首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Geodinamica Acta》1998,11(5):233-247
In New Zealand, the Marlborough strike-slip faults link the Hikurangi subduction zone to the Alpine fault collision zone. Stratigraphic and structural analysis in the Marlborough region constrain the inception of the current strike-slip tectonics.Six major Neogene basins are investigated. Their infill is composed of marine and freshwater sediments up to 3 km thick; they are characterised by coarse facies derived from the basins bounding relief, high sedimentation rates and asymmetric geometries. Proposed factors that controlled the basins' generation are the initial geometry of the strike-slip faults and the progressive strike-slip motion. Two groups of basins are presented: the early Miocene (23 My) basins were generated under wrench tectonics above releasing-jogs between basement faults. The late Miocene (11 My) basins were initiated by halfgrabens tilted along straighter faults during a transtensive stage. Development of faults during Cretaceous to Oligocene times facilitated the following propagation of wrench tectonics. The Pliocene (5 My) to current increasing convergence has shortened the basins and distorted the Miocene array of faults. This study indicates that the Marlborough Fault System is an old feature that connected part of the Hikurangi margin to the Alpine fault since the subduction and collision initiation.  相似文献   

2.
The ultramafic‐mafic complex in the Marlborough terrane of the northern New England Fold Belt is dominated by members of a Neoproterozoic (ca 560 Ma) ophiolite (V1). The ophiolite has been intruded by the products of three Palaeozoic tectonomagmatic episodes (V2, V3 and V4). The V2 magmatic episode is represented by tholeiitic and calc‐alkaline basalts and gabbros of island‐arc affinities. Sm/Nd isotopes give a whole‐rock isochron age of 380 ± 19 Ma (2σ) to this episode, some 180 million years younger than the V1 ophiolitic rocks. The V3 magmatic episode includes tholeiitic and alkali basalts with enriched geochemical signatures characteristic of intraplate volcanism. A whole‐rock Sm/Nd isochron age of 293 ± 35 Ma is obtained for this event. A fourth magmatic event (V4) is represented by basaltic andesites and siliceous intrusives with geochemical features similar to modern adakites. This event has its type locality in the Percy Isles. These data provide tectonic and geochronological constraints for the previously enigmatic Marlborough terrane and as such contribute to the ever‐evolving understanding of New England Fold Belt development.  相似文献   

3.
Petrological, geochemical and radiogenic isotopic data on ophiolitic‐type rocks from the Marlborough terrane, the largest (~700 km2) ultramafic‐mafic rock association in eastern Australia, argue strongly for a sea‐floor spreading centre origin. Chromium spinel from partially serpentinised mantle harzburgite record average Cr/(Cr + Al) = 0.4 with associated mafic rocks displaying depleted MORB‐like trace‐element characteristics. A Sm/Nd isochron defined by whole‐rock mafic samples yields a crystallisation age of 562 ± 22 Ma (2σ). These rocks are thus amongst the oldest rocks so far identified in the New England Fold Belt and suggest the presence of a late Neoproterozoic ocean basin to the east of the Tasman Line. The next oldest ultramafic rock association dated from the New England Fold Belt is ca530 Ma and is interpreted as backarc in origin. These data suggest that the New England Fold Belt may have developed on oceanic crust, following an oceanward migration of the subduction zone at ca540 Ma as recorded by deformation and metamorphism in the Anakie Inlier. Fragments of late Neoproterozoic oceanic lithosphere were accreted during progressive cratonisation of the east Australian margin.  相似文献   

4.
The Quaternary glaciogenic sediments exposed on the southwest shore of Lake Pukaki were investigated. The sections consisted of the Pukaki Diamicton, which is composed of four lithofacies: (i) homogeneous facies (PDH)—a grey matrix-supported homogeneous subglacial diamicton; (ii) coarse facies (PDC)—a very coarse matrix-supported diamicton, which was interpreted as a proximal glaciolacustrine sediment; (iii) laminated facies (PDL)—a cream coloured, fine-grained, matrix-supported diamicton, with grade laminations of silt, sand and gravel, interpreted as a more distal glaciolacustrine facies; and (iv) fine facies (PDF)—a cream coloured fine-grained, silt-rich matrix-supported diamicton, with lenses of sand and gravels, which was interpreted as the most distal glaciolacustrine facies. It is suggested that these sediments were produced by two small ice advances during a period of general retreat. Furthermore, the sections showed a combination of three types of glaciotectonic deformation; gravity tectonics, proglacial glaciotectonics and subglacial glaciotectonics. Two of the moraines showed an unusual style of glaciotectonic deformation, i.e. proglacial deformation on the proximal face and gravitational slumping on the distal face. It is suggested that this style of deformation is diagnostic of proglacial deformation into a waterbody associated with a retreating margin.  相似文献   

