首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper a new approach for fractal based dimensionality reduction of hyperspectral data has been proposed. The features have been generated by multiplying variogram fractal dimension value with spectral energy. Fractal dimension bears the information related to the shape or characteristic of the spectral response curves and the spectral energy bears the information related to class separation. It has been observed that, the features provide accuracy better than 90 % in distinguishing different land cover classes in an urban area, different vegetation types belonging to an agricultural area as well as various types of minerals belonging to the same parent class. Statistical comparison with some conventional dimensionality reduction methods validates the fact that the proposed method, having less computational burden than the conventional methods, is able to produce classification statistically equivalent to those of the conventional methods.  相似文献   

2.
The high number of spectral bands that are obtained from hyperspectral sensors, combined with the often limited ground truth, solicits some kind of feature reduction when attempting supervised classification. This letter demonstrates that an optimal constant function representation of hyperspectral signature curves in the mean square sense is capable of representing the data sufficiently to outperform, or match, other feature reduction methods such as principal components transform, sequential forward selection, and decision boundary feature extraction for classification purposes on all of the four hyperspectral data sets that we have tested. The simple averaging of spectral bands makes the resulting features directly interpretable in a physical sense. Using an efficient dynamic programming algorithm, the proposed method can be considered fast.  相似文献   

3.
高光谱遥感数据具有光谱信息丰富、图谱合一的特点,目前已经广泛地应用在对地观测中。传统的高光谱分类模型大多过分依赖影像光谱信息,没有充分利用空间特征信息,这使得分类精度还有很大的提升空间。条件随机场是一种概率模型,能够较好地融合空间上下文信息,在高光谱影像分类中已经得到越来越多的关注,但大部分条件随机场模型存在超平滑的现象,会导致影像细节丢失。针对该问题,本文提出了一种优化融合影像空-谱信息的高分辨率/高光谱影像分类方法,该方法将影像的纹理信息与原始光谱信息进行融合,利用SVM分类器对其进行预分类,并将各类概率定义为一元势函数,以融合空间特征信息;然后将空间平滑项和局部类别标签成本项加入二元势函数中,以考虑空间背景信息,并保留各类别中的详细信息。最后,通过两组的高分辨率/高光谱影像数据进行试验。结果表明,与SVM算法、传统的条件随机场方法和面向对象的分类方法相比,本文提出的算法在整体分类精度上分别提高了10%、9%和8%以上,同时在保持地物边缘完整性、避免“同谱异物”与“同物异谱”的现象方面有较明显的优势。  相似文献   

4.
针对高光谱影像数据具有波段众多、数据量较大的特点,本文提出了一种基于波段子集的独立分量分析(ICA)特征提取的高光谱遥感影像分类的新方法。以北京昌平小汤山地区的高光谱影像为例,根据高光谱遥感影像的相邻波段的相关性进行子空间划分,在各个波段子集上采用ICA算法进行特征提取,将各个子空间提取的特征合并组成特征向量,采用支持向量机(SVM)分类器进行分类。结果表明:该方法分类精度最佳(分类精度89.04%,Kappa系数0.8605,明显优于其它特征提取方法的SVM分类,有效地提高了高光谱数据的分类精度。  相似文献   

5.
The spectral angle mapper (SAM), as a spectral matching method, has been widely used in lithological type identification and mapping using hyperspectral data. The SAM quantifies the spectral similarity between an image pixel spectrum and a reference spectrum with known components. In most existing studies a mean reflectance spectrum has been used as the reference spectrum for a specific lithological class. However, this conventional use of SAM does not take into account the spectral variability, which is an inherent property of many rocks and is further magnified in remote sensing data acquisition process. In this study, two methods of determining reference spectra used in SAM are proposed for the improved lithological mapping. In first method the mean of spectral derivatives was combined with the mean of original spectra, i.e., the mean spectrum and the mean spectral derivative were jointly used in SAM classification, to improve the class separability. The second method is the use of multiple reference spectra in SAM to accommodate the spectral variability. The proposed methods were evaluated in lithological mapping using EO-1 Hyperion hyperspectral data of two arid areas. The spectral variability and separability of the rock types under investigation were also examined and compared using spectral data alone and using both spectral data and first derivatives. The experimental results indicated that spectral variability significantly affected the identification of lithological classes with the conventional SAM method using a mean reference spectrum. The proposed methods achieved significant improvement in the accuracy of lithological mapping, outperforming the conventional use of SAM with a mean spectrum as the reference spectrum, and the matching filtering, a widely used spectral mapping method.  相似文献   

