首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Projected production responses were derived for confined swine and beef and for milk-producing dairy cattle based on climate change projections in daily ambient temperature. Milk production from dairy cattle and the number of days to grow swine and beef cattle were simulated. Values were obtained for three central United States transects and three climate scenarios which were based on projected mean daily ambient temperatures associated with a baseline, doubling, and tripling of atmospheric greenhouse gas (CO2) levels for the period June 1 to October 31. For swine, a slight northwest to southeast gradient is evident. Transect 1 (west side) shows no losses under the doubling scenario and losses up to 22.4% under the tripling scenario. Transect 3 (east side) displays losses of over 70% under the tripling scenario. For beef, positive benefits were simulated in Transect 1 with increasing temperatures, although a northwest to southeast gradient was also evident. For dairy, no positive benefits in milk production were found due to climate effects. Projected production declines ranged from 1% to 7.2%, depending on location. However, ranges in predicted differences were less than those simulated for beef and swine. These simulations suggest regional differences in animal production due to climate change will be apparent. For small changes in climate conditions, animals will likely be able to adapt, while larger changes in climate conditions will likely dictate that management strategies be implemented. Exploration of the effects of climate changes on livestock should allow producers to adjust management strategies to reduce potential impact and economic losses due to environmental changes.  相似文献   

2.
Potential impact of climate change on marine dimethyl sulfide emissions   总被引:1,自引:0,他引:1  
Dimethyl sulfide (DMS) is a biogenic compound produced in sea-surface water and outgased to the atmosphere. Once in the atmosphere, DMS is a significant source of cloud condensation nuclei in the unpolluted marine atmosphere. It has been postulated that climate may be partly modulated by variations in DMS production through a DMS-cloud condensation nuclei-albedo feedback. We present here a modelled estimation of the response of DMS sea-water concentrations and DMS fluxes to climate change, following previous work on marine DMS modeling ( Aumont et al., 2002 ) and on the global warming impact on marine biology ( Bopp et al., 2001 ). An atmosphere–ocean general circulation model (GCM) was coupled to a marine biogeochemical scheme and used without flux correction to simulate climate response to increased greenhouse gases (a 1% increase per year in atmospheric CO2 until it has doubled). The predicted global distribution of DMS at  1 × CO2  compares reasonably well with observations; however, in the high latitudes, very elevated concentrations of DMS due to spring and summer blooms of Phaeocystis can not be reproduced. At  2 × CO2  , the model estimates a small increase of global DMS flux to the atmosphere (+2%) but with large spatial heterogeneities (from −15% to +30% for the zonal mean). Mechanisms affecting DMS fluxes are changes in (1) marine biological productivity, (2) relative abundance of phytoplankton species and (3) wind intensity. The mean DMS flux perturbation we simulate represents a small negative feedback on global warming; however, the large regional changes may significantly impact regional temperature and precipitation patterns.  相似文献   

3.
There is a growing concern that countries should reduce their dependence on fossil fuels for electricity generation and look to other cleaner technologies. Hydroelectricity is one such option. However, given that hydropower is dependent on rainfall and associated runoff for power generation, it is susceptible to both the positive and negative impacts of climate change, such as increases in temperature and changes in precipitation and runoff. In this paper, impacts on hydropower generation have been organised as either changes in long-term trends or short-term variability and shocks. These impacts could either manifest themselves as direct impacts on hydropower generation potential or as indirect impacts (or ancillary impacts) such as increased competition for water. Citing examples from around the world, this paper investigates the scale of these projected impacts, and the potential cost implication of inaction. It concludes by making recommendations for possible adaptive options to build resilience in response to local impacts.  相似文献   

