首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
吉林省层状云中过冷水含量分布特征及人工增雨潜力研究   总被引:3,自引:0,他引:3  
2001~2002年在实施人工增雨作业的同时利用美国粒子测量系统,对吉林省5~7月降水性层状云进行了科研探测。通过对探测资料的分析。得到以下结论:(1)吉林省的降水性层状云主要分为3种云型:雨层云降水、蔽光高层云一层积云降水、透光高层云降水。其中雨层云中过冷水含量最大;(2)云中过冷水含量与云底高度为负相关,与过冷层厚度为正相关;(3)3种云型中距0℃层高度以上400~600m高度范围内过冷水含量达最大;(4)3种云型的可播度为86%。雨层云的人工增雨潜力为最大。  相似文献   

2.
于建华  王湘玉 《气象》2007,33(S1):51-55
通过利用美国粒子测量系统(PMS),对内蒙古东部2001—2002年5—7月降水性层状云进行的科研探测。经过对探测资料分析得出以下结论:(1)内蒙古东部的降水性层状云主要分为三种云型:雨层云降水、蔽光高层云-层积云降水、透光高层云降水。其中雨层云中过冷水含量最大;(2)云中过冷水含量与云底高度为负相关,与过冷层厚度为正相关;(3)三种云型中距0℃层高度以上400?600m高度范围内过冷水含量达最大;(4)三种云型的可播庋为雨层云的人工增雨潜力为最大。(5)在过冷水含量大值区,垂直于高空风做“U”型水平播撒。  相似文献   

3.
吉林省春季降水性层状云基本结构及降水潜力的初步研究   总被引:5,自引:0,他引:5  
2001年、2002年利用美国粒子测量系统(PMS)对吉林省5~7月降水性层状云在实施人工增雨作业的同时进行了科研探测,取得了一批资料,对这些资料进行计算后得到以下结论: (1)吉林省春季降水性层状云宏观结构主要分为三种云型即:Ns、As op-Sc op、Astra。 (2)不同云型其云中过冷水含量、云滴数密度不同,其中Ns云型的云中过冷水含量、云滴数密度最大,分别达到0.2737g/m^3、205.3个/L,其次是Asop-Sc op云层,其过冷水含量、云滴数密度分别为0.1693g/m^3、117.5个/L,过冷水含量、云滴数密度最小的云层结构为Astra,分别为0.1054 g/m^3、98.6个/L。 (3)云中过冷水含量与云底高度为负相关,与过冷层厚度为正相关. (4)三种云型的云中过冷水含量、云滴数密度距0℃层高度的分布基本一致:在距0℃层高度以上400-600m高度范围内过冷水含量、云滴数密度达最大,之后随着距0℃层高度的增加云中过冷水含量、云滴数密度迅速减小。 (5)吉林省春季降水性层状云的可播度为86%;三种云型的人工降水潜力有所不同,即:Ns云型潜力最大,达41.3%,其次是As op-Sc op云型潜力为28.4%,潜力最小的云型为As tra,为26.6%。  相似文献   

4.
刘健  于勇  蒋彤 《吉林气象》2004,(3):9-11
2001年、2002年利用美国粒子测量系统(PMS)对我省5—7月的降水性层状云在实施人工增雨作业的同时进行了科研探测,共取得完整资料13份,其中2001年为9份,2002年为4份,对这些资料进行分析后得到以下结论:1.不同云层的配置其云中过冷水含量不同,即:垂直结构为Ns的云层中其过冷水含量最大,达到0.2737g/m^3,其次是Asop—Scop云层,其过冷水含量为0.1693g/m^3,过冷水含量最小的云层结构为Astra云层。过冷水含量为0.1054g/m^3。2.云中过冷水含量与云底高度和过冷层厚度有关,即:云底高度愈低,过冷层愈厚其过冷水含量越大。3.三种云型的云中过冷水含量距0℃层高度的分布为:在距0℃层高度以上400—600m高度范围内过冷水含量达最大,之后随着距0℃层高度的增加云中过冷水含量迅速减小。4.吉林省层状冷云人工增雨可播度为86%。5.在过冷水含量大值区,垂直于高空风做“U”型水平播撒。  相似文献   

