时,给出了西沙地区GPS与BDS估计结果,结果表明:利用北斗系统估计的对流层天顶延迟精度与GPS相当。  相似文献   

5.
对流层延迟是影响全球卫星导航系统(GNSS)测量精度的重要因素. 针对现有对流层延迟模型稳定性差,精度较低等问题,在无实测气象参数条件下,提出一种基于Keras平台的长短期记忆神经网络(LSTM)的对流层延迟预测模型. 选取全球均匀分布的8个测站,使用其2016年第90-131年积日共42 天的整点对流层延迟数据预测其第132-136年积日的整点数据. 以国际GNSS服务(IGS)中心提供的对流层产品为真值,分析比较LSTM模型和反向传播(BP)神经网络模型的预测效果. 研究表明,LSTM模型预测结果的均方根误差基本达到mm级,其平均绝对误差和平均绝对百分比误差均比BP模型低,LSTM模型在精度和稳定性上较BP模型均有明显提高;LSTM模型在中高纬区域的均方根误差(RMSE)均值达到7.82 mm,中高纬地区更适合使用该模型.   相似文献   

6.
再分析资料计算中国区域对流层延迟精度   总被引:2,自引:1,他引:1  
针对欧洲中期天气预报中心(ECMWF)提供的ERA-Interim气压分层再分析资料在中国区域对流层延迟解算的适用性问题,该文基于中国大陆构造环境监测网络(CMONOC)约260个GPS基准站,以GPS PPP事后精密处理结果作为参考,给出了相应的精度评估与时空分布特征分析,结果表明:再分析资料在中国区域对流层延迟的平均偏差和均方根误差分别为0.39cm和1.37cm,时空分布上存在明显差异,另外指出了再分析资料时间分辨率不足,难以反映对流层延迟日内变化的问题。为进一步研究对流层空间关系以及垂直变化特征,精化对流层改正模型提供参考。  相似文献   

7.
全球温度气压湿度(global pressure and temperature 2 wet,GPT2w)模型常被用于计算某一位置的气温、加权平均温度、气压以及水汽压等各种气象参数,是目前公开的标称精度最高的对流层延迟经验模型。利用中国区域参与全球气象交换的86个测站2013-2015年的气象探空数据,对GPT2w得到的各种气象参数进行精度检验及分析。实验结果表明,气温平均偏差为1.31℃,均方根误差为3.62℃;加权平均温度的平均偏差为-1.58 K,均方根误差为4.07 K;气压和水汽压平均偏差的绝对值在1 hPa以内,其均方根误差分别为6.98 hPa与3.04 hPa。利用2006-2015年的数据分析了不同纬度模型精度的周期性特征,结果表明,气温、加权平均温度、气压和水汽压的均方根误差均具有一定的年周期特性,且在不同的纬度区域其周期特性不同。总体而言,GPT2w模型在中国地区范围内具有较高的精度和稳定性。  相似文献   

8.
对流层延迟是影响高精度定位与导航的主要误差之一,也是全球导航卫星系统(global navigation satellite system,GNSS)水汽探测的关键参数。美国航空航天局发布了最新一代的大气再分析资料(MERRA-2资料),其可用于计算高时空分辨率的对流层延迟产品,但是目前尚无文献对利用MERRA-2资料计算天顶对流层延迟(zenith tropospheric delay,ZTD)和天顶湿延迟(zenith wet delay,ZWD)的精度进行分析。因此,联合2015年中国陆态网214个GNSS站ZTD产品和分布于中国区域的87个探空站资料,对利用MERRA-2资料在中国区域计算ZTD/ZWD的精度进行评估。结果表明:(1)以陆态网ZTD为参考值,利用MERRA-2资料积分计算ZTD的年均偏差和均方根误差(root mean square error,RMSE)分别为0.32 cm和1.21 cm,且偏差和RMSE均表现出一定的季节变化,总体上呈现为夏季精度低、冬季精度高;在空间分布上,偏差随纬度和高程的变化趋势并不明显,但RMSE随纬度和高程的增加总体上呈现递减的趋...  相似文献   

9.
对流层延迟是GNSS导航定位的重要误差源之一,主要受气温、气压以及水汽分压等气象参数的影响,具有变化迅速、随机的特点。本文利用分布在欧亚地区的72个IGS站提供的2015年全年的ZTD产品对UNB 3 m模型进行了详细的探讨,得出该模型在相应地区的平均偏差为0.017 m,高于北美地区0.005 m的平均偏差。本文选出了bsrt、chan、guug等8个IGS站,进一步分析比较,得出UNB 3 m模型误差在空间上的分布特性为:在高纬度地区UNB 3 m模型的适应性较好,在中低纬度地区、沿海区域精度明显低于内陆地区;模型误差的时间分布特性为:在夏季符合精度较差,但在春季和冬季符合精度较好;同时,模型的预测精度与高程并无明显的规律。本文研究还发现模型的bias与测站的水汽输送规律有明显的相关性,为进一步提高ZTD的模型预测精度提供了很好的思路和方向。  相似文献   

