首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The character and location of seismic activity accompanying the onset of the 1991–1993 eruption at Mt. Etna are compatible with the surface evidence of the volcanic pile rupture. Both the epicentral distribution and the focal mechanisms of a swarm that occurred on December 14, 1991, agree with magma ascent occurring along the main NNW-SSE-trending structure of the volcano and the consequent opening of a system of effusive fissures with the same trend. A typical mainshock-aftershock sequence, recorded the day after and indicating transcurrent displacement occurring along the second-principal structure of Etna (NE-SW), depicts the tectonic response of the volcanic pile and the underlying basement to major stresses applied by the magma push.  相似文献   

2.
The 2002–03 Mt Etna flank eruption began on 26 October 2002 and finished on 28 January 2003, after three months of continuous explosive activity and discontinuous lava flow output. The eruption involved the opening of eruptive fissures on the NE and S flanks of the volcano, with lava flow output and fire fountaining until 5 November. After this date, the eruption continued exclusively on the S flank, with continuous explosive activity and lava flows active between 13 November and 28 January 2003. Multi-disciplinary data collected during the eruption (petrology, analyses of ash components, gas geochemistry, field surveys, thermal mapping and structural surveys) allowed us to analyse the dynamics of the eruption. The eruption was triggered either by (i) accumulation and eventual ascent of magma from depth or (ii) depressurisation of the edifice due to spreading of the eastern flank of the volcano. The extraordinary explosivity makes the 2002–03 eruption a unique event in the last 300 years, comparable only with La Montagnola 1763 and the 2001 Lower Vents eruptions. A notable feature of the eruption was also the simultaneous effusion of lavas with different composition and emplacement features. Magma erupted from the NE fissure represented the partially degassed magma fraction normally residing within the central conduits and the shallow plumbing system. The magma that erupted from the S fissure was the relatively undegassed, volatile-rich, buoyant fraction which drained the deep feeding system, bypassing the central conduits. This is typical of most Etnean eccentric eruptions. We believe that there is a high probability that Mount Etna has entered a new eruptive phase, with magma being supplied to a deep reservoir independent from the central conduit, that could periodically produce sufficient overpressure to propagate a dyke to the surface and generate further flank eruptions.Editorial responsibility: J. Donnelly-Nolan  相似文献   

3.
The 1614–1624 lava flow of Mt. Etna was formed during a long-duration flank eruption involving predominantly pahoehoe flows which produced unusual surface features including mega-tumuli (here defined) and terraces. Detailed mapping of the flow units, surface features, and associated tubes reveals a complex sequence of emplacement for the field. The stair-stepped terraces appear to have been formed as a consequence of self-damming of tube-fed flows which developed «perched» ponds of lava. Surges of lava through tubes elevated sections of crusted lava at the distal ends of the flow to generate tumuli, some as high as 130 m, as a consequence of pressure via «hydrostatic head» conditions within the tube. Although pahoehoe lavas and the related features described here are atypical of Mt. Etna, they may reflect styles of eruption and lava emplacement found on volcanoes elsewhere.  相似文献   

4.
The 1991–1993 eruption was probably the largest on Mt. Etna for 300 years. Since then the volcano has entered an unusually quiescent period. A comprehensive record of gravity and ground deformation changes presented here bracket this eruption and give valuable insight into magma movements before, during and after the eruption. The gravity and deformation changes observed before the eruption (1990–1991) record the intrusion of magma into the summit feeder and the SSE-trending fracture system which had recently been active in 1978, 1979, 1983 and 1989, creating the feeder dyke for the 1991–1993 eruption. In the summit region gravity changes between 1992 and 1993 (spanning the end of the eruption) reflect the withdrawal of magma from the conduit followed more recently (1993–1994) by the re-filling of magma in the conduit up to pre-eruption levels. In contrast, in the vicinity of the fracture zone, gravity has remained at the 1991–1992 level, indicating that no withdrawal has occurred here. Rather, magma has solidified in the fracture system and sealed it such that the 1993–1994 increase in magma level in the conduit was not accompanied by further intrusion into the flanks. Mass calculations suggest that a volume of at least 107 m3 of magma has solidified within the southeastern flank of the volcano.  相似文献   

5.
The papers deals with the seismic activity occurred on Mt. Etna from 1978 to 1983, and special emphasis is given to the seismicity linked to eruptive phenomena that took place during that period.Location of epicentres and hypocentres of all earthquakes occurred during the considered years and in association with each eruption has shown to be a useful tool to investigate relationships between seismicity and characteristics of various eruptions.A preliminary model is proposed to explain seismo-eruptive mechanisms controlling the uprise of magma and subsequent eruptions of Mt. Etna. The complexity of phenomena observed in the Etnean area could be interpreted as the result of the combined effect of regional stress field and local changes of it due to the volcano structural inhomogeneities. Thus, the earthquakes occurring in the studied area may cause either partial intrusion of magma at various depth, or final opening of surface fractures and subsequent output of lava.  相似文献   

