首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

This study examined the complementarity of radar and optical data for feature identification. Spaceborne radar and Landsat Thematic Mapper (TM ) multispectral data sets were assessed independently and in combination to classify a site near Wad Medani, Sudan. Radar processing procedures included speckle reduction, texture extraction and post‐processing smoothing. Relative accuracy of the resultant classifications was established by comparison to ground truth information derived from field visitation. Neither speckle filtering nor post‐classification smoothing were improvements over the poor results obtained with the unfiltered, original radar data. Texture measures were significant improvements over the original data (20 percent overall accuracy increase) and several, but not all, individual classes had excellent results. Landsat TM had good overall results (80 percent correct) but considerable spectral confusion between urban and bare soil. Combination of radar with Landsat TM greatly improved results, achieving near perfect classification of all individual classes. The systematic strategy of this study, determination of the best individual method before introducing the next procedure, was effective in managing a complex set of analysis possibilities.  相似文献   

2.
The purpose of this study was to evaluate the relative classification accuracies of four land covers/uses in Kenya using spaceborne quad polarization radar from the Japanese ALOS PALSAR system and optical Landsat Thematic Mapper data. Supervised signature extraction and classification (maximum likelihood) was used to classify the different land covers/uses followed by an accuracy assessment. The original four band radar had an overall accuracy of 77%. Variance texture was the most useful of four measures examined and did improve overall accuracy to 80% and improved the producer’s accuracy for urban by almost 25% over the original radar. Landsat provided a higher overall classification accuracy (86%) as compared to radar. The merger of Landsat with the radar texture did not increase overall accuracy but did improve the producer’s accuracy for urban indicated some advantages for sensor integration.  相似文献   

3.
针对以光谱特征差异为依据,提取森林湿地信息精度低的问题,该文采用兼容多源数据的分类回归树(CART)提取方法,并以大沾河国家森林湿地进行实证研究。基于Landsat8遥感数据、Radarsat-2极化雷达数据和地形辅助数据,采用SPM软件分别构建3种特征变量组合的CART决策树模型,并获取分类规则,最后根据规则对研究区的森林湿地信息进行提取。结果表明:3种特征变量组合中,兼容光谱、纹理、雷达与地形辅助数据的CART决策树的森林湿地信息提取精度最高,用户精度和制图精度分别达到了88.46%和82.14%。研究结果体现了雷达数据与地形辅助数据有助于提取森林湿地信息。  相似文献   

4.
Abstract

Landsat MSS, TM and SPOT XS imageries were used in conjunction with unsupervised, supervised and hybrid classilication techniques to classify land cover types in semi‐arid savannas of Mathison Pastoral Station in the Katherine region of northern Australia. Accuracy assessment was based on field data from 246 ground survey sites over a 745‐km2 study area. Of 14 land cover classes identified by traditional mapping means, all combinations of imageries and classification techniques differentiated at least seven land cover types. The overall accuracy for these classifications ranged between 43% and 67%. SPOT XS image delivered the best accuracy followed by TM and MSS; unsupervised classification performed better than supervised and hybrid methods. User's and producer's accuracy of individual land units ranged from 0% to 100%. Riparian woodlands, woodland on limestone slopes, shrubland on clay plains, woodland on limestone plains and shadows were the best‐mapped classes. The land units that were associated with undulating hills were not mapped accurately. However, incorporation of a digital elevation model (DEM) in a GIS improved the overall accuracy. The user's and producer's accuracy of dominant land cover types were also enhanced. The classification results and the efficacy of the techniques at Mathison were similar to those found for a nearby semi‐arid area (Kidman Springs) about 200 km from Mathison. However, the overall accuracy was lower at Mathison than at Kidman Springs. Spectral classification masks were developed from the SPOT XS and TM imageries at Kidman Springs, and were applied to classify SPOT XS and TM imageries at Mathison. Initial results showed that the classification mask could be successfully extrapolated to map dominant land cover types but only with moderate accuracy (50%).  相似文献   

5.
Many data fusion methods are available, but it is poorly understood which fusion method is suitable for integrating Landsat Thematic Mapper (TM) and radar data for land cover classification. This research explores the integration of Landsat TM and radar images (i.e., ALOS PALSAR L-band and RADARSAT-2 C-band) for land cover classification in a moist tropical region of the Brazilian Amazon. Different data fusion methods—principal component analysis (PCA), wavelet-merging technique (Wavelet), high-pass filter resolution-merging (HPF), and normalized multiplication (NMM)—were explored. Land cover classification was conducted with maximum likelihood classification based on different scenarios. This research indicates that individual radar data yield much poorer land cover classifications than TM data, and PALSAR L-band data perform relatively better than RADARSAT-2 C-band data. Compared to the TM data, the Wavelet multisensor fusion improved overall classification by 3.3%-5.7%, HPF performed similarly, but PCA and NMM reduced overall classification accuracy by 5.1%-6.1% and 7.6%-12.7%, respectively. Different polarization options, such as HH and HV, work similarly when used in data fusion. This research underscores the importance of selecting a suitable data fusion method that can preserve spectral fidelity while improving spatial resolution.  相似文献   