6.
小样本的高光谱图像降噪与分类   总被引:1,自引:0,他引:1  
在样本数目稀少情况下实现高光谱图像精细分类是个挑战性的问题。高光谱图像信噪比提高比较困难,噪声大小对分类结果有最直接的影响。利用高光谱图像相邻波段之间的相关性和相邻像素之间的相关性,提出多级降噪滤波的高光谱图像分类方法,通过改进的两阶段稀疏与低秩矩阵分解方法,去除高光谱图像中能量较高的噪声,利用主成分分析方法去除高光谱图像中能量较低的噪声,引导滤波方法去除分类结果图中的"椒盐噪声"。选取两幅真实高光谱图像进行实验,结果表明,两阶段稀疏与低秩矩阵分解法和主成分分析法两种降噪方法具有较强的互补性;引导滤波方法使得分类图更加平滑且分类精度更高。与其他光谱空间分类方法相比,本文方法分类精度更高,且在样本极少时能获得很高的分类精度。  相似文献   

7.
In this study, a novel noise reduction algorithm for hyperspectral imagery (HSI) is proposed based on high-order rank-1 tensor decomposition. The hyperspectral data cube is considered as a three-order tensor that is able to jointly treat both the spatial and spectral modes. Subsequently, the rank-1 tensor decomposition (R1TD) algorithm is applied to the tensor data, which takes into account both the spatial and spectral information of the hyperspectral data cube. A noise-reduced hyperspectral image is then obtained by combining the rank-1 tensors using an eigenvalue intensity sorting and reconstruction technique. Compared with the existing noise reduction methods such as the conventional channel-by-channel approaches and the recently developed multidimensional filter, the spatial–spectral adaptive total variation filter, experiments with both synthetic noisy data and real HSI data reveal that the proposed R1TD algorithm significantly improves the HSI data quality in terms of both visual inspection and image quality indices. The subsequent image classification results further validate the effectiveness of the proposed HSI noise reduction algorithm.  相似文献   

8.
Classification of hyperspectral images has been receiving considerable attention with many new applications reported from commercial and military sectors. Hyperspectral images are composed of a large number of spectral channels, and have the potential to deliver a great deal of information about a remotely sensed scene. However, in addition to high dimensionality, hyperspectral image classification is compounded with a coarse ground pixel size of the sensor for want of adequate sensor signal to noise ratio within a fine spectral passband. This makes multiple ground features jointly occupying a single pixel. Spectral mixture analysis typically begins with pixel classification with spectral matching techniques, followed by the use of spectral unmixing algorithms for estimating endmembers abundance values in the pixel. The spectral matching techniques are analogous to supervised pattern recognition approaches, and try to estimate some similarity between spectral signatures of the pixel and reference target. In this paper, we propose a spectral matching approach by combining two schemes—variable interval spectral average (VISA) method and spectral curve matching (SCM) method. The VISA method helps to detect transient spectral features at different scales of spectral windows, while the SCM method finds a match between these features of the pixel and one of library spectra by least square fitting. Here we also compare the performance of the combined algorithm with other spectral matching techniques using a simulated and the AVIRIS hyperspectral data sets. Our results indicate that the proposed combination technique exhibits a stronger performance over the other methods in the classification of both the pure and mixed class pixels simultaneously.  相似文献   

