首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
空气污染与大气能见度及环流特征的研究   总被引:13,自引:4,他引:9  
赵庆云  张武  王式功 《高原气象》2003,22(4):393-396
利用2000年7月—2001年5月兰州逐日污染物浓度及污染综合指数资料,分析了其与能见度的相关性,同时利用1980—2000年冬季兰州能见度的资料,对大气能见度及环流特征量进行了分析,并初步建立了能见度趋势预报方程。结果表明:大气能见度具有明显的日变化;年际变化呈增大趋势,20世纪90年代能见度要明显好于80年代。污染指数与能见度基本呈现负相关。印度副高脊线偏北,东亚大槽明显,即亚洲地区环流经向度大时,大气能见度增加,空气污染程度较轻。  相似文献   

2.
利用南阳市1995-2005年大气能见度和地面气象要素的观测资料及南阳市环境检测站提供的近3 a空气污染物监测数据,统计分析了近10 a南阳市大气能见度变化特征及其与气象要素和空气污染物的关系,结果表明:南阳市能见度年际变化呈缓慢波动上升趋势,夏秋季节2001年之后呈波动下降趋势;冬季能见度最低,春季最高;能见度月变化呈双峰型,第一个峰值在5月份,第二个峰值在9月份;一日之中,08时能见度最差,14时最好.能见度与同期气象要素及污染物浓度的相关分析表明,能见度与相对湿度、空气污染物PM10浓度呈显著性负相关,与NO2、SO2浓度负相关性较弱,与风速和气压呈弱的正相关,与温度的相关性较为复杂,雾是影响能见度的主要天气现象之一.  相似文献   

3.
根据大连气象站1980—2013年的能见度、天气现象、湿度、风等资料,采用趋势分析、相关分析、频率分析等方法,研究了大连市能见度的变化特征及影响因子。结果表明:近34 a来,大连市能见度呈显著(α=0.01)的下降趋势,下降速率为1.4 km/10a。一年中秋季能见度最好,夏季能见度最差; 月最大值出现在10月,最小值在7月; 一日当中14时能见度最好,08时能见度最差;小于10.0 km的低能见度事件显著增加。大连市能见度的下降可能与雾霾天气增多、水汽压增加及风速的减小有关。  相似文献   

4.
厦门城市能见度和雾的特征与城市环境演变   总被引:11,自引:1,他引:11       下载免费PDF全文
周学鸣  蔡诗树 《气象》2004,30(1):41-45
利用厦门城市1980~2000年21年地面资料和探空资料,对能见度和雾演变特征及其物理成因进行分析,结果表明:厦门城市夏季能见度明显好于冬季,这可能与冬夏盛行风向不同,输送排放污染源地不同以及不同季节天气气候条件相关。厦门城市冬季和夏季能见度呈下降趋势,尤以夏季为突出,轻雾以上的频数也日益增加,其重要因素是城市的热岛效应。厦门城市能见度虽然明显好于污染较为严重的北京,但冬季厦门城市能见度与北京呈反位相演变趋势。夏季厦门城市能见度有着明显的日间变化,这与夏季海陆风日变化的垂直环流圈有密切关系。  相似文献   

5.
南京大气能见度变化规律及影响因子分析   总被引:7,自引:1,他引:6       下载免费PDF全文
利用累积百分率法、Ridit中值分析法、"非常好"能见度出现频率法以及平均能见度年际和季节变化法,对1980—2005年南京大气能见度年际变化趋势进行分析,发现1980—1984年能见度呈上升趋势,1985年以后则在波动中呈明显下降趋势。26 a中,日均大气能见度最小值为0.55 km,最大值为29.25 km,平均值为8.59 km。大气能见度具有明显的日变化和季节变化特征,一日之中,14时最好,08时最差;一年之中,冬季能见度最低,夏季最高。能见度与相对湿度呈负相关,与风速呈正相关,与温度和气压的相关性相对较小。PM10是影响南京地区大气能见度的首要污染物,通过对能见度与PM10平均质量浓度进行曲线拟合发现,二者呈负相关,复相关系数在秋季最高,夏季最低。由统计预报方程可知,空气污染和气象条件协同作用对能见度的影响在春季、秋季、冬季较为明显,夏季则相对较差。  相似文献   