5.
利用山西省2008—2010年64架次云结构的飞机探测资料,结合地面观测和卫星数据统计分析了层状云系的宏微观特征。结果表明:降水云和非降水云系的微物理特征量,两者存在显著的差异,层状云要达到降水,云的厚度要达到近2000m;粒子尺度分布云粒子有效半径要达到10~14μm,降水性层状云低云含水量垂直方向上平均为0.03g/m3,中云含水量垂直方向上平均为0.05g/m3,;避光高层云-层积云、雨层云降水过冷水的最大值出现在距0℃层高度以上500m附近,其最大值分别为0.61,0.42g/m3;透光高层云降水过冷水的最大值出现在距0℃层高度以上300m附近,其值为0.28g/m3;云中水分按不同粒子尺度的分配可以看出,直径20、30μm的粒子含水量较高,对云中液态水含量的贡献较大,降水粒子主要由20、30μm的粒子转化;降水性层状云在垂直方向上的微物理结构特征非常明显,也是分层的。高层主要是冰相粒子,是冰雪晶,随高度降低冰雪晶的尺度增大,在4个典型温度层的观测中,液态含水量、云粒子及降水的浓度、尺度相较有很大不同。  相似文献   

6.
切变线降水系统微物理特征及隆水机制个例分析   总被引:2,自引:0,他引:2  
利用机载云粒子探测系统(PMS).对2004年7月1日影响吉林省的一次切变线降水过程进行了探测飞行,利用所获取的宏微观资料对此次降水过程的微物理结构、降水机制进行综合分析.结果表明:此次切变线降水云系主要由高层云、雨层云、碎云构成,高层云和雨层云中间夹有1100m左右的无云区;3类云中平均云滴浓度、平均云滴直径各不相同;云水含量随高度分布不均匀,云的不同部位云水含量起伏较大;冰晶浓度平均为17.3个/L;此次探测的降水云系符合Bergeron提出的催化云一供水云相互作用导致降水的概念.根据云图及其他探测资料综合分析,冰晶主要产生于高层云上部或卷层云的冰晶播撒,供水云为高层云中下部和雨层云.  相似文献   

7.
为分析层状云垂直微物理结构,了解雷达参数特征,揭示降水机制,利用机载Ka波段云雷达和DMT(Droplet Measurement Technologies)粒子测量系统,针对2019年11月17日山东冷锋层状云系开展从云顶至云底的垂直探测。结果表明:观测云层由高层云(3100~4500 m高度)和雨层云(800 ~2600 m高度)两部分组成。高层云过冷水含量较低,平均值为0.0026 g·m-3,最大值为0.008 g·m-3,云内冰晶通过水汽凝华增长,平均浓度为8.2 L-1,最大直径为900 μm,平衡谱状态下冰晶浓度与雷达反射率因子具有较好相关性,相关系数最大为0.84。雨层云过冷水含量丰富,最大含水量为0.354 g·m-3,过冷水区平均雷达反射率因子为7.48 dBZ,多普勒速度为-2.3 m·s-1,速度谱宽为0.7 m·s-1;雨层云中上部以冰晶为主,下部为暖区融化粒子,冰晶通过凇附过程增长,平均浓度为208 L-1,最大直径为450 μm;雷达反射率因子随高度降低至1500 m不断增大,在1200~1500 m高度保持不变,1200 m高度以下减小,未出现明显0℃亮带,速度谱宽随高度降低增大。  相似文献   

8.
陕西关中地区层状云降水及雷达特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
李金辉  罗俊颉  梁谷  田显  陈保国 《高原气象》2010,29(6):1571-1578
作为人工增雨的一项基础工作,利用陕西关中地区宝鸡等3个雷达站附近共12个气候站1998-2007年2~11月的降水及雷达实测资料,分析了该地区的层状云降水及雷达回波特征。结果表明,(1)关中地区人工增雨的适宜时段为每年的2月5日~11月15日;(2)对层状云降雨的天气形势和雷达回波进行了分类;(3)统计分析了宝鸡雷达站稳定性层状云降雨和混合性层状云降雨雷达回波的最大回波强度、回波顶高度、冷层厚度、暖层厚度、融化层厚度、融化层高度等特征;(4)春、秋季稳定性层状云及混合性层状云冷层厚度大于暖层厚度一倍以上,云层中水汽条件较好,更适合人工增雨作业。  相似文献   