5.
Seismic reflection and refraction data were collected west of New Zealand's South Island parallel to the Pacific–Australian Plate boundary. The obliquely convergent plate boundary is marked at the surface by the Alpine Fault, which juxtaposes continental crust of each plate. The data are used to study the crustal and uppermost mantle structure and provide a link between other seismic transects which cross the plate boundary. Arrival times of wide-angle reflected and refracted events from 13 recording stations are used to construct a 380-km long crustal velocity model. The model shows that, beneath a 2–4-km thick sedimentary veneer, the crust consists of two layers. The upper layer velocities increase from 5.4–5.9 km/s at the top of the layer to 6.3 km/s at the base of the layer. The base of the layer is mainly about 20 km deep but deepens to 25 km at its southern end. The lower layer velocities range from 6.3 to 7.1 km/s, and are commonly around 6.5 km/s at the top of the layer and 6.7 km/s at the base. Beneath the lower layer, the model has velocities of 8.2–8.5 km/s, typical of mantle material. The Mohorovicic discontinuity (Moho) therefore lies at the base of the second layer. It is at a depth of around 30 km but shallows over the south–central third of the profile to about 26 km, possibly associated with a southwest dipping detachment fault. The high, variable sub-Moho velocities of 8.2 km/s to 8.5 km/s are inferred to result from strong upper mantle anisotropy. Multichannel seismic reflection data cover about 220 km of the southern part of the modelled section. Beneath the well-layered Oligocene to recent sedimentary section, the crustal section is broadly divided into two zones, which correspond to the two layers of the velocity model. The upper layer (down to about 7–9 s two-way travel time) has few reflections. The lower layer (down to about 11 s two-way time) contains many strong, subparallel reflections. The base of this reflective zone is the Moho. Bi-vergent dipping reflective zones within this lower crustal layer are interpreted as interwedging structures common in areas of crustal shortening. These structures and the strong northeast dipping reflections beneath the Moho towards the north end of the (MCS) line are interpreted to be caused by Paleozoic north-dipping subduction and terrane collision at the margin of Gondwana. Deeper mantle reflections with variable dip are observed on the wide-angle gathers. Travel-time modelling of these events by ray-tracing through the established velocity model indicates depths of 50–110 km for these events. They show little coherence in dip and may be caused side-swipe from the adjacent crustal root under the Southern Alps or from the upper mantle density anomalies inferred from teleseismic data under the crustal root.  相似文献   

6.
Models of fluid/rock interaction in and adjacent to the Alpine Fault in the Hokitika area, South Island, New Zealand, were investigated using hydrogen and other stable isotope studies, together with field and petrographic observations. All analysed samples from the study area have similar whole‐rock δD values (δDWR = ?56 to ?30‰, average = ?45‰, n = 20), irrespective of rock type, degree of chloritization, location along the fault, or across‐strike distance from the fault in the garnet zone. The green, chlorite‐rich fault rocks, which probably formed from Australian Plate precursors, record nearly isothermal fluid/rock interaction with a schist‐derived metamorphic fluid at high temperatures near 450–500°C (δD of water in equilibrium with the green fault rocks (δDH2O, green) ≈ ?18‰; δD of water in equilibrium with the greyschists and greyschist‐derived mylonites (δDH2O, grey) ≈ ?19‰ at 500°C; δDH2O, green ≈ ?17‰; δDH2O, grey ≈ ?14‰ at 450°C). There is no indication of an influx of a meteoric or mantle‐derived fluid in the Alpine Fault Zone in the study area. The Alpine Fault Zone at the surface shows little evidence of late‐stage retrogression or veining, which might be attributed to down‐temperature fluid flow. It is probable that prograde metamorphism in the root zone of the Southern Alps releases metamorphic fluids that at some region rise vertically rather than following the trace of the Alpine Fault up to the surface, owing to the combined effects of the fault, the disturbed isotherms under the Southern Alps, and the brittle–ductile transition. Such fluids could mix with meteoric fluids to deposit quartz‐rich, possibly gold‐bearing veins in the region c. 5–10 km back from the fault trace. These results and interpretations are consistent with interpretations of magnetotelluric data obtained in the South Island GeopHysical Transects (SIGHT) programme.  相似文献   

