首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The Jupiter gold deposit in the northeastern Eastern Goldfields Province of the Yilgarn Craton of Western Australia is hosted in greenschist facies metamorphosed tholeiitic basalt, quartz–alkali-feldspar syenite, and quartz–feldspar porphyry. Syenite intrudes basalt as irregularly shaped dykes which radiate from a larger stock, whereas at least three E–W and NE–SW striking quartz–feldspar porphyries intrude both syenite and basalt. Brittle–ductile shear zones are shallow-dipping, NW to NE striking, or are steep-dipping to the south and west. Quartz ± carbonate veins that host gold at Jupiter occur in all lithologies and are divided into: (1) veins that are restricted to the shear zones, (2) discrete veins that are subparallel to shear zone-hosted veins, and (3) stockwork veins that form a network of randomly oriented microfractures in syenite wallrock proximal to shallow-dipping shear zones. The gold-bearing veins comprise mainly quartz, calcite, ankerite, and albite, with minor sericite, pyrite, chalcopyrite, galena, sphalerite, molybdenite, telluride minerals, and gold. Proximal hydrothermal alteration zones to the mineralised veins comprise quartz, calcite, ankerite, albite, and sericite. High gold grades (>2 g/t Au) occur mainly in syenite and in the hanging walls to shallow-dipping shear zones in syenite where there is a greater density of mineralised stockwork veins. The Jupiter deposit has structural and hydrothermal alteration styles that are similar to both granitoid-hosted, but post-magmatic Archaean lode-gold deposits in the Yilgarn Craton and intrusion-related, syn-magmatic, syenite-hosted gold deposits in the Superior Province of Canada. Based on field observations and petrologic data, the Jupiter deposit is considered to be a post-magmatic Archaean lode-gold deposit rather than a syn-intrusion deposit. Received: 5 January 1999 / Accepted: 24 December 1999  相似文献   

2.
The Jinwozi gold deposit consists of gold-bearing quartz veins in a biotite granodiorite of Hercynian age (zircon U-Pb age ≈ 335.7 Ma). Ore mineralogy is simple. In addition to native gold, there are only small amounts of sulfides, mainly pyrite and minor sphalerite, chalcopyrite and galena. δ34S values average 6.69‰, and δ18O 13.99‰ Abundant CO2 is contained in fluid inclusions from quartz. Homogenization temperatures of fluid inclusions are between 186 and 262 °C. REE distribution patterns indicate that the igneous mass may have been derived from a common initial material of calcareous-argillaceous sediments and alkali basalts as the country rocks. In other words, the Jinwozi granodiorite is of remelting origin from crustal material. Isotopic evidence of S, O and Pb shows that the ore-forming material is genetically related to magmatic hydrothermal activity.  相似文献   

3.
Gold deposits at El Sid are confined to hydrothermal quartz veins which contain pyrite, arsenopyrite, sphalerite and galena. These veins occur at the contact between granite and serpentinite and extend into the serpentinite through a thick zone of graphite schist. Gold occurs in the mineralized zone either as free gold in quartz gangue or dissolved in the sulfide minerals. Ore-microscopic study revealed that Au-bearing sulfides were deposited in two successive stages with early pyrite and arsenopyrite followed by sphalerite and galena. Gold was deposited during both stages, largely intergrown with sphalerite and filling microfractures in pyrite and arsenopyrite.Spectrochemical analyses of separated pyrite, arsenopyrite, sphalerite and galena showed that these sulfides have similar average Au contents. Pyrite is relatively depleted in Ag and Te. This suggests that native gold was deposited in the early stage of mineralization. Arsenopyrite and galena show relatively high concentrations of Te. They are also respectively rich in Au and Ag. Tellurides are, thus, expected to be deposited together with arsenopyrite and galena.  相似文献   

4.
The Jinshan orogenic gold deposit is a world-class deposit hosted by a ductile shear zone caused by a transpressional terrane collision during Neoproterozoic time. Ore bodies at the deposit include laminated quartz veins and disseminated pyrite-bearing mylonite. Most quartz veins in the shear zone, with and without gold mineralization, were boudinaged during progressive shear deformation with three generations of boudinage structures produced at different stages of progressive deformation. Observations of ore-controlling structures at various scales indicate syn-deformational mineralization. Fluid inclusions from pyrite intergrown with auriferous quartz have 3He/4He ratios of 0.15–0.24 Ra and 40Ar/36Ar ratios 575–3,060. δ18Ofluid values calculated from quartz are 5.5–8.4‰, and δD values of fluid inclusions contained in quartz range between −61‰ and −75‰. The δ13C values of ankerite range from −5.0‰ to −4.2‰, and ankerite δ18O values from 4.4‰ to 8.0‰. The noble gas and stable isotope data suggest a predominant crustal source of ore fluids with less than 5% mantle component. Data also show that in situ fluids were generated locally by pervasive pressure solution, and that widespread dissolution seams acted as pathways of fluid flow, migration, and precipitation. The in situ fluids and fluids derived from deeper levels of the crust were focused by deformation and deformation structures at various scales through solution-dissolution creep, crack-seal slip, and cyclic fault-valve mechanisms during progressively localized deformation and gold mineralization.  相似文献   