6.
北京城市能见度及雾特征分析   总被引:36,自引:6,他引:30       下载免费PDF全文
利用北京及市郊16个标准国家气候站的1980至2000年21年能见度与雾特征等资料,对北京及周边地区的能见度和雾特征及其演变进行了研究结果表明,近20年北京能见度的变化存在显著季节性差异.近20年来,北京市区能见度冬季和夏季呈两种不同的变化.冬季能见度有转好趋势,夏季,80年代以来,北京市城区海淀、京西门头沟、石景山、丰台等地、北部及东部等地能见度有逐年转差趋势,冬季和夏季能见度距平呈反位相变化. 近十年上述能见度转差地带,雾日也是增加的.20世纪的最后10年与80年代开始的10年相比,夏季7、8、9月份北京城市和郊区的雾日有显著增加.雾日的高峰值出现在以海淀区为中心的北京城区的全境,包括京西的石景山、丰台、门头沟等地;另一个雾日数高峰区位于北京东部地区.北京夏季雾增加与能见度减低的地区分布趋于一致可能与北京特殊的"马蹄形"大尺度地形堆积影响有关. 尺度过滤分析研究表明,夏季,从北京城区向东南方向伸展至河北一带地区,有个显著的带状能见度减弱区.这个能见度减弱带与尺度分离揭示的城区内更小尺度的雾增大特征现象有关,有可能与最近10年北京以南地区其他的工业排放或污染源对北京的输送及城市发展变化有一定关系,即与大气气溶胶分布和北京特定的气象条件和城市变化状况有关.  相似文献   

7.
天津武清能见度特征分析   总被引:5,自引:0,他引:5  
利用2006年8~9月的野外观测资料,分析了天津武清区晴天能见度的变化特征,并分析了能见度与细粒子(PM2.5)、大气污染物和大气相对湿度(RH)的相关性。结果表明:观测期内大气平均能见度为6.3km,低于4km的时间段占50%;日变化表现为日出前(北京时间5时)能见度最低,约为2.6km,下午15时最高,约为11.1km;不同大气相对湿度下能见度与大气中细颗粒物浓度相关性不同;污染气体浓度与能见度呈反相关关系,φ(SO2)、φ(NO2)、φ(NO)、φ(NH3)和φ(CO)越高,能见度越低。  相似文献   

8.
辽宁旅顺与山东龙口能见度对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用2002-2011年渤海海峡两岸辽宁旅顺和山东龙口地面气象站能见度逐时观测资料,采用等级分析法,统计分析两地平均和分级能见度的年、月、日变化特征。结果表明:位于渤海北岸旅顺的年均能见度值高于渤海南岸的龙口,近10 a两地年均能见度均呈下降趋势,龙口年均能见度降低速度高于旅顺;各级能见度的时间百分比旅顺年际变化较大,而龙口相对稳定;一年中两地10月份月均能见度最高,旅顺月均最低能见度出现在7月,龙口出现在6月,两地能见度日变化特征基本一致,呈一波峰一波谷形势。通过分析天气现象及相关气象因子发现,两地出现低能见度(0-1 km)时,风场、温湿场特征均存在明显区域性差异。  相似文献   

9.
利用1980—2005年西安市大气能见度资料对大气能见度变化规律统计分析,并利用2005年西安市逐日污染物质量浓度资料,分析与能见度的相关性,结果表明:大气能见度有较明显的年际变化、月季变化和日变化特征。年际变化总体呈增大趋势,20世纪90年代中期以来明显好于80年代到90年代前期;能见度与空气污染物质量浓度呈负相关,污染物质量浓度对能见度的影响冬季最明显,秋季次之,夏季最差。  相似文献   