7.
Cretaceous granulite facies metamorphism in the Fiordland area of New Zealand has distinctive mineralogical, textural and structural features that set it apart from most other regional metamorphic belts. The metamorphism, developed over a 30×150-km area and the consequence of a 20-km-thick increment to crustal thickness, is closely associated in space and time with a large plutonic complex, the Western Fiordland Orthogneiss (WFO). Although temperatures and pressures as high as 700  °C and 12  kbar were attained, the metamorphic overprint on earlier low-pressure assemblages is weak and incomplete. Little strain accompanied the metamorphism. The temperature threshold at which metamorphic recrystallization is recorded is over 500  °C. Zoned garnets are preserved at unusually high temperatures, indicating duration of metamorphism on the order of 10 times shorter than in most other regional terranes. This pattern of features bears close similarity to metamorphism in the Coast Plutonic Complex in North America, where a mechanism of 'magma loading' has been invoked. In Fiordland, the high-pressure metamorphism can be explained by depression of country rock under a crustal zone that is inflated by intrusion of the WFO. Regional structure of the WFO as a horizontally sheeted complex suggests that the pluton was emplaced by vertical displacement of country rock, and supports the magma loading model.  相似文献   

8.
Nick Lewis 《GeoJournal》2004,59(2):149-160
Two decades of reforms to the state in New Zealand have altered policy, its making and the ways in which it is realised in micro settings. This paper uses the example of schooling to examine the rationality of these reforms, their spatial logic and what they mean for our understanding of the national state. It examines the development and practices of the Education Review Office (ERO), the body established under the reforms to evaluate and audit the performance of schools in the new national education `system'. The paper interprets neo-liberalism as a governmentality, and argues that the development of new managerial technologies of remote control such as contract and audit constitute a spatial model of control. The paper suggests that this model encourages, and relies for its efficacy upon, the cultivation of neo-liberal subjectivities. It argues that although the political projects working through the reforms have shifted, the altered rationality of the state and the models of control erected to secure it define an enduring and neo-liberalising social transformation. The shift to the `Third Way' in New Zealand's political and social economy is underpinned by neo-liberalising processes, which continue to reorganise social and economic spaces. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The Puhipuhi epithermal area, which occurs in a region of graywacke basement partially covered by basalt and lake-bed deposits, is characterized by both large-scale and small-scale geophysical anomalies. Known occurrences of locally intense alteration or silicification are typically associated with strong gravity, resistivity or IP anomalies. Gravity data define a complex negative residual anomaly (up to −50 gu) which has been used to identify and delineate a large area (about 20 km2) of low-density, presumably clay-altered, graywacke basement rocks. This zone, modeled as extending to a few kilometers depth, encompasses, but is more extensive than, the known areas of alteration and has a close spatial association with the basalt cover rocks. Short-wavelength gravity minima and maxima, which indicate that the most intense alteration of the basement rocks occurs below the basalt, correlate, in part, with the inferred location of hydrothermal upflow zones. The control on the location of these zones and their relationship to the location of the basalts is not well known; however, if the basalts acted as a cap rock to the geothermal system, then these areas merit further exploration. High (≥100 ohm-m) and low (≤10 ohm-m) resistivity and high (≥30 mS) IP anomalies occur in association with known silicification, clay alteration and sulfide mineralisation, respectively. In addition, magnetic data help constrain the relative timing of hydrothermal alteration and basaltic volcanism and indicate that mineralisation was broadly synchronous with volcanism.  相似文献   