9.
2004年空基微波辐射计在吉林省探测分析   总被引:1,自引:0,他引:1  
本文利用2004年4—7月吉林省人工增雨期间.空基微波辐射计所取探测资料,结合卫星、雷达、GPS和温湿度探测仪等探测手段,测得吉林省春季各种可实施人工增雨作业的云型的过冷水含量,得出一些有价值的结果,为人工增雨提供科学依据。  相似文献   

10.
层状云结构和降水机制研究及人工增雨问题讨论   总被引:1,自引:0,他引:1  
总结了层状云及其降水物理研究的部分成果。在此基础上, 讨论了层状云人工增雨的几个问题, 提出用常规观测资料判断人工增雨条件的方法。具体结果如下:层状云结构是不均匀的。层状云系在垂直方向上具有分层结构。“催化—供给”云是降水性层状云的典型结构, “催化—供给”云相互作用是导致降水的主要过程。按微观结构可以将降水性层状云分成3 层:冰相层、冰水混合层和液水层。冰相层是催化云, 冰水混合层和液水层是供给云。层状云降水过程研究表明, 对应于层状云或“催化—供给”云的3层宏观结构, 发生着不同的微物理过程, 粒子形成和增长过程也不同。冰相层的冰晶和雪, 凝华是其主要增长方式, 其次是雪与冰晶的聚合过程;雪(或聚合体)落入冰水混合层后, 继续通过凝华增长或贝吉龙过程增长, 同时撞冻过冷云水增长, 有部分冰雪晶通过撞冻增长而转化成霰。在液水层, 雪(或聚合体)霰开始融化, 同时收集云暖区云水增长。冰相粒子的撞冻增长过程和凝华增长过程相比同样重要。层状云各层对降水的贡献不同。一般而言, 对于“催化—供给”云, 催化云对降水的贡献低于30%, 供给云在70%以上。在以上研究的基础上, 讨论了层状云人工增雨的问题。(1)“催化—供给”云结构有利于云水转化成降水, 只有冰相层、冰水混合成和液水层相互“配合”, 才能形成有效降水。可以将“催化—供给”云作为层状云人工增雨催化的结构条件。(2)要选择降水形成以冷云过程为主的层状云催化, 冰面饱和水汽量和过冷水含量要大些。(3)层状云人工增雨原理应该补充。降水形成不但经历贝吉龙-芬德森过程, 冰水混合层的聚合和撞冻增长也是十分重要的过程。过冷水对于降水的形成非常重要, 但冰面饱和水汽量对降水的形成也同样重要。最后, 结合层状云的研究成果, 提出用常规探测资料判别层状云人工增雨催化条件的方法:利用卫星云图和雷达回波判别“催化—供给”云的结构, 用雷达RHI 回波(在距离高度显示器上的回波)判别降水机制和液水层。    相似文献   

11.
对典型飞机作业过程中云宏、微观物理特征的分析,有利于提高对云体的认识,为本地科学开展人工增雨作业提供技术支撑。利用2018年5月10日内蒙古中部地区一次飞机增雨探测资料及探空资料,对层状云降水微物理特征进行分析。受500 hPa高空槽与河套气旋影响,5月10日内蒙古中部地区形成稳定性层状云降水。降水性层状云中下部降水粒子、云粒子数浓度均较小,且云微物理量的垂直、水平分布均表现出明显的不均匀性,云粒子谱型呈单峰分布,总体上呈递减趋势;作业过程中63.53%的云水含量大于0.002 g·m^(-3),83.2%的过冷水含量大于0.010 g·m^(-3),过冷水含量在0.010~0.050 g·m^(-3),在层状云中温度较低的区域存在自然冰晶较小、过冷水相对较丰富区域,具有较好的引晶催化潜力。  相似文献   

12.
2017年5月22日河北省出现一次低槽冷锋降水过程,河北省人工影响天气办公室利用机载粒子测量系统在太行山东麓区域对积层混合云进行了5次垂直探测。依据这些飞机探测资料结合石家庄天气雷达和邢台皇寺观测站的Ka波段云雷达资料分析了积层混合云的微物理结构和增雨作业条件。结果表明,降水云系出现在低槽槽前西南气流中,积层混合云由冷、暖云组成,云厚大于5 km,暖云厚度大于2 km,冷云厚度大于3 km,0℃层高度位于3577~4004 m,云底温度为15. 4℃,云顶温度为-17℃。云内出现最强雷达回波达45 d BZ的对流雨核,人工增雨作业应在雷达回波强度不超过40d BZ,且4000 m以上雷达回波强度不超过30 d BZ积层混合云区实施增雨作业。嵌入对流核的积层混合云中,5000 m以上冷云中上层过冷水含量达0. 2 g·m-3,比稳定的层状云中过冷水含量提高2~4倍;丰富的过冷水从雨核发展初期维持到雨核发展盛期,且该高度层是冰晶重要增长区,温度在-15~-5℃之间,适合催化作业。  相似文献   