5.
通过对山东省平度市大庄子金矿区黄铁矿、方铅矿三个蚀变阶段特征研究,发现金矿化主要发生在第二阶段,强烈的石英-黄铁矿-碳酸盐化与金矿化的关系最为密切。金多数以包体的形式赋存于黄铁矿等金属硫化物中,并且在黄铁矿、方铅矿、闪锌矿等矿物共同产出时更有利于金的富集。研究认为石英和黄铁矿组合以及黄铁矿、黄铜矿、方铅矿、闪锌矿的组合可作为金的富集指示性矿物组合,伴生矿物之中方铅矿含金性最好。方铅矿、黄铜矿、闪锌矿和磁黄铁矿呈细脉状、网脉状、斑杂状产于含金石英脉和团块状黄铁矿的裂隙中,研究发现细脉状较团块状黄铁矿含金性要好。  相似文献   

6.
Mineralogic studies of major ore minerals and fluid inclusion analysis in gangue quartz were carried out for the for the two largest veins, the Aginskoe and Surprise, in the Late Miocene Aginskoe Au–Ag–Te deposit in central Kamchatka, Russia. The veins consist of quartz–adularia–calcite gangue, which are hosted by Late Miocene andesitic and basaltic rocks of the Alnei Formation. The major ore minerals in these veins are native gold, altaite, petzite, hessite, calaverite, sphalerite, and chalcopyrite. Minor and trace minerals are pyrite, galena, and acanthine. Primary gold occurs as free grains, inclusions in sulfides, and constituent in tellurides. Secondary gold is present in form of native mustard gold that usually occur in Fe‐hydroxides and accumulates on the decomposed primary Au‐bearing tellurides such as calaverite, krennerite, and sylvanite. K–Ar dating on vein adularia yielded age of mineralization 7.1–6.9 Ma. Mineralization of the deposit is divided into barren massive quartz (stage I), Au–Ag–Te mineralization occurring in quartz‐adularia‐clays banded ore (Stage II), intensive brecciation (Stage III), post‐ore coarse amethyst (Stage IV), carbonate (Stage V), and supergene stages (Stage VI). In the supergene stage various secondary minerals, including rare bilibinskite, bogdanovite, bessmertnovite metallic alloys, secondary gold, and various oxides, formed under intensely oxidized conditions. Despite heavy oxidation of the ores in the deposit, Te and S fugacities are estimated as Stage II tellurides precipitated at the log f Te2 values ?9 and at log fS2 ?13 based on the chemical compositions of hypogene tellurides and sphalerite. Homogenization temperature of fluid inclusions in quartz broadly ranges from 200 to 300°C. Ore texture, fluid inclusions, gangue, and vein mineral assemblages indicate that the Aginskoe deposit is a low‐sulfidation (quartz–adularia–sericite) vein system.  相似文献   

7.
A Middle Tertiary volcanic belt in the High Andes of north-central Chile hosts numerous precious- and base-metal epithermal deposits over its 150 km north-south trend. The El Indio district, believed to be associated with a hydrothermal system in the late stages of development of a volcanic caldera, consists of a series of separate vein systems located in an area of 30 km2 which has undergone intense argillic-sericitic-solfataric alteration. The majority of the known gold-copper-silver mineralization occurs within a structural block only 150 by 500 m in surface area, with a recognized vertical extent exceeding 300 m. This block is bounded by two high-angle northeast-trending faults oriented subparallel to the mineralized veins.Hypogene mineralization at El Indio is grouped into two main ore-forming stages: Copper and Gold. The Copper stage is composed chiefly of enargite and pyrite forming massive veins up to 20 m wide, and is accompanied by alteration of the wall rocks to alunite, kaolinite, sericite, pyrite and quartz. The Gold stage consists of vein-filling quartz, pyrite, native gold, tennantite and subordinate amounts of a wide variety of telluride minerals. Associated with this stage is pervasive alteration of the wall rocks to sericite, kaolinite, quartz and minor pyrophyllite. The transition from copper to gold mineralization is marked by the alteration of enargite to tennantite and by minor deposition of sphalerite, galena, huebnerite, chalcopyrite and gold. Mineral stability relations indicate that there was a general decrease in the activity of S2 accompanied by variations in the activity of Te2 during the Gold stage.Fluid-inclusion data show homogenization temperatures ranging from about 220 to 280°C, with salinities on the order of 3–4 eq. wt. % NaCl for the Copper stage. The Gold-stage inclusions indicate a similar range in homogenization temperatures, but significantly lower salinities (0.1–1.4 eq. wt. % NaCl). Fluid inclusions of transition minerals show a weak inverse relationship between homogenization temperatures (190–250°C) and salinities (3.4–1.4 eq. wt. % NaCl), which may represent mixing of hotter Gold-stage fluids with cooler late-Copper-stage fluids. No evidence of boiling was found in fluid inclusions, but CO2 vapor-rich inclusions were identified in wall-rock quartz phenocrysts which pre-date copper and gold mineralization.Mineral stability calculations indicate that given a fairly restricted range of solution compositions, the Copper-, Transition- and Gold-stage minerals at El Indio could have been deposited from a single solution, with constant total dissolved sulfur which underwent reduction through time. Limited sulfur-isotope data indicates that pyrite from the Copper stage was not in isotopic equilibrium with Copper-stage alunite or Transition-stage sphalerite. The sulfur-isotope and fluid-inclusion data indicate that two fluids with comparable temperatures but different compositions flowed through the El Indio system. The earlier fluid deposited copper attended by sericite-alunite-kaolinite alteration, and later epithermal fluids deposited gold with quartz-sericite-kaolinite-pyrite alteration.  相似文献   