9.
Currently, hyperspectral images have potential applications in many scientific areas due to the high spectral resolution. Extracting suitable and adequate bands/features from high dimensional data is a crucial task to classify such data. To overcome this issue, dimension reduction techniques have direct effects to improve the efficiency of classifiers on hyperspectral images. One common approach for decreasing the dimensionality is the feature/band selection by considering the optimum dimensionality of the hyperspectral imagery. In this paper, a new method was proposed to select optimal band for classification application, based on a metaheuristic Invasive Weed Optimization (IWO) algorithm. In this regard, the K-nearest neighbour (K-NN) technique was used as the classifier. Moreover, as a by-product of our band selection method, a new method was proposed to estimate an optimum dimension of the reduced hyperspectral images for better classification. Experimental results over three real-world hyperspectral datasets clearly showed that the proposed IWO-based band selection algorithm of this study led to the significant progress in selecting suitable bands for classification applications and estimation of optimum dimensionality of these datasets. In this regard, the overall accuracy (OA) of classification of the proposed IWO-based band selection algorithm was 92.02, 93.57, and 89.72 % for each dataset, respectively. Moreover, results reveal the superiority of the proposed IWO-based band selection algorithm against the other algorithms including GA, SA, ACO, and PSO for band selection purpose.  相似文献   

10.
Modern hyperspectral imaging and non-imaging spectroradiometer has the capability to acquire high-resolution spectral reflectance data required for surface materials identification and mapping. Spectral similarity metrics, due to their mathematical simplicity and insensitiveness to the number of reference labelled spectra, have been increasingly used for material mapping by labelling reflectance spectra in hyperspectral data labelling. For a particular hyperspectral data set, the accuracy of spectral labelling depends considerably upon the degree of unambiguous spectral matching achieved by the spectral similarity metric used. In this work, we propose a new methodology for quantifying spectral similarity for hyperspectral data labelling for surface materials identification. Developed adopting the multiple classifier system architecture, the proposed methodology unifies into a single framework the differential performances of eight different spectral similarity metrics for the quantification of spectral matching for surface materials. The proposed methodology has been implemented on two types of hyperspectral data viz. image (airborne hyperspectral images) and non-image (library spectra) for numerous surface materials identification. Further, the performance of the proposed methodology has been compared with the support vector machines (SVM) approach, and with all the base spectral similarity metrics. The results indicate that, for the hyperspectral images, the performance of the proposed methodology is comparable with that of the SVM. For the library spectra, the proposed methodology shows a consistently higher (increase of about 30% when compared to SVM) classification accuracy. The proposed methodology has the potential to serve as a general library search method for materials identification using hyperspectral data.  相似文献   

11.
天宫一号高光谱数据尚未得到普遍应用,其数据的质量和应用潜力仍在进一步实践求证和挖掘.See5.0数据挖掘工具是一种能够找出训练样本中模式类隐含特征,并可以自动建立决策规则的分类算法,可避免人为建立分类规则的主观性.本文首先通过光谱曲线分析,选择地物光谱分离性最好的波段组合,然后利用See5.0工具生成规则集,再利用规则集对同一幅天宫一号高光谱数据在不同分类级别上进行分类,并利用相同的验证样本进行精度验证.经过光谱分析发现分类不同森林类型的最佳谱段中心波长分别为:655 nm、673 nm、802 nm、866 nm、984 nm,See5.0分类结果表明在同一树种不同生长期及不同亚种的分类级别上,分类精度在45%以下,表现出了一定局限性,但在树种分类级别上,天宫一号数据表现出了高光谱的优越性,分类精度皆在80%以上,植被类型分类级别,分类精度可达到90%以上.  相似文献   

12.
利用高光谱遥感影像的空间纹理特征,可以提高高光谱遥感影像的分类精度。提出了一种多层级二值模式的高光谱影像空-谱联合分类方法。该方法将高光谱影像转化为局部二值模式特征图像获取像元微观特征,基于特征图像生成多层级特征向量获取像元宏观特征。为验证该方法的有效性,选取PaviaU、Salinas和Chikusei高光谱影像数据,利用核极限学习机分类器,分别针对光谱、局部二值模式、多层级二值模式等特征开展实验。结果表明,多层级二值模式空-谱分类总体精度分别达到97.31%、98.96%和97.85%,明显优于传统光谱、3Gabor空-谱等分类方法。该方法可为高光谱影像分类提供更加有效的类别判定特征,有助于提高影像分类精度并获取更加平滑的分类结果图。  相似文献   