6.
Following the 2001 and 2002–2003 flank eruptions, activity resumed at Mt. Etna on 7 September 2004 and lasted for about 6 months. This paper presents new petrographic, major and trace element, and Sr–Nd isotope data from sequential samples collected during the entire 2004–2005 eruption. The progressive change of lava composition allowed defining three phases that correspond to different processes controlling magma dynamics inside the central volcano conduits. The compositional variability of products erupted up to 24 September is well reproduced by a fractional crystallization model that involves magma already stored at shallow depth since the 2002–2003 eruption. The progressive mixing of this magma with a distinct new one rising within the central conduits is clearly revealed by the composition of the products erupted from 24 September to 15 October. After 15 October, the contribution from the new magma gradually becomes predominant, and the efficiency of the mixing process ensures the emission of homogeneous products up to the end of the eruption. Our results give insights into the complex conditions of magma storage and evolution in the shallow plumbing system of Mt. Etna during a flank eruption. Furthermore, they confirm that the 2004–2005 activity at Etna was triggered by regional movements of the eastern flank of the volcano. They caused the opening of a complex fracture zone extending ESE which drained a magma stored at shallow depth since the 2002–2003 eruption. This process favored the ascent of a different magma in the central conduits, which began to be erupted on 24 September without any significant change in eruptive style, deformation, and seismicity until the end of eruption.  相似文献   

7.
The 2002–03 flank eruption of Etna was characterized by two months of explosive activity that produced copious ash fallout, constituting a major source of hazard and damage over all eastern Sicily. Most of the tephra were erupted from vents at 2750 and 2800 m elevation on the S flank of the volcano, where different eruptive styles alternated. The dominant style of explosive activity consisted of discrete to pulsing magma jets mounted by wide ash plumes, which we refer to as ash-rich jets and plumes. Similarly, ash-rich explosive activity was also briefly observed during the 2001 flank eruption of Etna, but is otherwise fairly uncommon in the recent history of Etna. Here, we describe the features of the 2002–03 explosive activity and compare it with the 2001 eruption in order to characterize ash-rich jets and plumes and their transition with other eruptive styles, including Strombolian and ash explosions, mainly through chemical, componentry and morphology investigations of erupted ash. Past models explain the transition between different styles of basaltic explosive activity only in terms of flow conditions of gas and liquid. Our findings suggest that the abundant presence of a solid phase (microlites) may also control vent degassing and consequent magma fragmentation and eruptive style. In fact, in contrast with the Strombolian or Hawaiian microlite-poor, fluidal, sideromelane clasts, ash-rich jets and plumes produce crystal-rich tachylite clasts with evidence of brittle fragmentation, suggesting that high groundmass crystallinity of the very top part of the magma column may reduce bubble movement while increasing fragmentation efficiency.  相似文献   

8.
Electro-optical distance measurements made on the summit of Mt. Etna from 1971 to 1974 show evidence of large surface deformation of the volcano. This deformation cannot be satisfactorily analysed in terms of the models of subsurface magma reservoirs of various geometries that have been previously used, as they have, for instance, on Kilauea in Hawaii. A model that gives a better fit between the observed and computed data involves horizontal, radial strain about an open, cylindrical magma column. In this model, strain is inversely proportional to the square of the distance from the centre of the deformation. This strain pattern is probably confined to the immediate vicinity of the summit vents and is of a different nature lower down the volcano. Tiltmeter, precise levelling and distance measurement data collected over the period of a small flank eruption in January–March 1974 indicate that the eruption was fed by magma through a conduit from the summit reservoir system of the Chasm and Bocca Nuova. Inflation of the summit around the Northeast Crater, which had been measured since 1971, continued despite the flank eruption, and eruptive activity was resumed at the Northeast Crater in September 1974.  相似文献   

9.
The March–August, 1983 eruption of Mt. Etna can be considered as one of the most important in the last years.The analysis of seismic activity during the three months immediately before the eruption showed interesting variations of theb coefficient, in the frequency-magnitude relationship, that have been linked to possible changes of the stress field in the Etnean region.The eruption start was also preceded by a strong seismic crisis with epicenters mostly on the southern, eastern and southwestern flanks of the volcano, and characterized by the shallowness of most of the events (h3 km).The data analysis has led to a hypothesis on the eruption occurrence based on a model of dynamic evolution of the stress field acting on Mt. Etna.  相似文献   

