首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Lithos》1986,19(2):153-163
Amphiboles approached edenite (NaCa2Mg5Si7AlO22(OH)2), richterite (Na2CaMg5Si8O22(OH)2), tremolite (□Ca2Mg5Si8O22(OH)2) solid solutions were studied by conventional hydrothermal techniques employing the bulk compositions edenite, and edenite + additional quartz, all with excess H2O. For the stoichiometric edenite bulk composition + excess H2O, the equilibrium phase assemblage is diopside + Na-phlogopite + forsterite + fluid at, and just above the amphibole high-temperature limit at 850 ± 5°C, 500 bar, and 880 ± 5°C, 1000 bar. The breakdown temperature of sodic phlogopite is 855 ± 3°C at 500 bar, and 890 ± 5°C at 700 bar, producing nepheline + plagioclase (or melt), additional forsterite and fluid. Diopside and Na-phlogopite solid solution coexist over a broad Pfluid-T region, even within the amphibole field, where they are associated with an edenite-richterite (-tremolite) solid solution of approximate composition Ed35Rc50Tr15.In the system edenite + 4 quartz + excess H2O, nearly pure tremolite and albite coexist stably between 670° and 830°C at 1000 bar and give way to the possibly metastable assemblage diopside + talc + albite below 670°C. In the presence of albite, tremolite reacts to produce diopside + quartz + enstatite + fluid above 830°C at 1000 bar. For the investigated silica-rich bulk composition, amphibole Pfluid-T stability is divided by the albite melting curve into a tremolite + albite field, and a tremolite + aqueous melt field. Substantial equilibrium solid solution of tremolite towards edenite or richterite was not observed for silica-excess bulk compositions. Metastable edenite-rich amphiboles initially synthesized change to tremolite with increasing run length in the presence of free SiO2.Edenitic amphibole is stable only over a very limited temperature range in silica-undersaturated environments, thus accounting for its rarity in nature. Na-phlogopite solid solutions are also disfavored by high aSiO2; even for nepheline-normative lithologies, a hypothesized rapid low-temperature conversion to vermiculite or smectite could partly explain the scarcity of sodic phlogopite in rocks.  相似文献   

2.
Phase relations for the magnesio-hornblende bulk composition, 2 CaO·4 MgO·Al2O3·7 SiO2+ excess H2O, have been investigated to 10 kb employing hydrothermal and piston-cylinder techniques. The low-temperature limit of amphibole in this system lies at 519° C, 1,000 bars, 541° C, 2,000 bars, and 718° C, 10 kb. The low-T assemblage consists of an+chl+di+tc(+f), and is related to the adjacent high-T equilibrium assemblage, amph+an+chl+f, by the solid-solid reaction (A): 2 di+tc=tr. Small amounts of aluminum, hypothesized to be preferentially dissolved in the cpx (and in the tc) relative to amph, may account for the broad P-T stability range of the di+tc assemblage in the synthetic work relative to systems involving stoichiometric tr, Ca2Mg5Si8O22(OH)2, such as are common in natural, Al-poor calc-silicate parageneses. Alternatively, the low-temperature assemblage produced in the experiments may be metastable. For the investigated bulk composition, synthetic tremolitic-cummingtonitic amphibole contains relatively modest amounts of ts, Ca2Mg3Al2 IVSi6-Al2 IVO22(OH)2; at pressures of 1,000–3,000 bars, solid solution extends from near tremolite only to about cu11tr69ts20, analogous to most analyzed natural magnesio-hornblendic specimens. At 10 kb fluid pressure, the solid solution reaches approximately cu06tr53ts41 for the investigated bulk composition, and appears to be virtually independent of temperature. Amphibole and 14 Å chl react within the amphibole stability field, along curve (B), at about 704° C and 2,000 bars, to produce an, en, fo and f (H=40.9 kcal/ mole); at pressures greater than approximately 7kb, due to the incompatibility of an and fo, the higher temperature assemblage consists of amph, an, en, sp and f. Above P fluid– T curve (B), the amphibole coexists with an+en+fo+f at low pressures; at higher pressures, the amphibole, which is in equilibrium with an+en+sp+f, is relatively more aluminous. The high-T stability limit of aluminous tr+fo lies approximately 20–25° C below the dehydration curve for stoichiometric tremolite on its own bulk composition. Reaction (C), tr+fo=2 di+5 en+f (H = 39.4 kcal/mole), produces an+di+en+f, the highest temperature subsolidus assemblage investigated for the tr50ts50 bulk composition. Hydrous melt is encountered at temperatures at least as low as 900° C at 10 kb, and at that fluid pressure coexists with amphibole over an interval of more than 60° C. Limited solid solution observed between tr and ts in nature (tr100-70) is accounted for by the restricted range of amphibole compositions produced in the present study. Such amphiboles, moreover, appear to have both high- and low-temperature stability limits, as demonstrated by the experimental results.Institute of Geophysics and Planetary Physics Publication No. 2811  相似文献   