4.
The potential effect of climate change on durum wheat in Tunisia is assessed using a simple crop simulation model and a climate projection for the 2071–2100 period, obtained from the Météo-France ARPEGE-Climate atmospheric model run under the IPCC (International Panel on Climate Change) scenario A1B. In the process-oriented crop model, phenology is estimated through thermal time. Water balance is calculated on a daily basis by means of a simple modelling of actual evapotranspiration involving reference evapotranspiration, crop coefficients and some basic soil characteristics. The impact of crop water deficit on yield is accounted for through the linear crop-water production function developed by the FAO (Food and Agriculture Organization of the United Nations). Two stations are chosen to study the climate change effect. They are representative of the main areas where cereals are grown in Tunisia: Jendouba in the northern region and Kairouan in the central region. In the future scenario, temperature systematically increases, whereas precipitation increases or decreases depending on the location and the period of the year. Mean annual precipitation declines in Jendouba and raises in Kairouan. Under climate change, the water conditions needed for sowing occur earlier and cycle lengths are reduced in both locations. Crop water deficit and the corresponding deficit in crop yield happen to be slightly lower in Kairouan; conversely, they become higher in Jendouba.  相似文献   

5.
There is considerable interest in the potential impact of climate change on the feasibility and predictability of renewable energy sources including wind energy. This paper presents dynamically downscaled near-surface wind fields and examines the impact of climate change on near-surface flow and hence wind energy density across northern Europe. It is shown that: Simulated wind fields from the Rossby Centre coupled Regional Climate Model (RCM) (RCAO) with boundary conditions derived from ECHAM4/OPYC3 AOGCM and the HadAM3H atmosphere-only GCM exhibit reasonable and realistic features as documented in reanalysis data products during the control period (1961–1990). The near-surface wind speeds calculated for a climate change projection period of 2071–2100 are higher than during the control run for two IPCC emission scenarios (A2, B2) for simulations conducted using boundary conditions from ECHAM4/OPYC3. The RCAO simulations conducted using boundary conditions from ECHAM4/OPYC3 indicate evidence for a small increase in the annual wind energy resource over northern Europe between the control run and climate change projection period and for more substantial increases in energy density during the winter season. However, the differences between the RCAO simulations for the climate projection period and the control run are of similar magnitude to differences between the RCAO fields in the control period and the NCEP/NCAR reanalysis data. Additionally, the simulations show a high degree of sensitivity to the boundary conditions, and simulations conducted using boundary conditions from HadAM3H exhibit evidence of slight declines or no change in wind speed and energy density between 1961–1990 and 2071–2100. Hence, the uncertainty of the projected wind changes is relatively high.  相似文献   

6.
Modeling the effects of climate change on water resources - a review   总被引:5,自引:0,他引:5  
Hydrologic models provide a framework in which to conceptualize and investigate the relationships between climate and water resources. A review of current studies that assess the impacts of climate change using hydrologic models indicates a number of problem areas common to the variety of models applied. These problem areas include parameter estimation, scale, model validation, climate scenario generation, and data. Research needs to address these problems include development of (1) a more physically based understanding of hydrologic processes and their interactions; (2) parameter measurement and estimation techniques for application over a range of spatial and temporal scales; (3) quantitative measures of uncertainty in model parameters and model results; (4) improved methodologies of climate scenario generation; (5) detailed data sets in a variety of climatic and physiographic regions; and (6) modular modeling tools to provide a framework to facilitate interdisciplinary research. Solutions to these problems would significantly improve the capability of models to assess the effects of climate change.The U.S. Government right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

7.
分析气候变化对动物分布的影响,对气候变化影响下保护生物多样性具有重要的意义。利用CART(classification and regression tree,分类和回归树)生态位模型,采用A1、A2、B1和B2气候变化情景,模拟分析了气候变化对我国滇金丝猴分布范围及空间格局的影响趋势。结果显示:气候变化后,滇金丝猴目前适宜分布范围将减小,新适宜及总适宜范围将扩大,在1991-2020年时段较大,从1991-2020年时段到2081-2100年时段随气候变化时间段延长而逐渐缩小,其中A1情景下变化最大,B1情景下变化最小。气候变化后,滇金丝猴目前适宜分布区东北部及南部适宜范围将缩小,西部和西北及东南部适宜范围将扩大。气候变化后,滇金丝猴目前适宜、新适宜和总适宜分布区范围与我国年均气温和年降水量变化呈负相关。多元回归分析表明,滇金丝猴目前适宜、新适宜和总适宜分布范围均随我国年均气温升高和年降水量增加而减少,其中气温变化影响比降水量变化影响大。因此,气候变化后,近期将使滇金丝猴目前分布适宜分布范围减少,新适宜分布范围将扩大,随气候变化程度增强,新适宜及总适宜分布范围都将减小。  相似文献   

