首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Field studies on the Neogene successions in south of ?zmir reveal that subsequent Neogene continental basins were developed in the region. Initially a vast lake basin was formed during the early-Middle Miocene period. The lacustrine sediments underwent an approximately N-S shortening deformation to the end of Middle Miocene. A small portion of the basin fill was later trapped within the N-S-trending, fault-bounded graben basin, the Çubukluda? graben, opened during the Late Miocene. Oblique-slip normal faults with minor sinistral displacement are formed possibly under N–S extensional regime, and controlled the sediment deposition. Following this the region suffered a phase of denudation which produced a regionwide erosional surface suggesting that the extension interrupted to the end of Late Miocene–Early Pliocene period. After this event the E–W-trending major grabens and horsts of western Anatolia began to form. The graben bounding faults cut across the Upper Miocene–Pliocene lacustrine sediments and fragmented the erosional surface. The Çubukluda? graben began to work as a cross garden between the E–W grabens, since that period. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

2.
Abstract

In New Zealand, the Marlborough strike-slip faults link the Hikurangi subduction zone to the Alpine fault collision zone. Stratigraphic and structural analysis in the Marlborough region constrain the inception of the current strike-slip tectonics.

Six major Neogene basins are investigated. Their infill is composed of marine and freshwater sediments up to 3 km thick; they are characterised by coarse facies derived from the basins bounding relief, high sedimentation rates and asymmetric geometries. Proposed factors that controlled the basins generation are the initial geometry of the strike-slip faults and the progressive strike-slip motion. Two groups of basins are presented: the early Miocene (23 My) basins were generated under wrench tectonics above releasing-jogs between basement faults. The late Miocene (11 My) basins were initiated by halfgrabens tilted along straighter faults during a transtensive stage. Development of faults during Cretaceous to Oligocene times facilitated the following propagation of wrench tectonics. The Pliocene (5 My) to current increasing convergence has shortened the basins and distorted the Miocene array of faults. This study indicates that the Marlborough Fault System is an old feature that connected part of the Hikurangi margin to the Alpine fault since the subduction and collision initiation. © Elsevier, Paris  相似文献   

3.
This paper presents the results of a detailed structural analysis of the northern Nijar and southern Vera basins with special emphasis on the evolution of the regional stress field and the associated timing of movement of the Serrata, Gafarillos and Palomares strike-slip fault zones. These major fault zones control the Neogene deformation of the SE Internal Betic Cordilleras in Spain. Detailed stress analysis on Neogene sediments of the Vera and Nijar basins shows a strike-slip regime with NW–SE-oriented subhorizontal maximum principal stress (σ1) during Tortonian and earliest Messinian times. Under the influence of this stress field, dextral displacement along the N090E-trending Gafarillos fault zone resulted in deformation of the sediments of the southern Sorbas and northeastern Nijar basins. During the early Messinian a clock-wise rotation of the stress field occurred. Stress analysis in rocks with late–early Messinian up to Quaternary ages in the Nijar and Vera basins indicates a strike-slip regime with N–S-oriented subhorizontal maximum principal stress (σ1). Under the influence of this stress field the main activity along the N010E-striking Palomares strike-slip fault zone took place, resulting in deformation of the Neogene sediments of the southeastern Vera basin and culminating in a maximum sinistral displacement of more than 20 km. At the same time the stress field was not suitably oriented to exert a large shear component on the Gafarillos fault zone, which activity ended after the earliest Messinian. Fault and outcrop patterns of syntectonic Neogene sediments in the Vera basin show that displacement along the Palomares fault zone decreased at the end of the Middle Miocene although minor displacement phases may still have occurred during the Late Miocene and possibly even Pliocene. From the Middle Miocene onward, deformation in the Nijar basin was controlled by sinistral displacement along the N040E-trending Serrata strike-slip fault zone.  相似文献   

4.
Abstract

This paper describes the Neogene evolution of north-Western Anatolia based on geological data collected in the course of a new mapping program. The geological history of the region, as recorded by the Neogene sedimentary and magmatic rocks that overlie the Paleozoic-Triassic basement, began after a lake invasion during the Early Miocene period with the deposition of shale-dominated successions. They were accompanied by calc-alkaline intermediate lavas and pyroclastic rocks ejected through NNE trending fractures and faults. The Lower-Middle Miocene successions were deformed under a compressional regime at the end of the Middle Miocene. The deposition of the overlying Upper Miocene-Lower Pliocene successions was restricted to within NE-SW trending graben basins. The graben bounding faults are oblique with a major strike-slip displacement, formed under approximately the N-S extension. The morphological irregularities formed during the Miocene graben formations were obliterated during a severe erosional phase to the end of the deposition of this lacustrine succession. The present E–W graben system as exemplified from the well-developed Edremit graben, postdates the erosional phase, which has formed during the Plio-Quaternary period. © 2001 Éditions Scientifiques et médicates Elsevier SAS  相似文献   