3.
The phase K2Mg5Si12O30 was synthesized both hydrothermally and dry under a variety of pressures and temperatures, and its stability relations were determined. Under hydrothermal conditions it exhibits a lower stability limit lying at 595°C, 1 kb, and 650°C, 2 kb, due to its breakdown into the hydrous assemblage quartz+KMg2.5Si4O10(OH)2 (a mica phase). Its upper temperature stability under hydrothermal conditions is given by its incongruent melting to MgSiO3+liquid. Near 820° C at a fluid pressure of approximately 6.5 kb the two univariant curves for these breakdown reactions intersect thus limiting the stability field to lower fluid pressures. — Under anhydrous conditions K2Mg5Si12O30 becomes unstable at pressures between approximately 7 and 32.5 kb due to its incongruent melting to the assemblage MgSiO3+quartz (or coesite)+liquid; this melting curve has a pronounced negative slope. No subsolidus breakdown assemblage was encountered at 32.5 kb down to temperatures as low as 750°C. This behavior is probably due to the instability of other ternary compounds in the system K2O-MgO-SiO2 at high pressures and thus to the existence of very low-temperature eutectics involving only binary and unary solid phases plus liquid.It is likely that these stability relations provide a model for those of the natural minerals merrihueite and roedderite which contain Na and Fe+2 partly substituting for K and Mg and which were encountered in several meteorites. Therefore, the cosmic events leading to the formation of these minerals must have taken place at relatively low pressures and high temperatures, especially when water was present. The bulk compositions of these minerals appear to be incompatible with average chondritic matter under equilibrium conditions. Hence merrihueite and roedderite are not likely to be found in equilibrated chondrites which contain feldspars instead.  相似文献   

4.
Calcic amphiboles are observed in ultramafic rocks that have equilibrated under a broad span of geological conditions and might prove to be good indicators of metamorphic grade if their stabilities could be determined as a function of their compositions. Experiments were performed on the stability of tremolite plus forsterite in the system H2O-CaO-MgO-SiO2 from 5 to 20 kbar. A univariant curve was fitted to the experimental brackets using volume, water fugacity, and heat capacity data. The results indicate that the maximum stability of tremolite in the presence of forsterite is about 825° C at 5 kbar. Addition of Al2O3 to this system increases the stability of tremolitic amphibole by only 20°–40° C and induces solubility of 5–7 wt.% Al2O3 in the amphibole, as determined from quantitative SEM analyses of individual amphibole crystals. Thus substitution of the tschermakite component (Ca2(Mg3Al2) (Si6Al2) O22(OH)2) alone cannot lead to the greatly enhanced Al2O3 contents or thermal stability of natural calcic amphiboles. Comparison of the results from this study with experimental results from other studies on synthetic calcic amphiboles indicates that the high thermal stability of natural amphiboles is strongly linked with the substitution of alkalies (Na in particular) in the form of the component Na-Ca2(Mg4Al) (Si6Al2)O22(OH)2 (pargasite). Accordingly, experimental data from studies on pargasite have been combined with the appropriate univariant curves to obtain a phase diagram for amphibole-bearing ultramafic rocks modelled by the system H2O-Na2O-CaO-MgO-Al2O3-SiO2.  相似文献   

5.
A suite of mantle peridotite xenoliths from the Malaitan alnoitedisplay both trace element enrichment and modal metasomatism.Pargasitic amphibole is present in both garnet- and spinelbearingxenoliths, formed by reaction of a metasomatic fluid (representedby H2O and Na2O) with the peridotite assemblage. Two pargasite-formingreactions are postulated, whereby spinel is totally consumed: 6MgAl2O4 + 8CaMgSi2O6 + 7Mg2Si2O6 + 4H2O + 2Na2O = 4NaCa2Mg4Al3Si6O12(OH)2+ 6Mg2SiO4 or spinel is both a reactant (low Cr) and a product (high Cr): 24MgAlCrO4 + 16CaMgSi2O6 + 14Mg2Si2O6 + 8H2O + 4Na2O = 8NaCa2Mg4Al3Si6O12(OH)2+ 12MgCr2O4 + 12Mg2SiO4 Seven garnet—spinel-peridotites display cryptic metasomatismas demonstrated by the LREE enrichment in clinopyroxenes. TheLREE enrichment correlates positively with 143ND/144ND (0?512771–0?513093)which defines a mixing line between a mantle MORB source anda metasomatic fluid. Isotopic evidence (Sr and Nd) from garnet,clinopyroxene, and amphibole demonstrate this fluid has notoriginated in the alnoite sensu stricto. Calculated amphiboleequilibrium liquids show a range in La/Yb and Ce/Yb ratios similarto those calculated for the augite and subcalcic diopside megacrysts.Sr and Nd isotope analyses from amphibole are within error ofthe augite (PHN4074) and subcalcic diopside megacrysts (CRN2I6,PHN4069, and PHN4085). It is concluded that fluids emanatedfrom a proto-alnoite magma throughout megacryst fractionation,and the mixing line was generated during the crystallizationof the subcalcic diopsides. This study demonstrates that metasomatismrepresented in these xenoliths is not a prerequisite for alnoitemagmatism, but is a consequence of it.  相似文献   