10.
Ground deformation occurring on the southern flank of Mt Etna volcano during the July–August 2001 eruption was monitored by GPS measurements along an E–W profile crossing the fissure system. This profile was measured eight times during the eruption, using the 'stop and go' semi-kinematic technique. Horizontal and vertical displacements between GPS surveys are reported for each station. The most significant event is a deformation episode occurring during the first week of the eruption, between 25–27 July. Displacements were measured on benchmarks close to the eruptive fissure and the tensile 1989 fracture. Data inversions for measured displacements were performed using the Okada model. The model shows the narrowing of the 2001 dyke accompanied by a dextral dislocation along an east-dipping fault, parallel to the 1989 fracture.Editorial responsibility: T. Druitt  相似文献   

11.
Geological surveys, tephrostratigraphic study, and 40Ar/39Ar age determinations have allowed us to chronologically constrain the geological evolution of the lower NW flank of Etna volcano and to reconstruct the eruptive style of the Mt Barca flank eruption. This peripheral sector of the Mt Etna edifice, corresponding to the upper Simeto valley, was invaded by the Ellittico volcano lava flows between 41 and 29 ka ago when the Mt Barca eruption occurred. The vent of this flank eruption is located at about 15 km away from the summit craters, close to the town of Bronte. The Mt Barca eruption was characterized by a vigorous explosive activity that produced pyroclastic deposits dispersed eastward and minor effusive activity with the emission of a 1.1-km-long lava flow. Explosive activity was characterized by a phreatomagmatic phase followed by a magmatic one. The geological setting of this peripheral sector of the volcano favors the interaction between the rising magma and the shallow groundwater hosted in the volcanic pile resting on the impermeable sedimentary basement. This process produced phreatomagmatic activity in the first phase of the eruption, forming a pyroclastic fall deposit made of high-density, poorly vesicular scoria lapilli and lithic clasts. Conversely, during the second phase, a typical strombolian fall deposit formed. In terms of hazard assessment, the possible occurrence of this type of highly explosive flank eruption, at lower elevation in the densely inhabited areas, increases the volcanic risk in the Etnean region and widens the already known hazard scenario.  相似文献   

12.
Mount Etna volcano erupted almost simultaneously on its northeastern and southern flanks between October 27 and November 3, 2002. The eruption on the northeastern flank lasted for 8 days, while on the southern flank it continued for 3 months. The northeastern flank eruption was characterized by the opening of a long eruptive fracture system between 2,900 and 1,900 m.a.s.l. A detailed survey indicates that the fractures’ direction shifted during the opening from N10W (at the NE Crater, 2,900 m) to N45E (at its lowest portion, 1,900 m) and that distinct magma groups were erupted at distinct fracture segments. Based on their petrological features, three distinct groups of rocks have been identified. The first group, high-potassium porphyritic (HKP), is made up of porphyritic lavas with a Porphyritic Index (P.I.) of 20–32 and K2O content higher than 2 wt%. The second group is represented by lavas and tephra with low modal phenocryst abundance (P.I. < 20) named here oligo-phyric (low-phyric), and K2O content higher than 2 wt% (HKO, high-potassium oligophyric). The third group, low-potassium oligophyric (LKO), consists of tephra with oligophyric texture (P.I. < 20) but K2O content < 2 wt%. K-rich magmas (HKP and HKO) are similar to the magma erupted on the southern flank, and geochemical variations within these groups can be accounted for by a variable degree of fractionation from a single parent magma. The K-poor magma (LKO), erupted only in the upper segment of the fracture, cannot be placed on the same liquid line of descent of the HK groups, and it is similar to the magmas that fed the activity of Etna volcano prior to the eruption of 1971. This is the first time since then that a magma of this composition has been documented at Mt. Etna, thus providing a strong indication for the existence of distinct batches of magma whose rise and differentiation are independent from the main conduit system. The evolution of this eruption provides evidence that the NE Rift plays a very active role in the activity of Mt. Etna volcano, and that its extensional tectonics allows the intrusion and residence of magma bodies at various depths, which can therefore differentiate independently from the main open conduit system.  相似文献   