8.
The metalized quartz veins is located 5 km west of the Iraqi-Iran border in the Qandil range. The quartz veins included sulfide and oxide ore minerals which mostly occur in the form of open-space filling texture. The polymetallic mesothermal quartz veins are hosted by marble and phyllite rocks. Within these veins, multiphase, open-space filling and crustiform, bedding to massive textures with pyrite, sphalerite, galena, chalcopyrite,galena, sphalerite, tenorite, azurite, and malachite are observed. Selected samples were analyzed by using ore microscopy and electron probe micro analyzer (EPMA) and scanning electron microscope (SEM). Ore minerals show replacement textures. The paragenesis diagram was made from a careful study of polished sections and three stages have been identified including pre-stage mineralization, mineralization, and post-mineralization stages.Fluid inclusion microthermometric analysis of 15 primary inclusions of quartz veins indicated that ore mineralization at the studied area were formed by a mesothermal, low to medium density, and dilute NaCl-type fluid system. The source of the fluid is mostly metamorphic which became mixed with other fluids later. Hydrothermal fluids of the selected studied area were classified into two groups based on microthermometry study; the first group had a higher homogenization temperature (335.5 to 386.8 °C) than the second group (194.1 to 298.5 °C), with a small difference in salinity between them. Nearly each group has different complexes including chloride and sulfide complexes respectively. The results of stable sulfur isotope of the ore minerals (chalcopyrite and sphalerite) confirmed the sedimentary and/or metamorphic origin of the ore mineralization.  相似文献   

9.
The Samgwang mine is located in the Cheongyang gold district (Cheonan Metallogenic Province) of the Republic of Korea. It consists of eight massive, gold-bearing quartz veins that filled NE- and NW-striking fractures along fault zones in Precambrian granitic gneiss of the Gyeonggi massif. Their mineralogy and paragenesis allow two separate vein-forming episodes to be recognized, temporally separated by a major faulting event. The ore minerals occur in quartz and calcite of stage I, associated with fracturing and healing of veins. Hydrothermal wall-rock alteration minerals of stage I include Fe-rich chlorite (Fe/(Fe+Mg) ratios 0.74-0.81), muscovite, illite, K-feldspar, and minor arsenopyrite, pyrite, and carbonates. Sulfide minerals deposited along with electrum during this stage include arsenopyrite, pyrite, pyrrhotite, sphalerite, marcasite, chalcopyrite, galena, argentite, pyrargyrite, and argentian tetrahedrite. Only calcite was deposited during stage II. Fluid inclusions in quartz contain three main types of C–O–H fluids: CO2-rich, CO2–H2O, and aqueous inclusions. Quartz veins related to early sulfides in stage I were deposited from H2O–NaCl–CO2 fluids (1,500–5,000 bar, average 3,200) with T htotal values of 200°C to 383°C and salinities less than about 7 wt.% NaCl equiv. Late sulfide deposition was related to H2O–NaCl fluids (140–1,300 bar, average 700) with T htotal values of 110°C to 385°C and salinities less than about 11 wt.% NaCl equiv. These fluids either evolved through immiscibility of H2O–NaCl–CO2 fluids as a result of a decrease in fluid pressure, or through mixing with deeply circulated meteoric waters as a result of uplift or unloading during mineralization, or both. Measured and calculated sulfur isotope compositions (δ34SH2S = 1.5 to 4.8‰) of hydrothermal fluids from the stage I quartz veins indicate that ore sulfur was derived mainly from a magmatic source. The calculated and measured oxygen and hydrogen isotope compositions (δ18OH2O = −5.9‰ to 10.9‰, δD = −102‰ to −87‰) of the ore-forming fluids indicate that the fluids were derived from magmatic sources and evolved by mixing with local meteoric water by limited water–rock exchange and by partly degassing in uplift zones during mineralization. While most features of the Samgwang mine are consistent with classification as an orogenic gold deposit, isotopic and fluid chemistry indicate that the veins were genetically related to intrusions emplaced during the Jurassic to Cretaceous Daebo orogeny.  相似文献   