6.
The phase relations of glaucophanic amphiboles have been studied at 18–31 kbar/680–950°C in the synthetic system Na2O–MgO–Al2O3–SiO2–SiF4 (NMASF) using the bulk composition of fluor-glaucophane, Na2Mg3Al2Si8O22F2. Previous experimental studies of glaucophane in the water-bearing system (NMASH) have been hampered by problems of fine grain size (electron microprobe analyses with low oxide totals and contamination by other phases), and consequently good compositional data are lacking. Fluor-amphiboles, on the other hand, generally have much higher thermal stabilities than their hydrous counterparts. By using the fluorine-analogue system NMASF, amphibole crystals sufficiently coarse for electron microprobe analysis have been obtained. Furthermore, NMASH amphibole phase relations are directly analogous to those of the NMASF system because SiF4 fills the role of H2O as the fluid species. High-pressure NMASF amphibole parageneses are comparable to those obtained for NMASH amphiboles under similar pressure-temperature conditions, except that the NMASF solidus was not encountered. In the pressure-temperature range of the NMASF experiments, fluor-glaucophane is unstable relative to glaucophanenyböite-Mg-magnesio-katophorite amphiboles. Variations in synthetic fluor-amphibole composition with P and T are discussed in terms of changes in the thermodynamic activities of the principal amphibole end-members, such as glaucophane (aGp) and nyböite (aNy) using an ideal-mixing-on-sites model. The most glaucophanic amphiboles analysed have aGp=0.50–0.60 and coexist with jadeite and coesite at 30 kbar/800°C. Amphiboles become increasingly nyböitic with decreasing pressure through the NaAlSi-1 exchange, which is the principal variation observed. The most nyböitic amphiboles have aNy =0.65–0.70 and coexist with fluor-sodium-phlogopite and quartz at 21–24 kbar/800–850°C. At 800°C amphiboles are essentially glaucophane-nyböite solid solutions. At 850°C there is some minor displacement along MgMgSi-1, but Mg-magnesio-katophorite activities are very low (<0.06). Activities of the eight other NMASF amphibole end-members are <0.001, except for eckermannite activity which varies from 0.01–0.11. Our results indicate that: (a) synthetic amphiboles mimic the essential stoichiometries observed in blueschist amphiboles; (b) synthetic studies should be relevant to petrologically important high-pressure parageneses and reactions involving glaucophanicamphiboles, sodic pyroxenes, albite and talc; (c) the high-pressure stability limit of fluorglaucophane lies at pressures higher than those reached in this study (31 kbar); (d) in natural systems an approach to glaucophane stoichiometry should be favoured by high water activities as well as high pressures.Abbreviations and formulae used in this paper Glaucophane (Gp) oNa2(Mg3Al2)Si8O22(OH,F)2 - Nyböite (Ny) NaNa2(Mg3Al2)Si7AlO22(OH,F)2 - Eckermannite (Ek) NaNa2(Mg4Al)Si8O22(OH,F)2 - Magnesio-cummingtonite (MC) oMg2(Mg5)Si8O22(OH,F)2 - Sodium-magnesio-cummingtonite (SMC) NaNaMg(Mg5)Si8O22(OH,F)2 - Sodium-anthophyllite (SAn) NaMg2(Mg5)Si7AlO22(OH,F)2 - Gedrite (Gd) oMg2(Mg3Al2)Si6Al2O22(OH,F)2 - Sodium-gedrite (SGd) NaMg2(Mg4Al)Si6Al2O22(OH,F)2 - Mg-magnesio-aluminotaramite (MAT) NaNaMg(Mg3Al2)Si6Al2O22(OH,F)2 - Mg-magnesio-katophorite (MKt) NaNaMg(Mg4Al)Si7AlO22(OH,F)2 - Mg-magnesio-barroisite (MBa) oNaMg(Mg4Al)Si7AlO22(OH,F)2 - Jadeite (Jd) NaAlSi2O6 - Enstatite (En) Mg2Si2O6 - Forsterite (Fo) Mg2SiO4 - Nepheline (Ne) NaAlSiO4 - Albite (Ab) NaAlSi3O8 - Quartz/Coesite (Qz/Co) SiO2 - Sodium-phlogopite (Sphl) NaMg3Si3AlO10(OH,F)2 - Talc (Tc) oMg3Si4O10(OH,F)2 - o vacant A-site in amphiboles and interlayer site in talc. Octahedral cations in amphiboles are bracketted  相似文献   