10.
针对传统对流层延迟模型在复杂山区大高差环境下误差过大的问题,该文对欧洲中期天气预报中心的ERA5大气再分析资料反演的天顶对流层延迟精度进行分析,其中ERA5 ZTD由积分法+Saastamoinen模型求得。结果表明:以精密单点定位模糊度固定估计的ZTD为参考,ERA5 ZTD平均偏差绝对值为3.8 mm,总平均均方根误差为10.5 mm。北半球夏季偏差与均方根误差最大,冬季最小,南半球反之。并址站间的日内变化趋势相同,与PPP-AR ZTD变化趋势符合性较好,且呈现明显的日内周期性变化。ERA5 ZTD均方根误差由赤道向两极呈递减趋势,不同测站高程处ZTD精度与高程无明显关系,整体表现出较高精度。总体上,ERA5 ZTD能够满足在复杂山区大高差环境下的对流层延迟误差要求,可作为数据源进行区域对流层建模。  相似文献   

11.
大气水汽是对流层的重要组成部分之一,研究影响水汽的因素及精度具有重要意义。主要研究黄土高原地区大气可降水量(precipitable water vapor, PWV)的影响因素,并对其实际精度进行评估。首先,对ERA5(the fifth-generation atmospheric reanalysis data of ECMWF)的气压、气温数据和全球导航卫星系统(global navigation satellite system, GNSS)获取的天顶对流层延迟(zenith troposphere delay, ZTD)进行评定;然后,依据ERA5的气压、气温数据和GNSS的ZTD数据计算1 h分辨率的PWV,并利用误差传播理论推导PWV的理论误差; 最后, 与PWV实际计算误差进行对比,分析黄土高原地区PWV的精度。结果表明,基于GAMIT/GLOBK软件获得的GNSS ZTD与PANDA软件解算的GNSS ZTD差值的均方根(root mean square, RMS)和Bias分别为4.05 mm和-0.46 mm;ERA5气压和气温的平均RMS和Bias分别为3.36 hPa/1.97 K和-0.01 ?hPa/0.04 K;黄土高原地区PWV的理论误差为1.51 mm,实际误差为1.94 mm。计算得到的PWV精度较高,对水汽分布以及气候监测的研究具有重要意义。  相似文献   

12.
刘备  王勇  娄泽生  占伟 《测绘学报》2019,48(10):1207-1215
基于CMONOC提供的GNSS观测和气象资料,开展中国大陆地区不同气候类型的MODIS PWV校正研究。首先依据不同气候类型,开展GNSS PWV与MODIS PWV的相关性分析;然后基于GNSS PWV构建不同气候类型的MODIS PWV校正模型;最后根据MODIS PWV、模型校正的MODIS PWV分别与GNSS PWV比较,开展模型改进效果检验。研究表明:不同气候类型的MODIS PWV校正模型,均能有效改善MODIS PWV精度,提高MODIS PWV在短期天气预报和InSAR大气校正的应用。  相似文献   

13.
2020年6月北斗卫星导航系统(BDS)完成全面组网,为分析其解算水汽信息的精度,选用15个MGEX (Multi-GNSS Experiment)测站2021年10月至11月的观测数据进行水汽反演. 利用GAMIT软件分别解算BDS、GPS、Galileo和GLONASS的观测数据,将得到的对流层天顶延迟(ZTD)与国际GNSS服务(IGS)发布的结果进行对比,并将解算的大气可降水量(PWV)分别与探空数据、ERA5数据计算得到的PWV对比. 实验结果表明:截止高度角设置为5°时,4个卫星系统估计的ZTD均方根 (RMS)均小于13 mm,GPS-PWV、BDS-PWV、Galileo-PWV、GLONASS-PWV与无线电探空可降水量(RS-PWV)相比,RMS平均值分别为2.25 mm、2.46 mm、2.52 mm和2.84 mm,RMS均小于3 mm;与ERA5-PWV相比,RMS平均值分别为1.63 mm、1.86 mm、1.76 mm和1.99 mm,RMS均小于2 mm. GPS探测水汽的精度最高,BDS探测水汽的精度低于GPS和Galileo,高于GLONASS,均满足气象学应用需求.   相似文献   