10.
辽宁中部城市群大气能见度变化趋势及影响因子分析   总被引:38,自引:5,他引:33  
通过分析辽宁中部相对集中分布的5个城市群1987-2002年间的大气能见度、影响能见度的气象因子和污染物的变化特征及能见度与气象因子、污染物浓度之间的相关关系等,得到以下结论:(1)各城市能见度有明显的月、季和年际变化特征,能见度月变化呈双峰型,第一个峰值在5月份,第二个峰值在9,10月份;冬季能见度的值最低,春、秋季高;本溪市的能见度在逐年变好;沈阳的能见度从1987-1997年逐年变好,1997年以后又逐年变差;其它城市的能见度呈逐年变差的趋势。(2)各城市影响能见度的气象因子的年际变化特征基本是一致的;5个城市TSP,SO2污染浓度年均值均呈下降趋势,NOx的年际变化趋势不明显。(3)能见度与湿度、雾的相关关系都呈负相关且非常显著;与降雨量、风速及温度之间的关系比较复杂;与各种污染物的相关都呈负相关。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

13.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

14.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

15.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

16.
基于最新的GTAP8 (Global Trade Analysis Project)数据库,使用投入产出法,分析了2004年到2007年全球贸易变化下南北集团贸易隐含碳变化及对全球碳排放的影响。结果显示,随着发展中国家进出口规模扩张,全球贸易隐含碳流向的重心逐渐向发展中国家转移。2004年到2007年,发达国家高端设备制造业和服务业出口以及发展中国家资源、能源密集型行业及中低端制造业出口的趋势加强,该过程的生产转移导致全球碳排放增长4.15亿t,占研究时段全球贸易隐含碳增量的63%。未来发展中国家的出口隐含碳比重还将进一步提高。贸易变化带来的南北集团隐含碳流动变化对全球应对气候变化行动的影响日益突出,发达国家对此负有重要责任。  相似文献   

17.
Hourly outgoing longwave radiation(OLR) from the geostationary satellite Communication Oceanography Meteorological Satellite(COMS) has been retrieved since June 2010. The COMS OLR retrieval algorithms are based on regression analyses of radiative transfer simulations for spectral functions of COMS infrared channels. This study documents the accuracies of OLRs for future climate applications by making an intercomparison of four OLRs from one single-channel algorithm(OLR12.0using the 12.0 μm channel) and three multiple-channel algorithms(OLR10.8+12.0using the 10.8 and 12.0 μm channels; OLR6.7+10.8using the 6.7 and 10.8 μm channels; and OLR All using the 6.7, 10.8, and 12.0 μm channels). The COMS OLRs from these algorithms were validated with direct measurements of OLR from a broadband radiometer of the Clouds and Earth's Radiant Energy System(CERES) over the full COMS field of view [roughly(50°S–50°N, 70°–170°E)] during April 2011.Validation results show that the root-mean-square errors of COMS OLRs are 5–7 W m-2, which indicates good agreement with CERES OLR over the vast domain. OLR6.7+10.8and OLR All have much smaller errors(~ 6 W m-2) than OLR12.0and OLR10.8+12.0(~ 8 W m-2). Moreover, the small errors of OLR6.7+10.8and OLR All are systematic and can be readily reduced through additional mean bias correction and/or radiance calibration. These results indicate a noteworthy role of the6.7 μm water vapor absorption channel in improving the accuracy of the OLRs. The dependence of the accuracy of COMS OLRs on various surface, atmospheric, and observational conditions is also discussed.  相似文献   

18.
正ERRATUM to: Atmospheric and Oceanic Science Letters, 4(2011), 124-130 On page 126 of the printed edition (Issue 2, Volume 4), Fig. 2 was a wrong figure because the contact author made mistake giving the wrong one. The corrected edition has been updated on our website. The editorial office is sincerely sorry for any  相似文献   

19.
20.
Index to Vol.31     
正AN Junling;see LI Ying et al.;(5),1221—1232AN Junling;see QU Yu et al.;(4),787-800AN Junling;see WANG Feng et al.;(6),1331-1342Ania POLOMSKA-HARLICK;see Jieshun ZHU et al.;(4),743-754Baek-Min KIM;see Seong-Joong KIM et al.;(4),863-878BAI Tao;see LI Gang et al.;(1),66-84BAO Qing;see YANG Jing et al.;(5),1147—1156BEI Naifang;  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号