7.
The transition between blueschist and eclogite plays an important role in subduction zones via dehydration and densification processes in descending oceanic slabs. There are a number of previous petrological studies describing potential mineral reactions taking place at the transition. An experimental determination of such reactions could help constrain the pressure–temperature conditions of the transition as well as the processes of dehydration. However, previous experimental contributions have focused on the stability of spontaneously formed hydrous minerals in basaltic compositions rather than on reactions among already formed blueschist facies minerals. Therefore, this study conducted three groups of experiments to explore the metamorphic reactions among blueschist facies minerals at conditions corresponding to warm subduction, where faster reaction rates are possible on the time scale of laboratory experiments. The first group of experiments was to establish experimental reversals of the reaction glaucophane+paragonite to jadeite+pyrope+quartz+H2O over the range of 2.2–3.5 GPa and 650–820°C. This reaction has long been treated as key to the blueschist–eclogite transition. However, only the growth of glaucophane+paragonite was observed at the intersectional stability field of both paragonite and jadeite+quartz, confirming thermodynamic calculations that the reaction is not stable in the system Na2O–MgO–Al2O3–SiO2–H2O. The second set of experiments involved unreversed experiments using glaucophane+zoisite ±quartz in low‐Fe and Ca‐rich systems and were run at 1.8–2.4 GPa and 600–780°C. These produced omphacite+paragonite/kyanite+H2O accompanied by compositional shifts in the sodium amphibole, glaucophane, towards sodium–calcium amphiboles such as winchite (?(CaNa)(Mg4Al)Si8O22(OH)2) and barroisite (?(CaNa)(Mg3Al2)(AlSi7)O22(OH)2). This suggests that a two‐step dehydration occurs, first involving the breakdown of glaucophane+zoisite towards a paragonite‐bearing assemblage, then the breakdown of paragonite to release H2O. It also indicates that sodium–calcium amphibole can coexist with eclogite phases, thereby extending the thermal stability of amphibole to greater subduction zone depths. The third set of experiments was an experimental investigation at 2.0–2.4 GPa and 630–850°C involving a high‐Fe (Fe#=Fetotal/(Fetotal+Mg)≈0.36) natural glaucophane, synthetic paragonite and their eclogite‐forming reaction products. The results indicated that garnet and omphacite grew over most of these pressure–temperature conditions, which demonstrates the importance of Fe‐rich glaucophane in forming the key eclogite assemblage of garnet+omphacite, even under warm subduction zone conditions. Based on the experiments of this study, reaction between glaucophane+zoisite is instrumental in controlling dehydration processes at the blueschist–eclogite transition during warm subduction.  相似文献   

8.
Equilibria between plagioclase, calcic amphibole and quartz can be described, in part, by the relation among mineral components: NaAlSi3O8+Ca2Mg5Si8O22(OH)2 = NaCa2Mg5AlSi7O22(OH)2+4SiO2; this relation governs the partitioning of Na between plagioclase and the A-site of coexisting amphibole. Data from natural amphibolites reveal that this partitioning is systematic and sensitive to metamorphic grade. The ideal portion of the equilibrium constant (K id = X Na, A/X, A · X Ab) derived from natural samples is sensitive to bulk composition, inasmuch as both plagioclase and amphibole are highly non-ideal. Samples from a single outcrop have values ranging from 0.5 (X Ab=0.74) to 4.1 (X Ab=0.10). The continuous reaction, NaAlSi3O8+Ca2Mg5Si8O22(OH)2 = NaCa2Mg5AlSi7O22(OH)2+4SiO2, proceeds to the right with increasing grade of metamorphism and for a given bulk composition, K id increases with increasing temperature. Two related discontinuous reactions, actinolite+albite=hornblende+oligoclase+quartz and actinolite+oligoclase=hornblende+anorthite+quartz, also proceed to the right with increasing metamorphic grade and result in changes in the topology of a phase diagram that describes the partitioning of Na between plagioclase and amphibole A-site. A Schreinemakers' net is presented that is consistent with natural occurrences. The results of this study should aid in the delineation of metamorphic facies within amphibolites.  相似文献   

9.
Growing recognition of triple-chain silicates in nature has prompted experimental research into the conditions under which they can form and the extent of solid solution that is feasible for some key chemical substitutions. Experiments were done primarily in the range of 0.1–0.5 GPa and 200–850 °C for durations of 18–1,034 h. A wide range of bulk compositions were explored in this study that can be classified broadly into two groups: those that are Na free and involve various possible chemical substitutions into jimthompsonite (Mg10Si12O32(OH)4), and those that are Na bearing and involve chemical substitutions into the ideal end-member Na4Mg8Si12O32(OH)4. Numerous attempts to synthesize jimthompsonite or clinojimthompsonite were unsuccessful despite the type of starting material used (reagent oxides, magnesite + SiO2, talc + enstatite, or anthophyllite). Similarly, the chemical substitutions of F for OH, Mn2+, Ca2+, or Fe2+ for Mg2+, and 2Li+ for Mg2+ and a vacancy were unsuccessful at nucleating triple-chain silicates. Conversely, nearly pure yields of monoclinic triple-chain silicate could be made at temperatures of 440–630 °C and 0.2 GPa from the composition Na4Mg8Si12O32(OH)4, as found in previous studies, though its composition is most likely depleted in Na as evidenced by electron microprobe and FTIR analysis. Pure yields of triple-chain silicate were also obtained for the F-analog composition Na4Mg8Si12O32F4 at 550–750 °C and 0.2–0.5 GPa if a flux consisting of Na-halide salt and water in a 2:1 ratio by weight was used. In addition, limited chemical substitution could be documented for the substitutions of 2 Na+ for Na+ + H+ and of Mg2+ + vacancy for 2Na+. For the former, the Na content appears to be limited to 2.5 cations giving the ideal composition of Na2.5Mg8Si12O30.5(OH)5.5, while for the latter substitution the Na content may go as low as 1.1 cations giving the composition Na1.1Mg9.4Si12O31.9(OH)4.1 based on a fixed number of Si cations. Further investigation involving Mg for Na cation exchange may provide a pathway for the synthesis of Na-free clinojimthompsonite. Fairly extensive solid solution was also observed for triple-chain silicates made along the compositional join Na4Mg8Si12O32(OH)4–Ca2Mg8Si12O32(OH)4 where the limit of Ca substitution at 450 °C and 0.2 GPa corresponds to Na0.7Ca1.8Mg7.8Si12O31.9(OH)4.1 (with the OH content adjusted to achieve charge balance). Aside from the Na content, this composition is similar to that observed as wide-chain lamellae in host actinolite. The relative ease with which Na-rich triple chains can be made experimentally suggests that these phases might exist in nature; this study provides additional insights into the range of compositions and formation conditions at which they might occur.  相似文献   