10.
Fossils of forest habitat beetles and leaves of Nothofagus menziesii provide evidence of a forest refugium at times between ca. 34 000 and ca. 18 500 cal. a BP at an upland site in Howard Valley, located adjacent to glaciated valleys in South Island, New Zealand. The stratigraphy of the glacial‐aged terrace sequence of organic‐rich silts and fluvial sand/gravels indicates that soil development occurred episodically for around 15 000 a. Fifty‐four beetle taxa represent seven habitat types: forest, forest or scrub, riparian and aquatic, litter, grass/tussock, marshland and moss habitats. Leaf and beetle fossils indicate that forest dominated by N. menziesii persisted at the site for most of the time period represented, and tree line taxa such as Taenarthrus sp. 1 (Carabidae) and Podocarpus sp. (Podocarpaceae) indicate that the site may represent the upper tree limit for full‐glacial time. The finding of forest at this elevated site adds to the growing fossil evidence for multiple forest refugia in New Zealand during the last glaciation and is consistent with the pollen records, which have consistently indicated the presence of forest species during the last glaciations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Leaching processes are believed to be responsible for the unusually low-ash content (sometimes less than 1%) of the thick (up to 35 m) Cretaceous coals located in the Greymouth coalfield, South Island, New Zealand. Although leaching of inorganics in peat is a generally accepted process, little is known about leaching after burial. The “Main” and “E” seams in the Greymouth coalfield show good correlation between low ash and bed thickness. The ash content, however, is often less than 1%, which is lower than most known modern analogues (i.e. peat). There are several lines of evidence that suggest that mineral matter may have been removed from the coal not only in the peat stage but also after burial. For example, etching features found in quartz grains and clay aggregates indicate that some leaching processes have taken place. In addition, liptinitic material (e.g., bitumen) in the cleat networks supports the conclusion that there has been some movement of solutions through the coal after burial. These solutions may have helped to remove some of the inorganics originally within the Greymouth coals.  相似文献   

12.
Pressure–temperature pseudosections for ‘greyschist’ (metamorphosed greywacke and argillite) from the Alpine Schist (Haast Schist group) near Hokitika (Southern Alps, New Zealand) are used to gain new insights into its metamorphic history. The rocks were metamorphosed at relatively low‐grade conditions associated with the first appearance and initial growth of garnet in the stability field of albite. The measured and predicted garnet compositional zoning data are used to construct an overall P–T path by combining P–T path results from nearby rocks that have a range of MnO contents. The P–T path obtained is steep from ~380 °C/2.5 kbar up to ~490 °C/8.5 kbar, then recurves sharply with garnet growth continuing during early decompression to ~500 °C/6.5 kbar. Most garnet growth in the study area took place in the stability field of albite, with oligoclase appearing only during decompression, when the peristerite gap was entered. On appearance of oligoclase, there is a marked decrease in the CaO content of garnet. The preservation of mineral assemblages from near‐peak temperature conditions can be understood in terms of the P–T path subsequently becoming tangential to water content contours, during cooling with further decompression.  相似文献   

13.
新西兰科罗曼德尔半岛火山岩带是世界知名的浅成低温热液型金矿成矿省,也是新西兰最为重要的金银矿矿集区,在环太平洋成矿带内占有重要的地位。科罗曼德尔半岛浅成低温热液型金矿主要赋存于科罗曼德尔群中新世安山岩和英安岩中,矿化类型主要为石英脉型和角砾岩型2种。矿床的成矿流体特征表现出明显的大气降水特征,并显示有少量的岩浆水加入,成矿物质具岩浆来源特征,为石英±方解石±冰长石±伊利石亚型浅成低温热液型金矿。区内金矿成矿时代为16.3~2.0Ma,主要集中于7.0~6.0Ma之间,金矿的大规模形成与诺特兰德火山弧与科尔维—劳火山弧共同作用有关,区域构造背景由挤压转变为伸展环境的转折期,为金矿形成的高峰期。区内零星出露与浅成低温热液型金矿化有关的斑岩型铜矿化表明,该地区具有较好的斑岩型铜矿化潜力。  相似文献   