10.
Mineral assemblages, chemical compositions of ore minerals, wall rock alteration and fluid inclusions of the Gatsuurt gold deposit in the North Khentei gold belt of Mongolia were investigated to characterize the gold mineralization, and to clarify the genetic processes of the ore minerals. The gold mineralization of the deposit occurs in separate Central and Main zones, and is characterized by three ore types: (i) low‐grade disseminated and stockwork ores; (ii) moderate‐grade quartz vein ores; and (iii) high‐grade silicified ores, with average Au contents of approximately 1, 3 and 5 g t?1 Au, respectively. The Au‐rich quartz vein and silicified ore mineralization is surrounded by, or is included within, the disseminated and stockwork Au‐mineralization region. The main ore minerals are pyrite (pyrite‐I and pyrite‐II) and arsenopyrite (arsenopyrite‐I and arsenopyrite‐II). Moderate amounts of galena, tetrahedrite‐tennantite, sphalerite and chalcopyrite, and minor jamesonite, bournonite, boulangerite, geocronite, scheelite, geerite, native gold and zircon are associated. Abundances and grain sizes of the ore minerals are variable in ores with different host rocks. Small grains of native gold occur as fillings or at grain boundaries of pyrite, arsenopyrite, sphalerite, galena and tetrahedrite in the disseminated and stockwork ores and silicified ores, whereas visible native gold of variable size occurs in the quartz vein ores. The ore mineralization is associated with sericitic and siliceous alteration. The disseminated and stockwork mineralization is composed of four distinct stages characterized by crystallization of (i) pyrite‐I + arsenopyrite‐I, (ii) pyrite‐II + arsenopyrite‐II, (iii) galena + tetrahedrite + sphalerite + chalcopyrite + jamesonite + bournonite + scheelite, and iv) boulangerite + native gold, respectively. In the quartz vein ores, four crystallization stages are also recognized: (i) pyrite‐I, (ii) pyrite‐II + arsenopyrite + galena + Ag‐rich tetrahedrite‐tennantite + sphalerite + chalcopyrite + bournonite, (iii) geocronite + geerite + native gold, and (iv) native gold. Two mineralization stages in the silicified ores are characterized by (i) pyrite + arsenopyrite + tetrahedrite + chalcopyrite, and (ii) galena + sphalerite + native gold. Quartz in the disseminated and stockwork ores of the Main zone contains CO2‐rich, halite‐bearing aqueous fluid inclusions with homogenization temperatures ranging from 194 to 327°C, whereas quartz in the disseminated and stockwork ores of the Central zone contains CO2‐rich and aqueous fluid inclusions with homogenization temperatures ranging from 254 to 355°C. The textures of the ores, the mineral assemblages present, the mineralization sequences and the fluid inclusion data are consistent with orogenic classification for the Gatsuurt deposit.  相似文献   

11.
Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern Iran   总被引:1,自引:1,他引:1  
The Qolqoleh gold deposit is located in the northwestern part of the Sanandai‐Sirjan Zone, northwest of Iran. Gold mineralization in the Qolqoleh deposit is almost entirely confined to a series of steeply dipping ductile–brittle shear zones generated during Late Cretaceous–Tertiary continental collision between the Afro‐Arabian and the Iranian microcontinent. The host rocks are Mesozoic volcano‐sedimentary sequences consisting of felsic to mafic metavolcanics, which are metamorphosed to greenschist facies, sericite and chlorite schists. The gold orebodies were found within strong ductile deformation to late brittle deformation. Ore‐controlling structure is NE–SW‐trending oblique thrust with vergence toward south ductile–brittle shear zone. The highly strained host rocks show a combination of mylonitic and cataclastic microstructures, including crystal–plastic deformation and grain size reduction by recrystalization of quartz and mica. The gold orebodies are composed of Au‐bearing highly deformed and altered mylonitic host rocks and cross‐cutting Au‐ and sulfide‐bearing quartz veins. Approximately half of the mineralization is in the form of dissemination in the mylonite and the remainder was clearly emplaced as a result of brittle deformation in quartz–sulfide microfractures, microveins and veins. Only low volumes of gold concentration was introduced during ductile deformation, whereas, during the evident brittle deformation phase, competence contrasts allowed fracturing to focus on the quartz–sericite domain boundaries of the mylonitic foliation, thus permitting the introduction of auriferous fluid to create disseminated and cross‐cutting Au‐quartz veins. According to mineral assemblages and alteration intensity, hydrothermal alteration could be divided into three zones: silicification and sulfidation zone (major ore body); sericite and carbonate alteration zone; and sericite–chlorite alteration zone that may be taken to imply wall‐rock interaction with near neutral fluids (pH 5–6). Silicified and sulfide alteration zone is observed in the inner parts of alteration zones. High gold grades belong to silicified highly deformed mylonitic and ultramylonitic domains and silicified sulfide‐bearing microveins. Based on paragenetic relationships, three main stages of mineralization are recognized in the Qolqoleh gold deposit. Stage I encompasses deposition of large volumes of milky quartz and pyrite. Stage II includes gray and buck quartz, pyrite and minor calcite, sphalerite, subordinate chalcopyrite and gold ores. Stage III consists of comb quartz and calcite, magnetite, sphalerite, chalcopyrite, arsenopyrite, pyrrhotite and gold ores. Studies on regional geology, ore geology and ore‐forming stages have proved that the Qolqoleh deposit was formed in the compression–extension stage during the Late Cretaceous–Tertiary continental collision in a ductile–brittle shear zone, and is characterized by orogenic gold deposits.  相似文献   