13.
高光谱影像空-谱协同嵌入的地物分类算法   总被引:4,自引:4,他引:0  
黄鸿  郑新磊 《测绘学报》2016,45(8):964-972
针对传统高光谱影像地物分类算法大多仅考虑光谱信息而忽略空间邻近像元间相关性的问题,提出了一种空-谱协同嵌入(SSCE)降维算法和空-谱协同最近邻(SSCNN)分类器。首先,定义一种空-谱协同距离,并将其应用于近邻选取和低维嵌入;然后,构建空-谱近邻关系图来保持数据中的流形结构,并在权值设置中增大空间近邻点的权重以增强数据间的聚集性,提取鉴别特征;最后使用SSCNN分类器对降维后的数据进行分类。利用PaviaU和Salinas高光谱数据集进行试验验证,结果表明,与传统的光谱分类算法相比,该算法能有效提高高光谱影像的地物分类精度。  相似文献   

14.
由于物体表面的空间分布通常是富有规律且局部连续的,在高光谱影像分类中应充分利用其光谱和空间信息。本文在对高光谱影像立方体进行降维处理的基础上,提出了一种联合空域和谱域信息的高光谱影像高效分类方法。首先,分别选用主成分分析(Principal Component Analysis,PCA)和正交投影波段选择(Orthogonal Projection Band Selection,OPBS)两种方法对原始高光谱数据进行预处理,获取降维后的影像数据。然后在其基础上提取扩展形态学特征(Extended Morphology Profiles,EMP)和地物表面纹理特征,组成联合光谱和纹理、形状结构特征。最后,采用支持向量机(Support Vector Machine,SVM)分类器对联合特征进行分类。针对不同真实高光谱数据集的实验结果表明,本文提出的方法运算效率高且具有令人满意的分类性能。  相似文献   

15.
传统谱聚类的高光谱影像波段选择模型中,采用的波段相似矩阵受到噪声或异常值的影响且仅能表征波段的单一相似特征,导致波段子集的选取结果受到限制.本文从波段选择的目的 出发,提出鲁棒多特征谱聚类方法,整合多个特征的波段相似矩阵来形成综合相似矩阵以解决上述问题.该方法假设4种相似性度量包括光谱信息散度、光谱角度距离、波段相关性...  相似文献   

16.
梁雪剑  张晔  张钧萍 《遥感学报》2021,25(11):2283-2302
深度学习在高光谱图像处理领域的研究应用不断深入发展,基于深度学习的高光谱图像分类达到了较高的分类精度。目前的分类模型多利用高光谱的图谱特征,但对光谱的诊断性特征及先验信息利用不足,对空谱特征提取过程难以实现有效协同,因而导致分类类别即类内分类不够精细。为了解决以上问题,本文提出一种以多标签数据为输入的共生神经网络模型,在高光谱图谱特征提取的基础上融合光谱诊断特征,实现相对含水量反演及精细分类。首先,通过构建一种新的红边斜率光谱指数实现高光谱图像相对含水量的表征,利用本文提出的自适应分级算法完成相对含水量反演并建立对应的等级标签,与地物种类标签共同构成多标签高光谱数据集。然后,构建共生神经网络架构及内部变维特征提取模块,利用多标签数据提取高光谱图像中空间、光谱和相对含水量的融合特征,提高深度模型对不同含水量地物的区分能力和对所提取特征的协同表达能力,降低模型的复杂度与计算量,完成基于多标签数据集的相对含水量反演引导分类的过程,在扩大传统类间距离的基础上进一步扩大类内距离,从而实现高光谱图像的精细分类。最后,使用实验室采集数据和4个公开的高光谱数据集Lopex、Indian Pines、Pavia University和Salinas进行实验验证。结果表明,本文提出的红边斜率光谱指数可以有效表征地物的相对含水量信息;相对含水量反演引导的分类模型对类内分类精度有较明显的提升,对总体分类结果有一定的改善;与其他机器学习和深度学习分类算法相比,本文算法取得了较好的分类结果,提高了深度分类模型的分类性能和精细程度,实现了精细分类。  相似文献   