8.
We estimated how the possible changes in wind climate and state of the forest due to climate change may affect the probability of exceeding critical wind speeds expected to cause wind damage within a forest management unit located in Southern Sweden. The topography of the management unit was relatively gentle and the forests were dominated by Norway spruce (Picea abies (L.) Karst.). We incorporated a model relating the site index (SI) to the site productivity into the forest projection model FTM. Using estimated changes in the net primary production (NPP) due to climate change and assuming a relative change in NPP equal to a relative change in the site productivity, we simulated possible future states of the forest under gradual adjustment of SI in response to climate change. We estimated changes in NPP by combining the boreal-adapted BIOMASS model with four regional climate change scenarios calculated using the RCAO model for the period 2071–2100 and two control period scenarios for the period 1961–1990. The modified WINDA model was used to calculate the probability of wind damage for individual forest stands in simulated future states of the forest. The climate change scenarios used represent non-extreme projections on a 100-year time scale in terms of global mean warming. A 15–40% increase in NPP was estimated to result from climate change until the period 2071–2100. Increasing sensitivity of the forest to wind was indicated when the management rules of today were applied. A greater proportion of the calculated change in probability of wind damage was due to changes in wind climate than to changes in the sensitivity of the forest to wind. While regional climate scenarios based on the HadAM3H general circulation model (GCM) indicated no change (SRES A2 emission scenario) or a slightly reduced (SRES B2 emission scenario) probability of wind damage, scenarios based on the ECHAM4/OPYC3 GCM indicated increased probability of wind damage. The assessment should, however, be reviewed as the simulation of forest growth under climate change as well as climate change scenarios are refined.  相似文献   

9.
The EU project BALANCE (Global Change Vulnerabilities in the Barents region: Linking Arctic Natural Resources, Climate Change and Economies) aims to assess vulnerability to climate change in the Barents Sea Region. As a prerequisite the potential impact of climate change on selected ecosystems of the study area has to be quantified, which is the subject of the present paper. A set of ecosystem models was run to generate baseline and future scenarios for 1990, 2020, 2050 and 2080. The models are based on data from the Regional Climate Model (REMO), driven by a GCM which in turn is forced by the IPCC-B2 scenario. The climate change is documented by means of the Köppen climate classification. Since the multitude of models requires the effect of climate change on individual terrestrial and marine systems to be integrated, the paper concentrates on a standardised visualisation of potential impacts by use of a Geographical Information System for the timeslices 2050 and 2080. The resulting maps show that both terrestrial and marine ecosystems of the Barents region will undergo significant changes until both 2050 and 2080.  相似文献   

10.
Afforestation is usually thought as a good approach to mitigate impacts of warming over a region. This study presents an argument that afforestation may have bigger impacts than originally thought by previous studies. The study investigates the impacts of afforestation on future climate and extreme events in Nigeria, using a regional climate model (RegCM3), forced with global climate model simulations. The impacts of seven afforestation options on the near future (2031–2050, under A1B scenario) climate and the extreme events are investigated. RegCM3 replicates essential features in the present-day (1981–2000) climate and the associated extreme events, and adequately simulates the seasonal variations over the ecological zones in the country. However, the model simulates the seasonal climate better over the northern ecological zones than over the southern ecological zones. The simulated spatial distribution of the extreme events agrees well with the observation, though the magnitude of the simulated events is smaller than the observed. The study shows that afforestation in Nigeria could have both positive and negative future impacts on the climate change and extreme events in the country. While afforestation reduces the projected global warming and enhances rainfall over the afforested area (and over coastal zones), it enhances the warming and reduces the rainfall over the north-eastern part of the country. In addition, the afforestation induces more frequent occurrence of extreme rainfall events (flooding) over the coastal region and more frequent occurrence of heat waves and droughts over the semi-arid region. The positive and negative impacts of the afforestation are not limited to Nigeria; they extend to the neighboring countries. While afforestation lowers the warming and enhances rainfall over Benin Republic, it increases the warming and lowers the rainfall over Niger, Chad and Cameroon. The result of the study has important implication for the ongoing climate change mitigation and adaptation efforts in Nigeria.  相似文献   