14.
Uranium–lead age patterns of detrital zircons in Otago Schist meta-sandstones from eastern Otago, including areas of orogenic gold mineralisation, are mostly consistent with a Rakaia Terrane (Torlesse Composite Terrane) accretionary wedge protolith. Southwest of the Hyde-Macraes and Rise & Shine shear zones the depositional age is regarded as Middle–Late Triassic. At the south and west margins, there are two areas in the Late Triassic Waipapa Terrane protolith. Northeast of the Hyde-Macraes Shear Zone, the schist protolith has Middle to Late Triassic and middle to late Permian depositional ages of Rakaia Terrane affinity. At the northeastern margin of the Hyde-Macraes Shear Zone, there is a narrow strip with a mid-Carboniferous protolith, which may be a counterpart of the Carboniferous accretionary wedge in the New England Orogen, eastern Australia. Ordovician–Silurian zircons are a minor but distinctive feature in many of the protolith age patterns and form significant age components at hard-rock gold locations. These constrain the provenance of Rakaia Terrane protolith sediments to Late Triassic time and within the Permian–Triassic magmatic arcs at the northeastern Australian continental margin and partly within the Ordovician–Silurian granitoids of the Charters Towers Province hinterland and environs. The latter have extensive gold mineralisation and thus upon exhumation might be the origin of Otago gold.  相似文献   

15.
Detrital zircon U–Pb LAM-ICPMS age patterns for sandstones from the mid-Permian –Triassic part (Rakaia Terrane) of the accretionary wedge forming the Torlesse Composite Terrane in Otago, New Zealand, and from the early Permian Nambucca Block of the New England Orogen, eastern Australia, constrain the development of the early Gondwana margin. In Otago, the Triassic Torlesse samples have a major (64%), younger group of Permian–Early Triassic age components at ca 280, 255 and 240 Ma, and a minor (30%) older age group with a Precambrian–early Paleozoic range (ca 1000, 600 and 500 Ma). In Permian sandstones nearby, the younger, Late Permian age components are diminished (30%) with respect to the older Precambrian–early Paleozoic age group, which now also contains major (50%) and unusual Carboniferous age components at ca 350–330 Ma. Sandstones from the Nambucca Block, an early Permian extensional basin in the southern New England Orogen, follow the Torlesse pattern: the youngest. Early Permian age components are minor (<20%) and the overall age patterns are dominated (40%) by Carboniferous age components (ca 350–320 Ma). These latter zircons are inherited from either the adjacent Devonian–Carboniferous accretionary wedge (e.g. Texas-Woolomin and Coffs Harbour Blocks) or the forearc basin (Tamworth Belt) farther to the west, in which volcaniclastic-dominated sandstone units have very similar pre-Permian (principally Carboniferous) age components. This gradual variation in age patterns from Devonian–late Carboniferous time in Australia to Late Permian–mid-Cretaceous time in New Zealand suggests an evolutionary model for the Eastern Gondwanaland plate margin and the repositioning of its subduction zone. (1) A Devonian to Carboniferous accretionary wedge in the New England Orogen developing at a (present-day) Queensland position until late in the Carboniferous. (2) Early Permian outboard repositioning of the primary, magmatic arc allowing formation of extensional basins throughout the New England Orogen. (3) Early to mid-Permian translocation of the accretionary wedge and more inboard active-margin elements, southwards to their present position. This was accompanied by oroclinal bending which allowed the initiation of a new, late Permian to Early Triassic accretionary wedge (eventually the Torlesse Composite Terrane of New Zealand) in an offshore Queensland position. (4) Jurassic–Cretaceous development of this accretionary wedge offshore, in northern Zealandia, with southwards translation of the various constituent terranes of the Torlesse Composite Terrane to their present New Zealand position.  相似文献   