13.
During the July–August 2001 eruption of Mt. Etna development of extensional fractures/faults and grabens accompanied magma intrusion and subsequent volcanic activity. During the first days of the eruption, we performed an analysis of attitude, displacement and propagation of fractures and faults exposed on the ground surface in two sites, Torre del Filosofo and Valle del Leone, located along the same fracture system in the region surrounding the Valle del Bove depression on the eastern flank of Mt. Etna. Fractures and faults formed as the consequence of a shallow intruding dyke system that fed the several volcanic centres developed along the fracture system. The investigated sites differ in slope attitude and in geometrical relationships between fractures and slopes. In particular, the fracture system propagated parallel to the gentle slope (<7° dip) in the Torre del Filosofo area, and perpendicular to the steep slope (25° dip) in the Valle del Leone area. In the Torre del Filosofo area, slight graben subsidence and horizontal extension of the ground surface by about 3 m were recorded. In the Valle del Leone area, extensional faulting forming a larger and deeper graben with horizontal extension of the ground surface by about 10 m was recorded. For the Valle del Leone area, we assessed a downhill dip of 14° for the graben master fault at the structural level beneath the graben where the fault dip shallows. These results suggest that dyke intrusion at Mount Etna, and particularly in the region surrounding the Valle del Bove depression, may be at the origin of slope failure and subsequent slumps where boundary conditions, i.e. geometry of dyke, slope dip and initial shear stress, amongst others, favour incipient failures.  相似文献   

14.
15.
Apoyo caldera, near Granada, Nicaragua, was formed by two phases of collapse following explosive eruptions of dacite pumice about 23,000 yr B.P. The caldera sits atop an older volcanic center consisting of lava flows, domes, and ignimbrite (ash-flow tuff). The earliest lavas erupted were compositionally homogeneous basalt flows, which were later intruded by small andesite and dacite flows along a well defined set of N—S-trending regional faults. Collapse of the roof of the magma chamber occurred along near-vertical ring faults during two widely separated eruptions. Field evidence suggests that the climactic eruption sequence opened with a powerful plinian blast, followed by eruption column collapse, which generated a complex sequence of pyroclastic surge and ignimbrite deposits and initiated caldera collapse. A period of quiescence was marked by the eruption of scoria-bearing tuff from the nearby Masaya caldera and the development of a soil horizon. Violent plinian eruptions then resumed from a vent located within the caldera. A second phase of caldera collapse followed, accompanied by the effusion of late-stage andesitic lavas, indicating the presence of an underlying zoned magma chamber. Detailed isopach and isopleth maps of the plinian deposits indicate moderate to great column heights and muzzle velocities compared to other eruptions of similar volume. Mapping of the Apoyo airfall and ignimbrite deposits gives a volume of 17.2 km3 within the 1-mm isopach. Crystal concentration studies show that the true erupted volume was 30.5 km3 (10.7 km3 Dense Rock Equivalent), approximately the volume necessary to fill the caldera. A vent area located in the northeast quadrant of the present caldera lake is deduced for all the silicic pyroclastic eruptions. This vent area is controlled by N—S-trending precaldera faults related to left-lateral motion along the adjacent volcanic segment break. Fractional crystallization of calc-alkaline basaltic magma was the primary differentiation process which led to the intermediate to silicic products erupted at Apoyo. Prior to caldera collapse, highly atypical tholeiitic magmas resembling low-K, high-Ca oceanic ridge basalts were erupted along tension faults peripheral to the magma chamber. The injection of tholeiitic magmas may have contributed to the paroxysmal caldera-forming eruptions.  相似文献   

16.
One of the major objectives of volcanology remains relating variations in surface monitoring signals to the magmatic processes at depth that cause these variations. We present a method that enables compositional and temporal information stored in zoning of minerals (olivine in this case) to be linked to observations of real-time degassing data. The integrated record may reveal details of the dynamics of gradual evolution of a plumbing system during eruption. We illustrate our approach using the 2006 summit eruptive episodes of Mt. Etna. We find that the history tracked by olivine crystals, and hence, most likely the magma pathways within the shallow plumbing system of Mt. Etna, differed considerably between the July and October eruptions. The compositional and temporal record preserved in the olivine zoning patterns reveal two mafic recharge events within months of each other (June and September 2006), and each of these magma supplies may have triggered the initiation of different eruptive cycles (July 14–24 and August 31–December 14). Correlation of these observations with gas monitoring data shows that the systematic rise of the CO2/SO2 gas values is associated with the gradual (pre- and syn-eruptive) supply of batches of gas-rich mafic magma into segments of Etna’s shallow plumbing system, where mixing with pre-existing and more evolved magma occurred.  相似文献   