14.
The revitalized Russian GLONASS system provides new potential for real-time retrieval of zenith tropospheric delays (ZTD) and precipitable water vapor (PWV) in order to support time-critical meteorological applications such as nowcasting or severe weather event monitoring. In this study, we develop a method of real-time ZTD/PWV retrieval based on GLONASS and/or GPS observations. The performance of ZTD and PWV derived from GLONASS data using real-time precise point positioning (PPP) technique is carefully investigated and evaluated. The potential of combining GLONASS and GPS data for ZTD/PWV retrieving is assessed as well. The GLONASS and GPS observations of about half a year for 80 globally distributed stations from the IGS (International GNSS Service) network are processed. The results show that the real-time GLONASS ZTD series agree quite well with the GPS ZTD series in general: the RMS of ZTD differences is about 8 mm (about 1.2 mm in PWV). Furthermore, for an inter-technique validation, the real-time ZTD estimated from GLONASS-only, GPS-only, and the GPS/GLONASS combined solutions are compared with those derived from very long baseline interferometry (VLBI) at colocated GNSS/VLBI stations. The comparison shows that GLONASS can contribute to real-time meteorological applications, with almost the same accuracy as GPS. More accurate and reliable water vapor values, about 1.5–2.3 mm in PWV, can be achieved when GLONASS observations are combined with the GPS ones in the real-time PPP data processing. The comparison with radiosonde data further confirms the performance of GLONASS-derived real-time PWV and the benefit of adding GLONASS to stand-alone GPS processing.  相似文献   

15.
对流层延迟是卫星导航定位的主要误差源,GNSS广域增强需要高精度的对流层延迟产品进行误差修正。对流层延迟可通过GNSS进行实时估计,也可通过融合多源数据的数值气象预报模型获取。IGS发布的全球对流层天顶延迟产品由GNSS解算,其精度可达4mm,时间分辨率为5min,但其分布不均匀,在广袤的海洋区域无数据覆盖。GGOS Atmosphere基于ECMWF 40年再分析资料,可提供1979年以来时间分辨率为6h、空间分辨率为2.5°×2°的全球天顶对流层总延迟格网数据。本文通过2015年全球IGS测站的ZTD资料对GGOS的ZTD产品进行了评估,研究了GGOS Atmosphere对流层延迟产品与IGS发布ZTD资料之间的系统差,通过线性拟合估计出每个测站GGOS-ZTD与IGSZTD系统差系数(包括比例误差a和固定误差b),然后对比例误差a、固定误差b进行球谐展开,建立了两种ZTD数据源之间的系统差模型。选取IGS测站和陆态网测站,对附加系统偏差改正后的GGOSZTD产品对PPP的收敛速度的影响进行研究。本文研究结果表明:GGOS-ZTD与IGS-ZTD间存在系统偏差,其bias平均为-0.54cm;两者之间较差的RMS平均为1.31cm,说明GGOS-ZTD产品足以满足广大GNSS导航定位用户对对流层延迟改正的需要。将改正了系统差后的GGOS-ZTD产品用于ALBH、DEAR、ISPA测站、PALM测站、ADIS测站、YNMH测站、WUHN测站进行PPP试验,发现可明显提高定位收敛速度,尤其是在U方向上,收敛速度分别提高10.58%、31.68%、15.96%、43.89%、51.46%、14.69%、18.40%。  相似文献   

16.
对陆态网223个全球导航卫星系统(Global Navigation Satellite System,GNSS)测站6 a实测对流层天顶延迟(zenith total delay,ZTD)的时空特性进行了分析,结果表明,各测站ZTD平均值随大地高指数递减,衰减因子与纬度近似线性关系,其时域变化呈现年周期和半年周期,周期、振幅、初相位与地域分布有关。综合采用周期函数及格网函数,建立了中国大陆区域ZTD经验模型SHAtrop。模型提供区域内分辨率为2.5°×2.0°的格网,用户使用时,先在相应格网内插得到对应参数,再利用三角函数得到椭球面ZTD,最后利用指数函数计算ZTD。实测ZTD的数据验证结果表明,SHAtrop的均方根误差(root mean square,RMS)为3.4 cm,优于常见经验模型。SHAtrop采用较多测站,对高程改正更精细;使用时只需要输入经纬度与时间,使用方便,能满足中国区域GNSS用户实时定位导航的ZTD改正需求。  相似文献   

17.
利用49个山东省连续运行参考站(SDCORS) 2020年的北斗观测数据,使用GAMIT软件进行了大气水汽反演,得到了全年逐小时的大气可降水量(PWV)序列. 将反演得到的PWV与探空气象站观测的PWV对比,平均偏差为2.4 mm,均方根误差(RMSE)为3.4 mm,相关系数达到0.98,结果表明反演结果的精度符合气象研究需求. 分别从单连续运行参考站(CORS)和全省范围对PWV在暴雨过程中的变化进行了分析,发现PWV在暴雨产生前5~12 h开始上升,至暴雨产生时刻,PWV最大值普遍达到60 mm以上,平均变化率达到1~3 mm/h,越临近暴雨产生,PWV变化幅度越大,降水结束后,PWV会迅速下降. PWV的变化与暴雨的产生具有高度相关性,PWV在暴雨产生前后的剧烈变化,可用于暴雨预警研究,对于生产生活活动具有重要现实指导意义.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号