11.
12.
We evaluated the potential impact of future climate change on spring maize and single-crop rice in northeastern China(NEC) by employing climate and crop models. Based on historical data, diurnal temperature change exhibited a distinct negative relationship with maize yield, whereas minimum temperature correlated positively to rice yield. Corresponding to the evaluated climate change derived from coupled climate models included in the Coupled Model Intercomparison Project Phase 5(CMIP5) under the Representative Concentration Pathway 4.5 scenario(RCP4.5), the projected maize yield changes for three future periods [2010–39(period 1), 2040–69(period 2), and 2070–99(period 3)] relative to the mean yield in the baseline period(1976–2005) were 2.92%, 3.11% and 2.63%, respectively. By contrast, the evaluated rice yields showed slightly larger increases of 7.19%, 12.39%, and 14.83%, respectively. The uncertainties in the crop response are discussed by considering the uncertainties obtained from both the climate and the crop models. The range of impact of the uncertainty became markedly wider when integrating these two sources of uncertainty. The probabilistic assessments of the evaluated change showed maize yield to be relatively stable from period 1 to period 3, while the rice yield showed an increasing trend over time. The results presented in this paper suggest a tendency of the yields of maize and rice in NEC to increase(but with great uncertainty) against the background of global warming, which may offer some valuable guidance to government policymakers.  相似文献   

13.
Effects of climate on numbers of northern prairie wetlands   总被引:4,自引:1,他引:4  
The amount of water held in individual wetland basins depends not only on local climate patterns but also on groundwater flow regime, soil permeability, and basin size. Most wetland basins in the northern prairies hold water in some years and are dry in others. To assess the potential effect of climate change on the number of wetland basins holding water in a given year, one must first determine how much of the variability in number of wet basins is accounted for by climatic variables. I used multiple linear regression to examine the relationship between climate variables and percentage of wet basins throughout the Prairie Pothole Region of Canada and the United States. The region was divided into three areas: parkland, Canadian grassland, and United States grassland (i.e., North Dakota and South Dakota). The models - which included variables for spring and fall temperature, yearly precipitation, the previous year's count of wet basins, and for grassland areas, the previous fall precipitation - accounted for 63 to 65% of the variation in the number of wet basins. I then explored the sensitivities of the models to changes in temperature and precipitation, as might be associated with increased greenhouse gas concentrations. Parkland wetlands are shown to be much more vulnerable to increased temperatures than are wetlands in either Canadian or United States grasslands. Sensitivity to increased precipitation did not vary geographically. These results have implications for waterfowl and other wildlife populations that depend on availability of wetlands in the parklands for breeding or during periods of drought in the southern grasslands.The U.S. Government right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

14.
15.
On the island of Ameland (The Netherlands), natural gas has been extracted from a dune and salt marsh natural area since 1986. This has caused a soil subsidence of c. 1–25?cm, which can be used as a model to infer effects of future sea level rise. The aims of our study were (a) to relate the changes in the vegetation, and more specifically, in plant diversity, during the extraction period to soil subsidence and weather fluctuations, and (b) to use these relations to predict future changes due to the combination of ongoing soil subsidence and climate change. We characterised climate change as increases in mean sea level, storm frequency and net precipitation. Simultaneous observations were made of vegetation composition, elevation, soil chemistry, net precipitation, groundwater level, and flooding frequency over the period 1986–2001. By using multiple regression the changes in the vegetation could be decomposed into (1) an oscillatory component due to fluctuations in net precipitation, (2) an oscillatory component due to incidental flooding, (3) a monotonous component due to soil subsidence, and (4) a monotonous component not related to any measured variable but probably due to eutrophication. The changes were generally small during the observation period, but the regression model predicts large changes by the year 2100 that are almost exclusively due to sea level rise. However, although sea level rise is expected to cause a loss of species, this does not necessarily lead to a loss of conservancy value.  相似文献   