6.
基于地统计学的图像纹理在岩性分类中的应用   总被引:17,自引:3,他引:17  
纹理是遥感图像的重要特征,它揭示了图像中辐射亮度值空间变化的重要信息。本文运用地统计学中的对数变差函数计算图像纹理,并与图像的光谱信息结合,进行图像岩性分类,分析了不同大小窗口纹理信息对分类精度的影响。结果表明,运用地统计学原理进行图像分类,可大大提高图像的分类精度;采用较大窗口提取的纹理信息参与分类能使总体分类精度提高,但某些岩性类的分类精度有所下降,建议在实际应用中,根据具体情况选择窗口的大小。  相似文献   

7.
This study examines the relative utility of quad-polarization spaceborne radar and derived texture measures for classification of specific land cover categories at a site in east-central Sudan near the city of Wad Madani. Japanese Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) quad-polarization spaceborne radar data at 12.5 m spatial resolution were obtained for this study. Measures of variance texture were applied to the original PALSAR data over varied window sizes. Transformed divergence (TD) measures of separability were calculated in order to evaluate the best bands from the original and texture measures for classification. Results show that quad-polarization radar data and derived texture measures have high separability between different land cover classes, and therefore hold potential to attain high levels of classification accuracy. Specifically, when used individually the cross-polarization bands showed the highest separability, but when used in combination some mix of cross- and like-polarization bands had the highest separability.  相似文献   

8.
泥炭沼泽是重要的湿地类型之一,对全球变化和生态平衡具有重要意义。本研究在野外实地调查和对比不同地物类型在不同极化方式下雷达影像后向散射系数差异的基础上,以ENVISAT ASAR、Landsat TM与数字高程模型(digital elevation model,DEM)数据为基本信息源,利用面向对象与决策树分类相结合的遥感影像分类方法,实现对小兴安岭西部泥炭沼泽典型分布区不同泥炭沼泽类型的空间分布信息提取,总体分类精度93.54%,Kappa系数0.92。结果表明,该方法在泥炭沼泽信息提取方面具有较大的应用潜力,相对于先前的研究,在分类精度上有一定的提高。  相似文献   

9.
冰川面积是监测冰川变化信息的重要参数。本文以各拉丹东地区为例,根据冰川区域特有的纹理特征,选取时间间隔为35天的ENVISAT ASAR干涉对,利用灰度共生矩阵提取纹理特征,通过波段组合进行监督分类,进而提取研究区冰川面积。同时以Landsat TM光学影像为依据,评价利用纹理特征提取结果的精度。研究表明:基于纹理特征并利用SAR影像提取冰川面积的方法是可行的,为提取冰川信息提供了又一可靠手段。  相似文献   

10.
Maximum likelihood (ML) and artificial neural network (ANN) classifiers were applied to three Landsat Thematic Mapper (TM) image sub-scenes (termed urban, agricultural and semi-natural) of Cukurova, Turkey. Inputs to the classifications comprised (i) spectral data and (ii) spectral data in combination with texture measures derived on a per-pixel basis. The texture measures used were: the standard deviation and variance and statistics derived from the co-occurrence matrix and the variogram. The addition of texture measures increased classification accuracy for the urban sub-scene but decreased classification accuracy for agricultural and semi-natural sub-scenes. Classification accuracy was dependent on the nature of the spatial variation in the image sub-scene and, in particular, the relation between the frequency of spatial variation and the spatial resolution of the imagery. For Mediterranean land, texture classification applied to Landsat TM imagery may be appropriate for the classification of urban areas only.  相似文献   