10.
The solubility of the albite-paragonite-quartz mineral assemblage was measured as a function of NaCl and fluorine concentration at 400°C, 500 bars and at 450°C, 500 and 1000 bars. Decreasing Al concentrations with increasing NaCl molality in F-free fluids of low salinity (mNaCl < 0.01) demonstrates that Al(OH)4 dominates Al speciation and is formed according to the reaction 0.5 NaAl3Si3O12H2(cr)+2 H2O = 0.5 NaAlSi3O8(cr)+Al(OH)4+H+. Log K results for this reaction are −11.28 ± 0.10 and −10.59 ± 0.10 at 400°C, 500 bars and 450°C, 1000 bars, respectively. Upon further salinity increase, Al concentration becomes constant (at 400°C, 500 bars) or even rises (at 450°C, 1000 bars). The observed Al behavior can be explained by the formation of NaAl(OH)40(aq) or NaAl(OH)3Cl(aq)0. The calculated constant for the reaction Al(OH)4+Na+=NaAl(OH)40(aq) expressed in log units is equal to 2.46 and 2.04 at 400°C, 500 bars and 450°C, 1000 bars, respectively. These values are in good agreement with the predictions given in Diakonov et al. (1996). Addition of fluoride at m(NaCl) = const = 0.5 caused a sharp increase in Al concentration in equilibrium with the albite-paragonite-quartz mineral assemblage. As fluid pH was also constant, this solubility increase indicates strong aluminum-fluoride complexation with the formation of NaAl(OH)3F(aq)0 and NaAl(OH)2F20(aq), according to 0.5 NaAl3Si3O12H2(cr)+Na++HF(aq)0+H2O = 0.5 NaAlSi3O8(cr)+ NaAl(OH)3F(aq)0+H+, log K = −5.17 and −5.23 at 400°C and 450°C, 500 bars, respectively, and 0.5 NaAl3Si3O12H2(cr)+Na++2 HF(aq)0 = 0.5 NaAlSi3O8(cr)+NaAl(OH)2F20(aq)+H+, log K = −2.19 and −1.64 at the same P-T conditions. It was found that temperature increase and pressure decrease promote the formation of Na-Al-OH-F species. Stability of NaAl(OH)2F20(aq) in low-density fluids also increases relative to NaAl(OH)3F(aq)0. These complexes, together with Al(OH)2F(aq)0 and AlOHF20(aq), whose stability constants were calculated from the corundum solubility measured by Soboleva and Zaraisky (1990) and Zaraisky (1994), are likely to dominate Al speciation in metamorphic fluids containing several ppm of fluorine.  相似文献   

11.
Incipient charnockite formation at Kurunegala in Sri Lanka is characterized by the growth of orthopyroxene at the expense of amphibole and biotite in an originally homogeneous gneiss. Mineral equilibria in the charnockite assemblage record pressure-temperature (P-T) conditions of 738±60° C and 6.9±1.2 kbar at-17.0±1.2 log fO2 and aH2O=0.18±0.16. Wholerock trace-element and isotopic measurements show that charnockite formation was accompanied by a systematic depletion of Sm>Rb>Pb>U>Sr>Nd, with a fractionation of Rb/Sr, Sm/Nd and Th/U ratios, and crystallization of the charnockite assemblage at 535±5 Ma. Major element (Fe–Mg–Ca) and Sm–Nd equilibration between minerals occurred at 524±9 Ma, whereas, Pb and Rb–Sr underwent continued exchange to 501±5 Ma and 486±1 Ma, respectively. Trace-element data for both amphibolite and charnockite minerals show that depletion on a whole-rock scale can be accounted for either by changes in mineral modes or trace-element abundances, within the immediate area of dehydration. The fractionation of Sm/Nd on a whole-rock scale is controlled by the breakdown of amphibole, without the growth of a major new host-phase for Sm in the charnockite. Rubidium and Sr are dependent on the relative behaviour of biotite, plagioclase and alkali-feldspar. Modelling of dehydration-melting involving the breakdown of amphibole, biotite, and alkali-feldspar reproduces the observed Sm/Nd and Rb/Sr fractionation, and indicates the loss of small melt fractions, on a cm scale, from the charnockite. These observations suggest that partial melting is the most plausible means of effecting both the dehydration and depletion that accompanies charnockite formation.  相似文献   