16.
We evaluated the potential effects of two climate change scenarios on salmonid habitats in the Yakima River by linking the outputs from a watershed model, a river operations model, a two-dimensional (2D) hydrodynamic model, and a geographic information system (GIS). The watershed model produced a discharge time series (hydrograph) in two study reaches under three climate scenarios: a baseline (1981–2005), a 1-°C increase in mean air temperature (plus one scenario), and a 2-°C increase (plus two scenario). A river operations model modified the discharge time series with Yakima River operational rules, a 2D model provided spatially explicit depth and velocity grids for two floodplain reaches, while an expert panel provided habitat criteria for four life stages of coho and fall Chinook salmon. We generated discharge-habitat functions for each salmonid life stage (e.g., spawning, rearing) in main stem and side channels, and habitat time series for baseline, plus one (P1) and plus two (P2) scenarios. The spatial and temporal patterns in salmonid habitats differed by reach, life stage, and climate scenario. Seventy-five percent of the 28 discharge-habitat responses exhibited a decrease in habitat quantity, with the P2 scenario producing the largest changes, followed by P1. Fry and spring/summer rearing habitats were the most sensitive to warming and flow modification for both species. Side channels generally produced more habitat than main stem and were more responsive to flow changes, demonstrating the importance of lateral connectivity in the floodplain. A discharge-habitat sensitivity analysis revealed that proactive management of regulated surface waters (i.e., increasing or decreasing flows) might lessen the impacts of climate change on salmonid habitats.  相似文献   

17.
18.
A gap-typed forest dynamic model KOPIDE was used to assess the dynamic responses of a mixed broadleaved-Korean pine forest stand to climate change in northeastern China. The GFDL climate change scenario was applied to derive the changes in environmental variables, such as 10 °C based DEGD and PET/P, which were used to implement the model. The simulation result suggests that the climate change would cause important changes in stand structure. Korean pine, the dominant species in the area under current climate conditions, would disappear under the GFDL equilibrium scenario. Oak and elm would become the dominant species replacing Korean pine, ash and basswood. Such a potential change in forest structure would require different strategies for forest management in northeastern China.  相似文献   

19.
The potential hydrologic impact of climatic change on three sub-basins of the South Saskatchewan River Basin (SSRB) within Alberta, namely, Oldman, Bow and Red Deer River basins was investigated using the Modified Interactions Soil-Biosphere-Atmosphere (MISBA) land surface scheme of Kerkhoven and Gan (Advances in Water Resources 29:808–826 2006). The European Centre for Mid-range Weather Forecasts global re-analysis (ERA-40) climate data, Digital Elevation Model of the National Water Research Institute, land cover data and a priori soil parameters from the Ecoclimap global data set were used to drive MISBA to simulate the runoff of SSRB. Four SRES scenarios (A21, A1FI, B21 and B11) of four General Circulation Models (CCSRNIES, CGCM2, ECHAM4 and HadCM3) of IPCC were used to adjust climate data of the 1961–1990 base period (climate normal) to study the effect of climate change on SSRB over three 30-year time periods (2010–2039, 2040–2069, 2070–2099). The model results of MISBA forced under various climate change projections of the four GCMs with respect to the 1961–1990 normal show that SSRB is expected to experience a decrease in future streamflow and snow water equivalent, and an earlier onset of spring runoff despite of projected increasing trends in precipitation over the 21st century. Apparently the projected increase in evaporation loss due to a warmer climate over the 21st century will offset the projected precipitation increase, leading to an overall decreasing trend in the basin runoff of SSRB. Finally, a Gamma probability distribution function was fitted to the mean annual maximum flow and mean annual mean flow data simulated for the Oldman, Bow and Red Deer River Basins by MISBA to statistically quantify the possible range of uncertainties associated with SRES climate scenarios projected by the four GCMs selected for this study.  相似文献   

20.
气候变化对环境与健康影响研究进展   总被引:10,自引:12,他引:10       下载免费PDF全文
气候变化对环境与健康的影响日益受到关注。分析了气候变化对大气环境、水环境和土壤环境的胁迫效应,阐述了气候变化对生态系统和人体健康的影响,并概述了气候变化对不同介质环境以及对生态系统与人体健康影响研究的进展。这一工作可以为今后气象与环境领域开展进一步研究提供基本框架。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号