13.
利用2009年3月11日机载DMT(droplet measurement technology)粒子测量系统获取的山西层状云探测资料,结合天气、卫星、雷达等,分析了降水性冷云的宏微观结构特征.结果表明,降水云系由高层云和层积云组成,液态含水量变化范围为0 0.42 g/m3.CDP(cloud droplet probe;云粒子探头)和CIP(cloud imaging probe;云粒子图像探头)观测到的粒子数浓度偏大,CDP探测到最大粒子数浓度为451.93 cm-3,CIP探测到最大粒子数浓度为162.78 L-1.本次探测适宜的人工增雨作业温度区间为-11.4-7℃、-4.40℃.高层云上部以冰晶的核化和凝华增长为主;高层云的中下部为冰雪晶活跃增长层;通过凝华、碰并机制高层云降落的冰雪晶粒子在层积云进一步长大.层状云水平分布不均匀特性很明显.统计云滴谱谱型分布发现,双峰型、多峰型出现几率较高,指数型主要出现在层积云的中部和顶部,出现单峰型时LWC(liquid water concentration;液态水含量)小于0.03 g/m3或大于0.1 g/m3.  相似文献   

14.
利用NASA/CERES发布的L3级云资料,选取西南地区(云南、贵州、四川、重庆)2001~2010年水高层云、水雨层云、水层积云、水层云的云水含量数据,研究了该区域4种类型云的年和季节云水含量时空分布特征和变化趋势。结果表明:(1)4种类型云的年和季节云水含量均在海拔低的地方偏多,海拔高的地方偏少。重庆、贵州云水含量高于云南、四川;(2)水雨层云年和季节云水含量最大,其次为水层云和水高层云,水层积云云水含量最少;(3)近10 a来,整个西南地区4种类型云的年平均云水含量均呈递减趋势;(4)4种类型云的云水含量秋季高于春季;(5)春季,中云(水高层云、水雨层云)云水含量既有增加区域,也有减少区域,低云(水层积云、水层云)云水含量呈递减趋势;秋季,中云、低云云水含量均为递减趋势;水雨层云和水层云年和季节云水含量的递减趋势最显著。  相似文献   

15.
机载微波辐射计测云中液态含水量   总被引:5,自引:0,他引:5  
文中介绍了 2 0 0 1~ 2 0 0 2年 4~ 7月吉林省人工增雨期间 ,在中国首次进行的机载对空微波辐射计外场飞行观测试验。观测结果表明 ,仪器可以灵敏地探测出层状云中垂直路径积分云液态水和过冷水含量及其变化 ,揭示了在层状云中嵌入的对流区中有丰富的垂直积分过冷水含量 ,量级可达 10 3 g/m2 。与地面雷达PPI回波强度呈正相关。本文还根据飞机上升 (或下降 )过程的探测数据 ,给出了水平均匀的层状云液态含水量的垂直廓线的实例 ,并进一步讨论了这种方法的应用前景。  相似文献   

16.
吕玉环  雷恒池  魏蕾 《气象科技》2021,49(3):455-463
对2009-2011年内蒙古通辽地区41架次穿云飞行探测结果进行统计分析,探讨中国北方典型地区的各类型云的微观特征.结果表明:该地区不同云型的平均云滴粒子数浓度Nc按大小排序为:层积云Sc>积云Cu>高层云As>雨层云Ns>高积云Ac.降水性云(Ns,As和Sc)的Nc值一般跨度范围较大,且累计概率的减小幅度较为平缓....  相似文献   

17.
分析了关中、延安地区1991—2001年4个雷达站附近15个气候观测站≥5mm降水过程的时空分布及降雨性层状云雷达回波特征。关中适宜人工增雨的时段为2月10日至11月15日,陕北为2月25日至11月10日。陕西降雨性层状云0℃层高度变化范围为3.63~5.03km,平均高度为4.65km,降雨性层状云融化层强回波区厚度为0.4~1.0km之间。总结出适宜人工增雨的稳定性层状云和混合性层状云雷达回波模型。  相似文献   