12.
A series of alumina-free micas was synthesized hydrothermally in the potassium-poor portion of the system K2O-MgO-SiO2-H2O. One end member of this series has the composition KMg2.5[Si4O10](OH)2, which, because of its octahedral occupancy, is intermediate between the dioctahedral and trioctahedral micas.From this end member a series of mica solid solutions extends towards more Mg-rich compositions. Single phase micas were obtained along the substitution line 2Mg for Si which appears to involve incorporation of part of the Mg in tetrahedral sites. It leads to a theoretical end member with a structural formula KMg3[Si3.5Mg0.5O10](OH)2. Solid solutions containing up to 75 mole % of this theoretical end member could be synthesized. The observed densities, water contents, and a one-dimensional Fourier synthesis are consistent with the assumed substitution.At 1 kb fluid pressure and 620° C the Si-rich end member KMg2.5[Si4O10](OH)2 decomposes to a more Mg-rich mica, the roedderite phase K2Mg5Si12O30, liquid, and H2O-rich vapor. With increasing Mg-content the thermal stability of the mica solid solutions increases up to 860°C at a composition of about K2O·6.2MgO·7.4SiO2·2H2O, i.e. KMg2.8[Si3.7Mg0.3O10](OH)2. This mica disintegrates directly into forsterite + liquid + H2O-rich vapor. The mica phase richest in Mg with a composition of about K2O·6.5MgO·7.25SiO2·2H2O, i.e. KMg2.875 [Si3.625Mg0.375O10](OH)2, breaks down at 765° C into forsterite, a more Si-rich mica, liquid, and H2O-rich vapor.This binary series of alumina-free micas forms a complete series of ternary solid solutions with normal phlogopite, KMg3[Si3AlO10](OH)2. Analyses of some natural phlogopites showing Si in excess of 3.0 (up to 3.18) per formula unit can be explained through this ternary miscibility range.  相似文献   

13.
Summary The phase relations of K-richterite, KNaCaMg5Si8O22(OH)2, and phlogopite, K3Mg6 Al2Si6O20(OH)2, have been investigated at pressures of 5–15 GPa and temperatures of 1000–1500 °C. K-richterite is stable to about 1450 °C at 9–10 GPa, where the dp/dT-slope of the decomposition curve changes from positive to negative. At 1000 °C the alkali-rich, low-Al amphibole is stable to more than 14 GPa. Phlogopite has a more limited stability range with a maximum thermal stability limit of 1350 °C at 4–5 GPa and a pressure stability limit of 9–10 GPa at 1000 °C. The high-pressure decomposition reactions for both of the phases produce relatively small amounts of highly alkaline water-dominated fluids, in combination with mineral assemblages that are relatively close to the decomposing hydrous phase in bulk composition. In contrast, the incongruent melting of K-richterite and phlogopite in the 1–3 GPa range involves a larger proportion of hydrous silicate melts. The K-richterite breakdown produces high-Ca pyroxene and orthoenstatite or clinoenstatite at all pressures above 4 GPa. At higher pressures additional phases are: wadeite-structured K2SiVISiIV 3O9 at 10 GPa and 1500 °C, wadeite-structured K2SiVISiIV 3O9 and phase X at 15 GPa and 1500 °C, and stishovite at 15 GPa and 1100 °C. The solid breakdown phases of phlogopite are dominated by pyrope and forsterite. At 9–10 GPa and 1100–1400 °C phase X is an additional phase, partly accompanied by clinoenstatite close to the decomposition curve. Phase X has variable composition. In the KCMSH-system (K2CaMg5Si8O22(OH)2) investigated by Inoue et al. (1998) and in the KMASH-system investigated in this report the compositions are approximately K4Mg8Si8O25(OH)2 and K3.7Mg7.4Al0.6Si8.0O25(OH)2, respectively. Observations from natural compositions and from the phlogopite-diopside system indicate that phlogopite-clinopyroxene assemblages are stable along common geothermal gradients (including subduction zones) to 8–9 GPa and are replaced by K-richterite at higher pressures. The stability relations of the pure end member phases of K-richterite and phlogopite are consistent with these observations, suggesting that K-richterite may be stable into the mantle transition zone, at least along colder slab geotherms. The breakdown of moderate proportions of K-richterite in peridotite in the upper part of the transition zone may be accompanied by the formation of the potassic and hydrous phase X. Additional hydrogen released by this breakdown may dissolve in wadsleyite. Therefore, very small amounts of hydrous fluids may be released during such a decomposition. Received April 10, 2000; revised version accepted November 6, 2000  相似文献   

14.
As a first step towards accurate quantification of the polysomatic states of biopyriboles, we have studied the polysomatic transformation between amphibole and hydrous triple-chain silicate (TCS) in the synthetic system Na2O-MgO-SiO2-H2O (NMSH). The reaction is: 4Na2Mg4Si6O16(OH)2 TCS 3Na2.67Mg5.33Si8O21.33(OH)2.67. Amphibole We have characterised a polysomatic intergrowth of amphibole and TCS (synthesized at 2 kbar/(653° C) by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), infrared spectroscopy and 29Si magic-angle-spinning (MAS) NMR spectroscopy. The sample is a fine-scale lamellar intergrowth of double- and triple-chain structures; lamellae are 27 Å to hundreds of Ångströms wide. The 29Si MAS NMR spectrum of the intergrowth is explicitly a superposition of the individual amphibole and TCS spectra. By ensuring that the recycle delay time used considers the longest spin-lattice relaxation time (ca. 900 s), the relative amounts of double- and triple-chain structures can be quantified by simple deconvolution of the spectrum. The relative amounts of double- and triple-chain structures are 42 ± 5 and 58 ± 5 mol%, respectively. With regard to quantifying populations of chain multiplicities in biopyriboles, we believe that 29Si NMR is more accurate than the conventional HRTEM fringe-counting method (Maresch and Czank 1983, 1988), and is far superior to XRD and infrared spectroscopy, which suffer from high sensitivity to particle size and calibration problems. 29Si MAS NMR can provide an accurate means of monitoring the progress of polysomatic reactions in biopyriboles. It is likely to be most effective for samples containing only a few different chain multiplicities (e.g. m = 1, 2, 3 and perhaps 4), such as occur in natural pyroxenes and amphiboles.  相似文献   

