首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
The challenge of assessing and monitoring the influence of rangeland management practices on grassland productivity has been hampered in southern Africa, due to the lack of cheap earth observation facilities. This study, therefore, sought to evaluate the capability of the newly launched Sentinel 2 multispectral imager (MSI) data, in relation to Hyperspectral infrared imager (HyspIRI) data in estimating grass biomass subjected to different management practices, namely, burning, mowing and fertilizer application. Using sparse partial least squares regression (SPLSR), results showed that HyspIRI data exhibited slightly higher grass biomass estimation accuracies (RMSE = 6.65 g/m2, R2 = 0.69) than Sentinel 2 MSI (RMSE = 6.79 g/m2, R2 = 0.58) across all rangeland management practices. Student t-test results then showed that Sentinel 2 MSI exhibited a comparable performance to HyspIRI in estimating the biomass of grasslands under burning, mowing and fertilizer application. In comparing the RMSEs derived using wave bands and vegetation indices of HyspIRI and Sentinel, no statistically significant differences were exhibited (α = 0.05). Sentinel (Bands 5, 6 and 7) and HyspIRI (Bands 730 nm, 740 nm, 750 nm, 710 nm), as well as their derived vegetation indices, yielded the highest predictive accuracies. These findings illustrate that the accuracy of Sentinel 2 MSI data in estimating grass biomass is acceptable when compared with HyspIRI. The findings of this work provide an insight into the prospects of large-scale grass biomass modeling and prediction, using cheap and readily available multispectral data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号