17.
传统依据图嵌入的高光谱图像维数约简算法多数仅利用光谱信息表征像元间单一关系,忽视了数据间的多元几何结构。本文提出了一种面向高光谱图像分类的空-谱协同正则化稀疏超图嵌入算法(SSRSHE)。该算法首先利用稀疏表示揭示像元之间的相关性,自适应选择近邻,并构建稀疏本征超图和惩罚超图,以有效表征像元间的复杂多元关系,并进行正则化处理。然后利用遥感图像空间一致性原则,计算局部空间邻域散度来保持样本局部邻域结构,并引入样本总体散度来保持高光谱数据的整体结构。在低维嵌入空间中,尽可能使类内数据聚集、类间数据远离,提取鉴别特征用于分类。在Indian Pines和PaviaU高光谱遥感数据集上试验结果表明,本文算法总体分类精度分别达到86.7%和 92.2%。相比传统光谱维数约简算法,该算法可有效改善高光谱图像地物分类性能。  相似文献   

18.
Abstract

Hyperspectral image provides abundant spectral information for remote discrimination of subtle differences in ground covers. However, the increasing spectral dimensions, as well as the information redundancy, make the analysis and interpretation of hyperspectral images a challenge. Feature extraction is a very important step for hyperspectral image processing. Feature extraction methods aim at reducing the dimension of data, while preserving as much information as possible. Particularly, nonlinear feature extraction methods (e.g. kernel minimum noise fraction (KMNF) transformation) have been reported to benefit many applications of hyperspectral remote sensing, due to their good preservation of high-order structures of the original data. However, conventional KMNF or its extensions have some limitations on noise fraction estimation during the feature extraction, and this leads to poor performances for post-applications. This paper proposes a novel nonlinear feature extraction method for hyperspectral images. Instead of estimating noise fraction by the nearest neighborhood information (within a sliding window), the proposed method explores the use of image segmentation. The approach benefits both noise fraction estimation and information preservation, and enables a significant improvement for classification. Experimental results on two real hyperspectral images demonstrate the efficiency of the proposed method. Compared to conventional KMNF, the improvements of the method on two hyperspectral image classification are 8 and 11%. This nonlinear feature extraction method can be also applied to other disciplines where high-dimensional data analysis is required.  相似文献   

19.
With recent technological advances in remote sensing sensors and systems, very high-dimensional hyperspectral data are available for a better discrimination among different complex land-cover classes. However, the large number of spectral bands, but limited availability of training samples creates the problem of Hughes phenomenon or ‘curse of dimensionality’ in hyperspectral data sets. Moreover, these high numbers of bands are usually highly correlated. Because of these complexities of hyperspectral data, traditional classification strategies have often limited performance in classification of hyperspectral imagery. Referring to the limitation of single classifier in these situations, Multiple Classifier Systems (MCS) may have better performance than single classifier. This paper presents a new method for classification of hyperspectral data based on a band clustering strategy through a multiple Support Vector Machine system. The proposed method uses the band grouping process based on a modified mutual information strategy to split data into few band groups. After the band grouping step, the proposed algorithm aims at benefiting from the capabilities of SVM as classification method. So, the proposed approach applies SVM on each band group that is produced in a previous step. Finally, Naive Bayes (NB) as a classifier fusion method combines decisions of SVM classifiers. Experimental results on two common hyperspectral data sets show that the proposed method improves the classification accuracy in comparison with the standard SVM on entire bands of data and feature selection methods.  相似文献   

20.
针对高光谱影像分类问题,提出了一种显著性特征提取方法。首先,利用超像素分割算法将高光谱影像3个相邻波段分割为若干个小区域。然后,基于分割得到的小区域计算反映不同区域的显著性特征。最后,沿着光谱方向采用大小为3、步长为1的滑窗法获得所有波段的显著性特征。进一步将提取的显著性特征与光谱特征进行结合,并将结合后的特征输入到支持向量机中进行分类。利用Pavia大学、Indian Pines和Salinas 3组高光谱影像数据进行分类试验。试验结果表明,与传统的空间特征提取方法和基于卷积神经网络的高光谱影像分类方法相比,提取的显著性特征能够获得更高的高光谱影像分类精度,且结合光谱特征能够进一步提高分类精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号