12.
The Mesozoic Yangzhaiyu lode gold deposit is situated in the southern edge of the North China craton. Gold mineralization is hosted in Archean amphibolite facies metamorphic rocks, and consists mainly of auriferous quartz veins. Pyrite is the predominant sulfide mineral, with minor amounts of chalcopyrite, sphalerite, and galena. Based on morphology and paragenesis, there are three generations of pyrite, termed as first generation (G1), second generation (G2), and third generation (G3). They have distinct contents, occurrences, and distribution patterns of gold. The coarse-grained, euhedral G1 pyrite contains negligible to low levels of gold, whereas both invisible and visible gold are present in the fine- to medium-grained G2 pyrite that is characterized by abundance of microfractures and porosities, forming a foam-like texture. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) depth profiles indicate that invisible gold occurs either as solid solution or as nanoparticles of gold-bearing tellurides in the G2 pyrite. Visible gold is widespread and present as irregular grains and stringers of native gold mostly along grain boundaries or filling microfractures of pyrite, likely resulting from remobilization of invisible gold once locked in the G2 pyrite. The G3 pyrite, invariably intergrown with chalcopyrite, sphalerite, and galena, contains the highest levels of invisible gold. There is a positive correlation between Au, Ag, and Te, indicating that gold occurs as submicroscopic Au-bearing telluride inclusions in the host minerals. Whenever gold, either invisible or visible, is present, As is always below or only marginally higher than the detection limit of LA-ICP-MS. This indicates that As played an insignificant role in gold mineralization. Tellurides are widespread in the auriferous quartz veins, consisting mainly of petzite, calaverite, hessite, altaite, and tellurobismuthite. Native gold commonly occurs as intergrowths with tellurides. Textural evidence indicates a precipitation sequence, in a temporal order, of calcaverite, petzite, altaite, tellurobismuthite, and hessite. Little amount of sulfide phases has been found in association with the tellurides, indicating that tellurides were deposited under low S fugacity (fS 2 ) and/or high Te fugacity (fTe 2 ) conditions. The textural relationships, when combined with fluid inclusion microthermometric data of auriferous quartz veins and tellurides thermodynamic data, permit estimation for logfTe 2 during telluride formation, which are −6.8 to −10.8 at 300°C and −9.6 to −17.6 at 250°C. Available geochronological and geochemical data suggest that Te was most likely derived from the late Mesozoic magmatic rocks widespread in the Xiaoqinling district and other parts of the southern North China craton, which were emplaced broadly contemporaneous with gold mineralization at Yangzhaiyu. This study highlights the role of Te and tellurides as important gold scavengers in As-deficient ore fluids.  相似文献   

13.
There are two types of lead–zinc ore bodies, i.e., sandstone-hosted ores (SHO) and limestone-hosted ores (LHO), in the Jinding giant sulfide deposit, Yunnan, SW China. Structural analysis suggests that thrust faults and dome structures are the major structural elements controlling lead–zinc mineralization. The two types of ore bodies are preserved in two thrust sheets in a three-layered structural profile in the framework of the Jinding dome structure. The SHO forms the cap of the dome and LHO bodies are concentrated beneath the SHO cap in the central part of the dome. Quartz, feldspar and calcite, and sphalerite, pyrite, and galena are the dominant mineral components in the sandstone-hosted lead–zinc ores. Quartz and feldspar occur as detrital clasts and are cemented by diagenetic calcite and epigenetic sulfides. The sulfide paragenetic sequence during SHO mineralization is from early pyrite to galena and late sphalerite. Galena occurs mostly in two types of cracks, i.e., crescent-style grain boundary cracks along quartz–pyrite, or rarely along pyrite–pyrite boundaries, and intragranular radial cracks in early pyrite grains surrounding quartz clasts. The radial cracks are more or less perpendicular to the quartz–pyrite grain boundaries and do not show any overall (whole rock) orientation pattern. Their distribution, morphological characteristics, and geometrical relationships with quartz and pyrite grains suggest the predominant role of grain-scale cracking. Thermal expansion cracking is one of the most important mechanisms for the generation of open spaces during galena mineralization. Cracking due to heating or cooling by infiltrating fluids resulted from upwelling fluid phases through fluid passes connecting the SHO and LHO bodies, provided significant spaces for crystallization of galena. The differences in coefficients of thermal expansion between pyrite and quartz led to a difference in volume changes between quartz grains and pyrite grains surrounding them and contributed to cracking of the pyrite grains when temperature changed. Combined thermal expansion and elastic mismatch due to heating and subsequent cooling resulted in the radial and crescent cracking in the pyrite grains and along the quartz–pyrite grain boundaries.  相似文献   