15.
Amorphous gels and oxides corresponding to Ca2Mg5Si8O23 in bulk composition have been reacted to phase assemblages containing tremolitic amphibole using routine hydrothermal methods in the pressure/temperature range from 1–22 kbar and 600–875° C. The products have been characterized by X-ray diffraction, optical microscopy and high-resolution electron microscopy. The nature of the amphibole microstructure and the types of intergrown biopyriboles vary markedly as a function of synthesis temperature and pressure, reflecting different amphibole growth mechanisms. At P(H2O)<10 kbar, within or very near the stability field of fale, amphibole forms by topotactic reaction from this metastably crystallized, intermediate phase; chain multiplicity faults (CMFs) with m3 are numerous; the bulk compositional shift in the disordered amphibole crystals is compensated in the run product by coexisting diopside. At P(H2O)10 kbar, but still in the talc stability field, amphibole grows topotactically from and also nucleates preferentially on metastable diopside by a dissolution/regrowth process; the two phases form fine ( 100 Å) lamellar intergrowths with almost no CMFs with m3, and the compositional shift induced by armoured diopside relics is compensated by discrete talc. The same lamellar amphibole/diopside microstructure is observed at temperatures above the talc stability field and at all pressures investigated, but the compositional shift is compensated by enstatite+quartz. Varying the experimental parameters (run duration; H2O content) does not significantly affect the above observations. For the wide range of pressures and temperatures investigated, the synthetic amphiboles of the present study appear to correspond very closely to end-member tremolite. The observed product assemblages and apparent compositional shifts of the amphibole, equivalent in Ca/Mg ratio to as much as 11 mol% magnesiocummingtonite component, can be explained by the incorporation of CMFs in this phase. We argue that CMF-induced shifts in Ca/Mg ratios also play a significant role for the 10 mol% magnesiocummingtonite component commonly assumed in analogous experiments in the present literature. The genuine magnesiocummingtonite solid-solution component may be much less than 10 mol%. Empirical high-resolution transmission electron microscopy observations of preferential corrosion structures at crystal terminations suggest that, to a first approximation, structurally disordered tremolites exhibit the reaction behaviour of mechanical mixtures down to the unit-cell scale. The thermodynamic properties of synthetic tremolite, even in small intergrown lamellae within disordered crystals, should therefore closely approach those of discrete, ideal tremolite single crystals, in accord with the converging agreement shown by recent comparative experimental studies on the phase relationships of natural and synthetic tremolite.  相似文献   

16.
FROST  RONALD 《Journal of Petrology》1975,16(2):272-313
The 2 km wide contact aureole produced from serpentinite bythe intrusion of the Mount Stuart Batholith into the IngallsComplex at Paddy-Go-Easy Pass contains the following ultramaficassemblages, in order of increasing grade: serpentine-forsterite-diopside,serpentine-forsterite-tremolite, forsterite-talc, forsterite-anthophyllite,forsterite-enstatite-anthophyllite, forsterite-enstatite-chlorite,forsterite-enstatite-spinel. Associated metarodingites displayfive metamorphic zones, the diagnostic assemblages of whichare, in increasing grade: grossular-idocrase-chlorite, grossular-diopside-chlorite,epidote-diopside-chlorite, epidotediopside-spinel, plagioclase-grossular-diopside.Mafic hornfels in the aureole contains no orthopyroxene, indicatingthat the conditions of pyroxene hornfels facies were not reached. The breakdown of chlorite is best displayed in aluminous blackwallreaction zones around mafic inclusions in the peridotite. Attemperatures above those of the anthophyllite-out isograd, butwithin the field of forsterite+tremolite, these chlorite-richrocks react to form the assemblage: forsterite-enstatite-spinel.Calculations show that cordierite did not form as a result ofchlorite breakdown in the natural system because impurities,such as iron and chromium, displaced the equilibrium: forsterite+cordierite= enstatite+spinel to much lower pressures than the three kilobarsfound in the pure system. The primary chromite of the peridotite has been altered to chrome-magnetitein the serpentinite. This alteration seems to be isochemicalover the whole rock, as true chromite, formed by metamorphism,occurs at grades above that of the forsterite-enstatite-anthophylliteassemblage. Calcic amphibole in high-grade metaperidotite is tremolite,even in the presence of aluminous chromite, whereas that inmetamorphosed blackwall rock grades from tremolite into hornblende.The pattern of substitution appears to be: Mg2Si3rlhar2;(Na,K)(AlVI)2(AlIV)3.  相似文献   