16.
A sedimentological and plant microfossil history of the Late Quaternary is preserved in two sediment cores from early Polynesian ditch systems on southern Aupouri Peninsula. The study places human activities into a geomorphological and ecological context and allows comparison of natural and anthropogenic effects on two different geological settings: a floodplain and a relatively closed peat swamp. The data fill part of the current gap in the environmental record from northern New Zealand, namely MIS 3 (57k–26k yr BP). There is evidence for an increase in fire frequency in the region after 40k 14C yr BP, suggesting a shift to drier (and cooler) conditions. Pollen records show that conifer‐hardwood forest dominated by podocarps (especially Dacrydium) prevailed prior to Polynesian arrival and deforestation within the last millennium, with Fuscopsora insignificant throughout. Both cores show sections with gaps in deposition or preservation, possible flood‐stripping of peat during the pre‐Holocene and mechanical disturbance by early Polynesians. The identification of prehistoric starch grains and other microremains of introduced Colocasia esculenta (taro) in both cores supports indirect evidence that the ditch systems of far northern New Zealand were used for the extensive cultivation of this crop. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
John Overton 《Geoforum》2010,41(5):752-762
Geographers have developed a keen interest in the social production of space - in the way meanings and values are ascribed to places as a result of changing social, cultural and political processes. There is a need to explore this approach further, seeing how social and economic values of places are inter-related and how these values are constructed in often deliberate and concerted ways. There is also a need to explore how such values are consumed: how the values in place are traded, appropriated and redistributed, both through the products of places and in land markets. This paper examines the New Zealand wine industry where certain wine regions have been identified and developed in ways which attempt to emphasise their distinctiveness in terms of wine quality and thus enhance the value of the wine produced. Different strategies have been employed in this process of place construction and this reflects the differential role of capital, striving on the one hand to increase the price and marketability of the products of distinctive places but, on the other, careful not to over-inflate land values and thus restrict further expansion. The paper suggests that the issue of consumption of space, involving a complex relationship amongst land, capital and place, is worthy of further exploration.  相似文献   

18.
新西兰科罗曼德尔半岛火山岩带是世界知名的浅成低温热液型金矿成矿省,也是新西兰最为重要的金银矿矿集区,在环太平洋成矿带内占有重要的地位。科罗曼德尔半岛浅成低温热液型金矿主要赋存于科罗曼德尔群中新世安山岩和英安岩中,矿化类型主要为石英脉型和角砾岩型2种。矿床的成矿流体特征表现出明显的大气降水特征,并显示有少量的岩浆水加入,成矿物质具岩浆来源特征,为石英±方解石±冰长石±伊利石亚型浅成低温热液型金矿。区内金矿成矿时代为16.3-2.0Ma,主要集中于7.0-6.0Ma之间,金矿的大规模形成与诺特兰德火山弧与科尔维一劳火山弧共同作用有关,区域构造背景由挤压转变为伸展环境的转折期,为金矿形成的高峰期。区内零星出露与浅成低温热液型金矿化有关的斑岩型铜矿化表明,该地区具有较好的斑岩型铜矿化潜力。  相似文献   

19.
Characterising youthful strike-slip fault systems within transtensional regimes is often complicated by the presence of tectonic geomorphic features produced by normal faulting associated with oblique extension. The Petersen Mountain fault in the northern Walker Lane tectonic province exhibits evidence of both normal and strike-slip faulting. We present the results of geologic and geomorphic mapping, and palaeoseismic trenching that characterise the fault's style and sense of deformation. The fault consists of two major traces. The western trace displaces colluvial, landslide, and middle to late Pleistocene alluvial fans and is associated with aligned range front saddles, linear drainages, and oversteepened range front slopes. The eastern trace is associated with a low linear bedrock ridge, a narrow graben, right deflected stream channels, and scarps in late Pleistocene alluvial fan deposits. A trench on the eastern trace of the fault exposed a clear juxtaposition of disintegrated granodiorite bedrock against sand and boulder alluvial fan deposits across a steeply east-dipping fault. The stratigraphic evidence supports the occurrence of at least one late Pleistocene earthquake with a component of lateral displacement. As such, the Petersen Mountain fault accommodates part of the ~7 mm/yr of dextral shear distributed across the northern Walker Lane.  相似文献   

20.
Development of Rhizocarpon growth curve from the Aoraki/Mount Cook area of New Zealand provides a means to assess Little Ice Age glacier behaviour and suggests approaches that have wider application. Employing a sampling strategy based on large populations affords the opportunity to assess which of various metrics (e.g. single largest, average of five largest, mean of an entire population) best characterise Rhizocarpon growth patterns. The 98% quantile from each population fitted with a quadric curve forms a reliable representation of the growth pattern. Since this metric does not depend on the original sample size, comparisons are valid where sample strategy must be adapted to local situations or where the original sample size differs. For the Aoraki/Mount Cook area a surface 100 years old will have a 98% quantile lichen diameter of 34.3 mm, whereas a 200‐year‐old surface will have a lichen diameter of 73.7 mm. In the Southern Alps, constraints from the age range of calibration points, the flattening of the quadric calibration curve and ecological factors limit the useful age range to approximately 250 years. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号