11.
LANDSAT-TM has been evaluated for forest cover type and landuse classification in subtropical forests of Kumaon Himalaya (U.P.) Comparative evaluation of false colour composite generated by using various band combinations has been made. Digital image processing of Landsat-TM data on VIPS-32 RRSSC computer system has been carried out to stratify vegetation types. Conventional band combination in false colour composite is Bands 2, 3 and 4 in Red/Green/Blue sequence of Landsat TM for landuse classification. The present study however suggests that false colour combination using Landsat TM bands viz., 4, 5 and 3 in Red/Green/Blue sequence is the most suitable for visual interpretation of various forest cover types and landuse classes. It is felt that to extract full information from increased spatial and spectral resolution of Landsat TM, it is necessary to process the data digitally to classify land cover features like vegetation. Supervised classification using maximum likelihood algorithm has been attemped to stratify the forest vegetation. Only four bands are sufficient enough to classify vegetaton types. These bands are 2,3,4 and 5. The classification results were smoothed digitaly to increase the readiability of the map. Finally, the classification carred out using digital technique were evaluated using systematic sampling design. It is observed that forest cover type mapping can be achieved upto 80% overall mapping accuracy. Monospecies stand Chirpine can be mapped in two density classes viz., dense pine (<40%) with more than 90% accuracy. Poor accuracy (66%) was observed while mapping pine medium dense areas. The digital smoothening reduced the overall mapping accuracy. Conclusively, Landsat-TM can be used as operatonal sensor for forest cover type mapping even in complex landuse-terrain of Kumaon Himalaya (U.P.)  相似文献   

12.
光学传感器在夜晚和云雨天气难以成像,合成孔径雷达(synthetic aperture radar,SAR)虽然能够全天时、全天候工作,但其成像难以理解,对此提出利用SAR影像翻译为光学影像的新思路来弥补二者的缺陷。给出了遥感影像翻译定义,提出一套包含图像理解、目标转换等环节的影像翻译技术流程。通过支持向量机分类、种子填充和基于样本的纹理合成算法等手段实现SAR影像典型目标向光学影像的转换与表达。最后,利用该方法实现了ENVISAT-ASAR转换为Landsat TM,ALOS PALSAR转换为GeoEye的两类影像翻译,并利用SAR影像翻译结果修补光学影像空缺。影像翻译和补缺实验证明了SAR影像翻译为光学影像的可行性和有效性。  相似文献   

13.
提出了利用主成分分析方法有效地复合纹理和结构信息,从Landsat7 ETM^*全色数据中直接提取区域尺度的城市建筑信息的新方法,并在此基础上评估了Landsat7 ETM^ 全色数据和SPOT全色数据在城市建筑信息提取上的相互替代性。  相似文献   

14.
The classification of tropical fragmented landscapes and moist forested areas is a challenge due to the presence of a continuum of vegetation successional stages, persistent cloud cover and the presence of small patches of different land cover types. To classify one such study area in West Africa we integrated the optical sensors Landsat Thematic Mapper (TM) and the Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) with the Phased Arrayed L-band SAR (PALSAR) sensor, the latter two on-board the Advanced Land Observation Satellite (ALOS), using traditional Maximum Likelihood (MLC) and Neural Networks (NN) classifiers. The impact of texture variables and the use of SAR to cope with optical data unavailability were also investigated. SAR and optical integrated data produced the best classification overall accuracies using both MLC and NN, respectively equal to 91.1% and 92.7% for TM and 95.6% and 97.5% for AVNIR-2. Texture information derived from optical images was critical, improving results between 10.1% and 13.2%. In our study area, PALSAR alone was able to provide valuable information over the entire area: when the three forest classes were aggregated, it achieved 75.7% (with MCL) and 78.1% (with NN) overall classification accuracies. The selected classification and processing methods resulted in fine and accurate vegetation mapping in a previously untested region, exploiting all available sensors synergies and highlighting the advantages of each dataset.  相似文献   

15.
In the present study, forest type classification using Landsat TM False Colour Composite (FCC) bands 2, 3, 4 has been evaluated for mapping highly heterogeneous forest environment of Western Ghats (Kerala). Visual interpretation of Landsat TM FCC has been carried out to identify bioclimatic vegetation types. For accuracy estimation maps prepared from 1∶15,000 scale black-and-white aerial photographs have been used as ground check data. For comparison aerial photomap classes have been aggregated to match with Landsat-TM-derived map. The classification accuracy of ten major bioclimatic and landcover types was estimated using systematic sampling procedure. The overall classification accuracy of the forest types for the study area was 88.33%.  相似文献   

16.
This study examined the appropriateness of radar speckle reduction for deriving texture measures for land cover/use classifications. Radarsat-2 C-band quad-polarised data were obtained for Washington, DC, USA. Polarisation signatures were extracted for multiple image components, classified with a maximum-likelihood decision rule and thematic accuracies determined. Initial classifications using original and despeckled scenes showed despeckled radar to have better overall thematic accuracies. However, when variance texture measures were extracted for several window sizes from the original and despeckled imagery and classified, the accuracy for the radar data was decreased when despeckled prior to texture extraction. The highest classification accuracy obtained for the extracted variance texture measure from the original radar was 72%, which was reduced to 69% when this measure was extracted from a 5 × 5 despeckled image. These results suggest that it may be better to use despeckled radar as original data and extract texture measures from the original imagery.  相似文献   