17.
The July 17 – August 9, 2001 flank eruption of Mt. Etna was preceded and accompanied by remarkable changes in volcanic tremor. Based on the records of stations belonging to the permanent seismic network deployed on the volcano, we analyze amplitude and frequency content of the seismic signal. We find considerable changes in the volcanic tremor which mark the transition to different styles of eruptive activity, e.g., lava fountains, phreatomagmatic activity, Strombolian explosions. In particular, the frequency content of the signal decreases from 5 Hz to 3 Hz at our reference station ETF during episodes of lava fountains, and further decreases at about 2 Hz throughout phases of intense lava emission. The frequency content and the ratios of the signal amplitude allow us to distinguish three seismic sources, i.e., the peripheral dike which fed the eruption, the reservoir which fed the lava fountains, and the central conduit. Based on the analysis of the amplitude decay of the signal, we highlight the migration of the dike from a depth of ca. 5 km to about 1 km between July 10 and 12. After the onset of the effusive phase, the distribution of the amplitude decay at our stations can be interpreted as the overall result of sources located within the first half kilometer from the surface. Although on a qualitative basis, our findings shed some light on the complex feeding system of Mt. Etna, and integrate other volcanological and geophysical studies which tackle the problem of magma replenishment for the July–August, 2001 flank eruption. We conclude that volcanic tremor is fundamental in monitoring Mt. Etna, not only as a marker of the different sources which act within the volcano edifice, but also of the diverse styles of eruptive activity. An erratum to this article is available at .  相似文献   

18.
The explosive behavior and the rheology of lavas in basaltic volcanoes, usually driven by differentiation, can also be significantly affected by the kinetics of magma degassing in the upper portion of the feeding system. The complex eruption of 2001 at Mt. Etna, Italy, was marked by two crucial phenomena that occurred at the Laghetto vent on the southern flank of the volcano: 1) intense explosive activity and 2) at the end of the eruption, emission of a lava flow with higher viscosity than flows previously emitted from the same vent. Here, we investigate the hypothesis that these events were driven by the injection of volatile-rich magma into the feeding system. The input and mixing of this magma into a reservoir containing more evolved magma had the twofold effect of increasing 1) the overall concentration of volatiles and 2) their exsolution with consequent efficient vesiculation and degassing. This led to an explosive stage of the eruption, which produced a ~75-m-high cinder cone. Efficient volatile loss and the consequent increase of the liquidus temperature brought about the nucleation of Fe-oxides and other anhydrous crystalline phases, which significantly increased the magma viscosity in the upper part of the conduit, leading to the emission of a high viscosity lava flow that ended the eruption. The 2001 eruption has offered the opportunity to investigate the important role that input of volatile-rich magma may exert in controlling not only the geochemical features of erupted lavas but also the eruption dynamics. These results present a new idea for interpreting similar eruptions in other basaltic volcanoes and explaining eruptions with uncommonly high explosivity when only basic magmas are involved.  相似文献   

19.
Soil CO2 flux measurements were carried out along traverses across mapped faults and eruptive fissures on the summit and the lower East Rift Zone of Kilauea volcano. Anomalous levels of soil degassing were found for 44 of the tectonic structures and 47 of the eruptive fissures intercepted by the surveyed profiles. This result contrasts with what was recently observed on Mt. Etna, where most of the surveyed faults were associated with anomalous soil degassing. The difference is probably related to the differences in the state of activity at the time when soil gas measurements were made: Kilauea was erupting, whereas Mt. Etna was quiescent although in a pre-eruptive stage. Unlike Mt. Etna, flank degassing on Kilauea is restricted to the tectonic and volcanic structures directly connected to the magma reservoir feeding the ongoing East Rift eruption or in areas of the Lower East Rift where other shallow, likely independent reservoirs are postulated. Anomalous soil degassing was also found in areas without surface evidence of faults, thus suggesting the possibility of previously unknown structures. Received: November 2003, revised: January 2005, accepted: January 2005  相似文献   

20.
The February 1999 eruption of Mt. Etna took place through a fissure on the SSE flank of the cone of the summit SE Crater. This event was preceded by continuous activity since 1995, sometimes accompanied by violent outbursts from one or more of the three other summit craters (NE Crater, Voragine or Chasm, and Bocca Nuova), and finally by a series of 20 short-lived eruptions from the SE Crater between September 1998 and January 1999. These phenomena could be accounted for by invoking gradual invasion of a shallow small reservoir by more primitive, basic and gas-rich magma coming from depth. The shallow “chamber” is more likely to be a plexus of dikes, which had developed during the previous years (1995–1997), following variations of the local stress field owing to enhanced magma generation and accumulation at the top of the mantle. Magma injection and mixing is evidenced through geochemistry, whereas the state of stress of the volcanic pile and underlying crust is determined using earthquake distributions and focal mechanisms. The behaviour of the seismic tremor amplitude appears to be a good indicator of the state of unrest of the volcano, although not always directly linked to the relative energy of degassing phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号