17.
The paper presents data on the thermochemical study (high-temperature melt calorimetry in a Tian–Calvet microcalorometer) of two natural Mg–Fe amphiboles: anthophyllite Mg2.0(Mg4.8Fe0.2 2+)[Si8.0O22](OH)2 from Kukh-i-Lal, southwestern Pamirs, Tajikistan, and gedrite Na0.4Mg2.0(Mg1.7Fe0.2 2+Al1.3)[Si6.3Al1.7O22](OH)2 from the Kola Peninsula, Russia. The enthalpy of formation from elements is obtained as–12021 ± 20 kJ/mol for anthophyllite and as–11545 ± 12 kJ/mol for gedrite. The standard entropy, enthalpy, and Gibbs energy of formation are evaluated for Mg–Fe amphiboles of theoretical composition.  相似文献   

18.
The paper reports original thermochemical data on six natural amphibole samples of different composition. The data were obtained by high-temperature melt solution calorimetry in a Tian–Calvet microcalorometer and include the enthalpies of formation from elements for actinolite Ca1.95(Mg4.4Fe 0.5 2+ Al01)[Si8.0O22](OH)2(–12024 ± 13 kJ/mol) and Ca2.0(Mg2.9Fe 1.9 2+ Fe 0.2 3+ )[Si7.8Al0.2O22](OH)2, (–11462 ± 18 kJ/mol), and Na0.1Ca2.0(Mg3.2Fe 1.6 2+ Fe 0.2 3+ )[Si7.7Al0.3O22](OH)2 (–11588 ± 14 kJ/mol); for pargasite Na0.5K0.5Ca2.0-(Mg3.4Fe 1.8 2+ Al0.8)[Si6.2Al1.8O22](OH)2 (–12316 ± 10 kJ/mol) and Na0.8K0.2Ca2.0(Mg2.8Fe 1.3 3+ Al0.9) [Si6.1Al1.9O22](OH)2 (–12 223 ± 9 kJ/mol); and for hastingsite Na0.3K0.2Ca2.0(Mg0.4Fe 1.3 2+ Fe 0.9 3+ Al0.2) [Si6.4Al1.6O22](OH)2 (?10909 ± 11 kJ/mol). The standard entropy, enthalpy, and Gibbs free energy of formation are estimated for amphiboles of theoretical composition: end members and intermediate members of the isomorphic series tremolite–ferroactinolite, edenite–ferroedenite, pargasite–ferropargasite, and hastingsite.  相似文献   

19.
Orthorhombic amphiboles with excess OH, which can be schematically deduced from anthophyllite by the combined substitutions Mg2+ + O2–Li++OH and Mg2+2 Li+, were synthesized at 750–875° C/1 kbar in the system Li2O-MgO-SiO2-H2O. Their phase relations are presented for 800° C/1 kbar . An amphibole with the analytical composition 2.70 wt% Li2O, 31.1 wt% MgO, 63.0 wt% SiO2, and 3.29 wt% H2O has lattice constants a 0 18.588 (11), b 0 17.966 (10), c 0 5.262 (3) Å, V 0 1,757.2 (1.5) Å3 (referred to Space Group Pnma). The OH-valence vibrational spectrum of this amphibole showed v OH bands at 3,667, 3,708, and 3,725 (shoulder) cm–1, which are ascribed to OH in the configurations (MgMgMg)-OH, (MgMgMg)-OH-Li (Li in the A-site) of the pseudotrigonal (M1M1M3)-OH arrangement in the amphibole structure, and to Si-OH, respectively. No explanation can at present be offered for an additional shoulder at 3,695 cm–1. The proposed structural formula is (Li0.27 0.73)(Li1.11 Mg0.89)· (Mg5)(Si8.01O21.20(OH)0.80)(OH)2.00.  相似文献   

20.
The paper reports results of an experimental thermochemical study (in a heat-flux Tian-Calvet microcalorimeter) of montmorillonite from (I) the Taganskoe and (II) Askanskoe deposits and (III) from the caldera of Uzon volcano, Kamchatka. The enthalpy of formation Δ f H el 0 (298.15 K) of dehydrated hydroxyl-bearing montmorillonite was determined by melt solution calorimetry: ?5677.6 ± 7.6 kJ/mol for Na0.3Ca0.1(Mg0.4Al1.6)[Si3.9Al0.1O10](OH)2 (I), ?5614.3 ± 7.0 kJ/mol for Na0.4K0.1(Ca0.1Mg0.3Al1.5Fe 0.1 3+ )[Si3.9Al0.1O10](OH)2 (II), ?5719 ± 11 kJ/mol for K0.1Ca0.2Mg0.2(Mg0.6Al1.3Fe 0.1 3+ ) [Si3.7Al0.3O10](OH)2 (III), and ?6454 ± 11 kJ/mol for water-bearing montmorillonite (I) Na0.3Ca0.1(Mg0.4Al1.6)[Si3.9Al0.1O10](OH)2 · 2.6H2O. The paper reports estimated enthalpy of formation for the smectite end members of the theoretical composition of K-, Na-, Mg-, and Ca-montmorillonite and experimental data on the enthalpy of dehydration (14 ± 2 kJ per mole of H2O) and dehydroxylation (166 ± 10 kJ per mole of H2O) for Na-montmorillonite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号