17.
Abstract

A classification method was developed for mapping land cover in NE Costa Rica at a regional scale for spatial input to a biogeochemical model (CENTURY). To distinguish heterogeneous cover types, unsupervised classifications of Landsat Thematic Mapper data were combined with ancillary and derived data in an iterative process. Spectral classes corresponding to ground control types were segregated into a storage raster while ambiguous pixels were passed through a set of rules to the next stage of processing. Feature sets were used at each step to help sort spectral classes into land cover classes. The process enabled different feature sets to be used for different types while recognizing that spectral classification alone was not sufficient for separating cover types that were defined by heterogeneity. Spectral data included the TM reflective bands, principal components and the NDVI. Ancillary data included GIS coverages of swamp extents, banana plantation boundaries and river courses. Derived data included neighborhood variety and majority measures that captured texture. The final map depicts 18 land cover types and captures the general patterns found in the region. Some confusion still exists between closely related types such as pasture with different amounts of tree cover.  相似文献   

18.
An image dataset from the Landsat OLI spaceborne sensor is compared with the Landsat TM in order to evaluate the excellence of the new imagery in urban landcover classification. Widely known pixel-based and object-based image analysis methods have been implemented in this work like Maximum Likelihood, Support Vector Machine, k-Nearest Neighbor, Feature Analyst and Sub-pixel. Classification results from Landsat OLI provide more accurate results comparing to the Landsat TM. Object-based classifications produced a more uniform result, but suffer from the absorption of small rare classes into large homogenous areas, as a consequence of the segmentation, merging and the spatial parameters in the spatial resolution (30 m) of Landsat images. Based exclusively on the overall accuracy reports, the SVM pixel-based classification from Landsat 8 proved to be the most accurate for the purpose of mapping urban land cover, using medium spatial resolution imagery.  相似文献   

19.
Single, interferometric dual, and quad-polarization mode data were evaluated for the characterization and classification of seven land use classes in an area with shifting cultivation practices located in the Eastern Amazon (Brazil). The Advanced Land-Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) data were acquired during a six month interval. A clear-sky Landsat-5/TM image acquired at the same period was used as additional ground reference and as ancillary input data in the classification scheme. We evaluated backscattering intensity, polarimetric features, interferometric coherence and texture parameters for classification purposes using support vector machines (SVM) and feature selection. Results showed that the forest classes were characterized by low temporal backscattering intensity variability, low coherence and high entropy. Quad polarization mode performed better than dual and single polarizations but overall accuracies remain low and were affected by precipitation events on the date and prior SAR date acquisition. Misclassifications were reduced by integrating Landsat data and an overall accuracy of 85% was attained. The integration of Landsat to both quad and dual polarization modes showed similarity at the 5% significance level. SVM was not affected by SAR dimensionality and feature selection technique reveals that co-polarized channels as well as SAR derived parameters such as Alpha-Entropy decomposition were important ranked features after Landsat’ near-infrared and green bands. We show that in absence of Landsat data, polarimetric features extracted from quad-polarization L-band increase classification accuracies when compared to single and dual polarization alone. We argue that the joint analysis of SAR and their derived parameters with optical data performs even better and thus encourage the further development of joint techniques under the Reducing Emissions from Deforestation and Degradation (REDD) mechanism.  相似文献   

20.
Remote sensing techniques offer effective means for mapping plant communities. However, mapping grassland with fine vegetative classes over large areas has been challenging for either the coarse resolutions of remotely sensed images or the high costs of acquiring images with high-resolutions. An improved hybrid-fuzzy-classifier (HFC) derived from a semi-ellipsoid-model (SEM) is developed in this paper to achieve higher accuracy for classifying grasslands with Landsat images. The Xilin River Basin, Inner Mongolia, China, is chosen as the study area, because an acceptable volume of ground truthing data was previously collected by multiple research communities. The accuracy assessment is based on the comparison of the classification outcomes from four types of image sets: (1) Landsat ETM+ August 14, 2004, (2) Landsat TM August 12, 2009, (3) the fused images of ETM+ with CBERS, and (4) TM with CBERS, respectively, and by three classifiers, the proposed HFC-SEM, the tetragonal pyramid model (TPM) based HFC, and the support vector machine method. In all twelve classification experiments, the HFC-SEM classifier had the best overall accuracy statistics. This finding indicates that the medium resolution Landsat images can be used to map grassland vegetation with good vegetative detail when the proper classifier is applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号