14.
The Profitis Ilias gold deposit, located on the western part of Milos Island, Greece, is the first epithermal gold deposit discovered in the Pliocene–Pleistocene Aegean volcanic arc. Estimated ore reserves are 5 million tonnes grading 4.4 g/tonne Au and 43 g/tonne Ag. The deposit is closely associated with a horst and graben structure, and occurs in a series of steep interconnected crustiform-banded quartz veins up to 3 m wide, extending to depths of at least 300 m. The mineralisation occurs in three stages and is hosted by 3.5–2.5 Ma old silicified and sericitised rhyolitic lapilli-tuffs and ignimbrites. It consists of pyrite, galena, chalcopyrite, electrum and native gold. Additionally, adularia occurs with quartz mainly in veins. Homogenisation temperatures of primary liquid-rich inclusions vary from 145 to 399 °C for the ore stage, and 112 to 263 °C for the post-ore stage. Salinities range between 0.1 and 11.4 wt% NaCl equiv. and 0.93 to 8.5 wt% NaCl equiv. for the ore stage and the post-ore stage, respectively. Rare vapour-rich inclusions in ore stage quartz homogenise between 368 and 399 °C and estimates of eutectic melting (−25 to −38 °C) indicate the presence of Ca and Mg in the ore fluids. Sample elevation versus fluid inclusion Th–salinity relationships show (1) a high-salinity trend, where moderate-temperature (300–250 °C) and moderate-salinity brines (∼3 wt% NaCl equiv.) trend to high-salinity (up to 15 wt% NaCl equiv.) fluids with lower (∼25–50 °C) homogenisation temperatures, and (2) a high-Th trend where moderate-salinity and moderate-temperature brines (200–250 °C; 3 wt% NaCl equiv.) develop into low-salinity (<1 wt% NaCl equiv.), high-temperature (>350 °C) fluids. These trends are best explained by extreme boiling and vapourisation phenomena between 200 and 250 °C. The 430–450 m asl (metres above sea level) level marks the transition between a lower liquid-dominated segment of the system where only the steep high-salinity trend is seen, and an upper vapour-dominated segment where the high-Th trend or a combination of both are seen. There is a close spatial association between mineable gold grades and the upper segment of the system. Depth-to-boiling curves suggest that the paleo-surface was ∼200 m above the present summit of Profitis Ilias. Comparison of the mineralisation and fluid geochemistry at Profitis Ilias with that of the nearby modern geothermal system indicates that the processes of metal mineralisation have probably been continuous since the Late Pliocene. Received: 24 February 2000 / Accepted: 15 July 2000  相似文献   

15.
Abstract: The gold deposit at Ashanti occurs in the Proterozoic Birimian formation of Ghana. Two main ore types mined from the deposit are gold-bearing quartz veins, and gold-sulfide disseminations in metasediments and metavolcanics. The main sulfide minerals in the gold-sulfide disseminated ores are arsenopyrite, pyrite and pyrrhotite, and to a very minor extent, sphalerite and tetrahedrite. Carbonate alteration and sericitization are prominent in the metavolcanics and the metasediments, respectively. In the quartz veins, pyrite and arsenopyrite commonly occur in small amounts, but gold mostly occurs in contact with tetrahedrite, chalcopyrite, galena, aurostibite, and sphalerite. Pyrrhotite is absent in the quartz veins.
Microprobe studies indicate that As content of homogeneous arsenopyrite grains ranges from 27. 0 to 31. 7 atm%, and gives mineralization temperatures from 170 to 430°C, although mostly from 300 to 400°C. Chlorite geothermometry using temperature dependence of substitution of Al for Si in the tetrahedral site gives formation temeratures of 330 to 400°C, comparable to the arsenopyrite temperatures. Applying sphalerite–pyrite–pyrrhotite geobarometry to sphalerite with FeS contents from 13. 6 to 12. 5 mol%, the pressure was estimated to be in a range from 5. 9 to 7. 0 kb at the stage of elevated temperatures.
Mineralogical observations, especially absence of pyrrhotite in the quartz veins, together with microprobe data for gold and associated minerals suggest that the fluids having ascended through fissures in the Ashanti deposit were reduced by the reaction with carbonaceous materials in the metasediments during the declining stage of the regional metamorphism.  相似文献   

16.
Julietta is a rich epithermal gold-silver deposit of the low-sulfidation, adularia-sericite type, located in the Cretaceous Okhotsk-Chukchi volcanic-plutonic belt 250 km northeast of Magadan. The deposit was discovered in 1989 by a regional soil geochemical survey in an area previously considered barren on the basis of a regional stream-sediment survey. The deposit has not been completely explored, but presently is in the feasibility stage; proven reserves are 26 metric tons of Au (grades averaging 23 g/t) and the Au/Ag ratio is about 1:10.