18.
三江源地区秋季典型多层层状云系的飞机观测分析   总被引:4,自引:0,他引:4  
利用三江源地区一次机载粒子测量系统PMS(Particle Measuring Systems)的分层垂直探测资料,系统研究了该地区秋季典型多层层状云系的微物理特性,结果表明:(1)云系由4层云层组成,Cs(卷层云)和上层As(高层云)为冰云,下层As和Sc(层积云)为过冷混合态云。下层As的云粒子浓度和过冷水含量最大,Sc的云粒子尺寸及谱宽最大,且具有较明显的地区特性;(2)Sc(下层As及对流泡)中中值直径在3.5~18.5 μm(3.5~ 21.5 μm)之间的云粒子为液相,中值直径大于21.5 μm(24.5 μm)的云粒子为冰相;(3)混合态云中高过冷水区与低过冷水区云的粒子谱分布差异明显,Sc高过冷水区有较明显的淞附增长现象;(4)Sc、下层As云底、对流泡顶高过冷水区的云滴有效半径依次增加。Sc高过冷水区的过冷水含量比率均值及标准差为69.9±19.4%,且与过冷水含量存在一定的关联性;下层As云底高过冷水区的过冷水含量比率无明显变化,其均值及标准差为89.2±8.1%;(5)混合态云各高度层FSSP(前向散射粒子谱探头)平均粒子谱均为单峰型伽玛分布,混合态云和冰云各高度层2DC(二维灰度云粒子探头)平均粒子谱基本上都为负指数型分布。  相似文献   

19.
本文利用FY-4A卫星对2019年5月四川盆地实施的一次人工增雨减轻空气污染作业条件进行分析,综合分析增雨可播性,判别增雨潜力区和作业高度,为开展人工增雨作业提供可靠的依据,然后利用多普勒天气雷达、地面气象台站、空气质量指数、颗粒物污染物浓度等多种数据资料分析人工增雨作业前后作业云体宏观情况和空气质量、雨量的变化,对其作业效果进行分析。结果表明:(1)5月12日四川盆地西部有云系发展,作业前6小时作业区附近主要为积层混合云,存在大量过冷水,红色对流泡云顶温度约为-30℃,粒子有效半径为15~40μm,作业前0~3小时作业区位于深厚对流降水云边缘,云顶温度约为-40℃,粒子有效半径为7~40μm,作业区南部有大片积层混合云,提供大量过冷水;(2)作业区内,高低空配合的环流场形成了较有利的降水形势,作业云体过冷水丰沛,增雨潜力较好,符合人工播撒催化剂条件,适宜开展人工增雨作业;(3)经过人工增雨作业后,作业区雨量峰值降雨时间延长,总体雨量增加,作业区的AQI从82降到29,PM10从94μg/m3下降到28μg/m3,PM2.5从49μg/m3降到17μg/m3,而3个对比区没有实施人工增雨作业,空气质量指数持续超标数小时。   相似文献   

20.
华北层状冷云降水微物理特征及人工增雨可播性研究   总被引:5,自引:1,他引:4  
孙鸿娉  李培仁  闫世明  孙国德  晋立军  封秋娟 《气象》2011,37(10):1252-1261
利用DMT探测平台对2009年3月11日山西云降水观测外场试验区的一次云降水过程实施了综合探测,综合分析了此次云降水过程的宏微观物理特征。计算了云中过冷水含量距0℃层高度(1500m)的垂直分布:云中过冷水含量最大值出现在0℃层高度以上400 m处,其最大值为0.416 g·m^-3,之后随着距0℃层高度的增加,云中过冷水含量迅速减小,到0℃层高度以上600 m处基本为最低,之后直到云顶,云中过冷水含量维持低值。CDP探头探测的云中粒子浓度以及CIP探头探测的云中大粒子浓度应作为判别云中可播度的两项主要指标,CDP探测的粒子浓度不小于30个·cm^-3的云区才具有一定的可播度,其中CIP探测的大粒子浓度小于10个·cm^-3时,可确定为强可播区。云滴浓度随高度变化呈多峰分布,云中粒子谱型主要为双峰或多峰型。此探测过程中典型区域的粒子谱中均出现第二峰值的区段,分析表明只有当云粒子浓度不小于30个·cm^-3时,相应云区才具有一定的可播度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号