The deposit occurs on the periphery of a large volcanic-tectonic depression. Host andesite, andesite-basalt lava, corresponding subvolcanic bodies, and tuff are cut by Early Cretaceous quartz diorite stocks. Six vein zones occur in tensional and compression fissures. Ore shoots and smaller bonanzas comprising most of the gold reserves are located in flexures of the ore-host fissures. Ore mineralization was preceded by intense voluminous propylitization and linear sericitization (sericite + quartz + pyrite + ankerite). Orebodies occur within the low-temperature propylite (pyrite + calcite + quartz + chlorite + hydromica). Colloform-crustiform banded textures are commonly observed in the ore. Most of the ore minerals occur within thin, cyclically repeated, fine-grained bands of a hydromica-carbonate-adularia-quartz aggregate. Ore-bearing, fine-grained bands probably formed by periodic fracturing of the veins, whereas barren bands were deposited in relatively quiet conditions. “Micro-stalactites” and other gravitational textures demonstrate that minerals grew in open spaces. Ore-host structures gradually opened during mineralization.

Gangue minerals are primarily quartz, various carbonates (calcite, dolomite, Fe-dolomite [Mg:Fe>2:1], parankerite [Mg: Fe = 2:1], ankerite [Mg: Fe = 1:1], and mesitite [Mg: Fe = 1:1]), and minor hydromica and adularia. Major ore minerals include pyrite, sphalerite, chalcopyrite, galena, tetrahedrite, silver sulfosalts, native gold, and custelite (Au: Ag = 9: 1). Ore mineralization occurred in two stages-an early, post-volcanic stage and a late, post-granitoid stage. The early stage contains most of the precious metals and includes two substages-(1) gold-polymetallic (200 to 260° C) and (2) gold-silver-sulfosalt (90 to 200° C). The late stage also includes two substages-(1) carbonate-rhodonite-quartz (260 to 380° C) and (2) postore quartz-carbonate. Fluid-inclusion homogenization temperatures demonstrate complex temperature zoning. Fluid composition was mainly aqueous, with Cl?, HCO3?, Na+, K+, Ca2 +, and a salinity less than 4 to 9%. The isotopic age of the deposit is 136 ± 3 Ma by the Rb-Sr method on adularia. The 87Sr/86Sr ratio is about 0.7075 ± 0.0005, indicating a mixed crust-mantle source of the vein matter. Chloride complexes transported gold and silver. The gas composition of the fluid suggests a near-surface, “closed” paleohydrothermal system. A major ore-forming factor could have been high seismic activity related to intrusion of the subvolcanic bodies. Breccias and multiphase veinlets may be related to relatively large-magnitude earthquakes, whereas cyclically banded ores may reflect local pH variations caused by smaller earthquakes.  相似文献   

17.
Ore mineralization and wall rock alteration of Crater Mountain gold deposit, Papua New Guinea, were investigated using ore and host rock samples from drill holes for ore and alteration mineralogical study. The host rocks of the deposit are quartz‐feldspar porphyry, feldspar‐hornblende porphyry, andesitic volcanics and pyroclastics, and basaltic‐andesitic tuff. The main ore minerals are pyrite, sphalerite, galena, chalcopyrite and moderate amounts of tetrahedrite, tennantite, pyrrhotite, bornite and enargite. Small amounts of enargite, tetradymite, altaite, heyrovskyite, bismuthinite, bornite, idaite, cubanite, native gold, CuPbS2, an unidentified Bi‐Te‐S mineral and argentopyrite occur as inclusions mainly in pyrite veins and grains. Native gold occurs significantly in the As‐rich pyrite veins in volcanic units, and coexists with Bi‐Te‐S mineral species and rarely with chalcopyrite and cubanite relics. Four mineralization stages were recognized based on the observations of ore textures. Stage I is characterized by quartz‐sericite‐calcite alteration with trace pyrite and chalcopyrite in the monomict diatreme breccias; Stage II is defined by the crystallization of pyrite and by weak quartz‐chlorite‐sericite‐calcite alteration; Stage III is a major ore formation episode where sulfides deposited as disseminated grains and veins that host native gold, and is divided into three sub‐stages; Stage IV is characterized by predominant carbonitization. Gold mineralization occurred in the sub‐stages 2 and 3 in Stage III. The fS2 is considered to have decreased from ~10?2 to 10?14 atm with decreasing temperature of fluid.  相似文献   

18.
The vein system in the Arinem area is a gold‐silver‐base metal deposit of Late Miocene (8.8–9.4 Ma) age located in the southwestern part of Java Island, Indonesia. The mineralization in the area is represented by the Arinem vein with a total length of about 5900 m, with a vertical extent up to 575 m, with other associated veins such as Bantarhuni and Halimun. The Arinem vein is hosted by andesitic tuff, breccia, and lava of the Oligocene–Middle Miocene Jampang Formation (23–11.6 Ma) and overlain unconformably by Pliocene–Pleistocene volcanic rocks composed of andesitic‐basaltic tuff, tuff breccia and lavas. The inferred reserve is approximately 2 million tons at 5.7 g t?1 gold and 41.5 g t?1 silver at a cut‐off of 4 g t?1 Au, which equates to approximately 12.5t of Au and 91.4t of Ag. The ore mineral assemblage of the Arinem vein consists of sphalerite, galena, chalcopyrite, pyrite, marcasite, and arsenopyrite with small amounts of pyrrhotite, argentite, electrum, bornite, hessite, tetradymite, altaite, petzite, stutzite, hematite, enargite, tennantite, chalcocite, and covellite. These ore minerals occur in quartz with colloform, crustiform, comb, vuggy, massive, brecciated, bladed and calcedonic textures and sulfide veins. A pervasive quartz–illite–pyrite alteration zone encloses the quartz and sulfide veins and is associated with veinlets of quartz–calcite–pyrite. This alteration zone is enveloped by smectite–illite–kaolinite–quartz–pyrite alteration, which grades into a chlorite–smectite–kaolinite–calcite–pyrite zone. Early stage mineralization (stage I) of vuggy–massive–banded crystalline quartz‐sulfide was followed by middle stage (stage II) of banded–brecciated–massive sulfide‐quartz and then by last stage (stage III) of massive‐crystalline barren quartz. The temperature of the mineralization, estimated from fluid inclusion microthermometry in quartz ranges from 157 to 325°C, whereas the temperatures indicated by fluid inclusions from sphalerite and calcite range from 153 to 218 and 140 to 217°C, respectively. The mineralizing fluid is dilute, with a salinity <4.3 wt% NaCl equiv. The ore‐mineral assemblage and paragenesis of the Arinem vein is characteristically of a low sulfidation epithermal system with indication of high sulfidation overprinted at stage II. Boiling is probably the main control for the gold solubility and precipitation of gold occurred during cooling in stage I mineralization.  相似文献   

19.
桂西那弱银金矿床矿物组合特征及银和金的赋存状态研究   总被引:2,自引:1,他引:1  
广西天峨那弱银金矿床以银矿为主,共/伴生金及铅、锌、锑等金属,矿物组合在右江盆地内为首次发现。矿体受那弱背斜及其轴向断层控制,赋矿层位为中三叠统百逢组含钙质浊积岩系。矿石矿物以硫锑铅矿、铁闪锌矿、黄铁矿、毒砂和方铅矿为主;脉石矿物主要有石英、方解石、绢云母等。主要矿石矿物由早到晚的生成顺序为:毒砂→黄铁矿→铁闪锌矿→硫锑铅矿→方铅矿。单矿物化学分析显示硫锑铅矿含Ag最高,其次为闪锌矿;黄铁矿含Au相对较高。EPMA测试结果表明Ag于方铅矿中含量最高,其次为硫锑铅矿;主要矿石矿物中毒砂含Au相对较高,其余矿物中Au含量均偏低。因矿石中的铅矿物主要为硫锑铅矿,可以认为那弱银金矿床的Ag主要赋存于硫锑铅矿中,Au主要赋存于毒砂与黄铁矿中,二者均以显微-次显微状态赋存于载体矿物中。根据矿物组合及其相互交代、切割关系等特征,将矿床划分为2个成矿期共4个成矿阶段。其中,第一成矿期为金的成矿期,矿物组合为黄铁矿和毒砂,由于后期成矿作用的叠加,仅保留一个成矿阶段;第二成矿期为银铅锌成矿期,矿物组合为方铅矿-闪锌矿-硫锑铅矿;包含第二至第四共3个完整的成矿阶段。该矿床Ag、Au共生是不同期次成矿作用叠加的结果。  相似文献   

20.
The Dungash historic gold mine is located in the South Eastern Desert of Egypt. The gold-bearing quartz veins are hosted by the metavolcanic and metavolcaniclastic rocks along an ENE–WSW trending shear zone. Alteration types recorded in the wall rocks are sericitization, silicification, carbonatization, chloritization, sulfidization, ferruginization, and listwanitization. The ore mineral assemblage comprises arsenopyrite, pyrite, native gold, pyrrhotite, sphalerite, chalcopyrite, and galena. The primary sulfide mineral assemblage formed during a hypogene hydrothermal stage whereas anglesite and goethite occur as secondary supergene phases. Microthermometric fluid inclusion analysis revealed that the auriferous quartz precipitated from a moderately saline (5 to 11.22 wt% NaClequiv) solution at temperatures above the recorded homogenization temperatures (T h), which range from 380 to 177 °C. The minimum pressures of trapping are between 350 and 400 bars. The fluid evolution during mineralization is explained by mixing of a magmatic fluid with meteoric waters. Initially, the high temperature and moderately saline magmatic fluid dominated and progressively became diluted with meteoric waters. Highest gold content is recorded in the carbonatized zone and the quartz veins. However, gold content in the carbonatized zone of the footwall exceeds several times its content in the quartz veins and the carbonatized zone of the hanging wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号