5.
《Geodinamica Acta》2001,14(1-3):57-69
There is a N–S lying narrow strip of Neogene outcrop between the towns of Kuşadası and Söke in western Anatolia. It contains remnants of successive Neogene graben basins. The first graben began to form under the control of a N40–70°E-trending oblique fault system during the Early Miocene. At the initial phase of the opening coarse clastic rocks were deposited in front of the fault-elevated blocks as scree deposits and fanglomerates. Later the graben advanced into a large lake basin. Towards the end of the Middle Miocene the lacustrine sediments of the Early–Middle Miocene age underwent an approximately N–S compressional deformation and elevated above the lake level, and were partly eroded. During the Late Miocene a new graben basin began to form as a consequence of the development of E–W-trending normal faults, formed under the N–S extensional regime. This graben also turned later into a lake environment. The lake extended far beyond the limits of the fault zones, and covered the entire regions stretching from the south of Bafa Lake in the south to Kuşadası and beyond in the north. Micritic clayey limestones were predominantly deposited in the lake. A severe erosional phase followed the termination of the lake basin. This corresponds to the cessation of the N–S extension. When the N–S extension regenerated during the Pliocene(?)–Pleistocene, the Büyük Menderes graben system began to form. In the western part of the graben, a conjugated pair of oblique faults, the Priene–Sazlı fault and the Kuşadası fault, have formed. The faults having important strike-slip components, bounded a tectonic wedge, which began to move westward into the Aegean Sea region. Major morphological features of the region were formed under the effective control of these fault zones.  相似文献   

6.
We present new data and interpretations on the Neogene tectonics of the Shan scarp area (central Myanmar) and its relationship with the India–Indochina oblique convergence. We describe ductile and brittle fabrics associated with the major features in this area, the Mogok Metamorphic Belt (MMB), the Shan scarp and the Sagaing fault. From these data we identify a succession of two tectonic regimes. First, a dominant NNW–SSE-trending extension, marked by ductile stretching that characterizes the MMB, and associated N70E brittle normal faults. Later, from Middle or Upper Miocene to the Present, these structures were cross-cut by brittle right-lateral faults, among which the most important are the N20W transpressive Shan scarp fault zone and the N–S Sagaing fault. To explain this transition from a dominant transtensive to a transpressive stress regime, that occurred during Miocene, we place our data within a larger geodynamic context. We suggest that, like the intraplate deformation in the Indian Ocean, the end of spreading in the South China sea, the opening of the Andaman basin or the end of subduction within the Indo-Burma range, the change in the tectonic regime in central Myanmar could be in response to a major Miocene regional plate kinematic reorganization.  相似文献   

7.
Al Jabal Al Akhdar is a NE/SW- to ENE/WSW-trending mobile part in Northern Cyrenaica province and is considered a large sedimentary belt in northeast Libya. Ras Al Hilal-Al Athrun area is situated in the northern part of this belt and is covered by Upper Cretaceous–Tertiary sedimentary successions with small outcrops of Quaternary deposits. Unmappable and very restricted thin layers of Palaeocene rocks are also encountered, but still under debate whether they are formed in situ or represent allochthonous remnants of Palaeocene age. The Upper Cretaceous rocks form low-lying to unmappable exposures and occupy the core of a major WSW-plunging anticline. To the west, south, and southeast, they are flanked by high-relief Eocene, Oligocene, and Lower Miocene rocks. Detailed structural analyses indicated structural inversion during Late Cretaceous–Miocene times in response to a right lateral compressional shear. The structural pattern is themed by the development of an E–W major shear zone that confines inside a system of wrench tectonics proceeded elsewhere by transpression. The deformation within this system revealed three phases of consistent ductile and brittle structures (D1, D2, and D3) conformable with three main tectonic stages during Late Cretaceous, Eocene, and Oligocene–Early Miocene times. Quaternary deposits, however, showed at a local scale some of brittle structures accommodated with such deformation and thus reflect the continuity of wrenching post-the Miocene. D1 deformation is manifested, in Late Cretaceous, via pure wrenching to convergent wrenching and formation of common E- to ENE-plunging folds. These folds are minor, tight, overturned, upright, and recumbent. They are accompanied with WNW–ESE to E–W dextral and N–S sinistral strike-slip faults, reverse to thrust faults and pop-up or flower structures. D2 deformation initiated at the end of Lutetian (Middle Eocene) by wrenching and elsewhere transpression then enhanced by the development of minor ENE–WSW to E–W asymmetric, close, and, rarely, recumbent folds as well as rejuvenation of the Late Cretaceous strike-slip faults and formation of minor NNW–SSE normal faults. At the end of Eocene, D2 led to localization of the movement within E–W major shear zone, formation of the early stage of the WSW-plunging Ras Al Hilal major anticline, preservation of the contemporaneity (at a major scale) between the synthetic WNW–ESE to E–W and ENE–WSW strike-slip faults and antithetic N–S strike-slip faults, and continuity of the NW–SE normal faults. D3 deformation is continued, during the Oligocene-Early Miocene, with the appearance of a spectacular feature of the major anticline and reactivation along the E–W shear zone and the preexisting faults. Estimating stress directions assumed an acted principal horizontal stress from the NNW (N33°W) direction.  相似文献   

8.
Acoustic profiling carried out with an Edgetech 3300 prophilograph in the junction zone of the Cape Verde Rise, Cape Verde Abyssal Plain, and Grimaldi and Bathymetrists seamounts in the Central Atlantic during Cruise 23 of the R/V Akademik Nikolaj Strakhov allowed us to obtain new data on neotectonic deformations in the ocean and to propose their interpretation. It has been established that neotectonic movements occurred in the discrete manner: blocks of undeformed rocks alternate with linear zones of intense deformation spatially related to paleotransform fracture zones, where anticlines, horsts, diapir-like morphostructures, and grabens were formed. The Cape Verde Ridge is a large horst. Its sedimentary cover is disturbed by thrust (?), reverse, and normal faults, steeply dipping fracture zones, and folds. Three stages of tectonic movements—Oligocene-early Miocene, pre-Quaternary, and Holocene—are recognized. The tectonic deformations occurred largely under near-meridional compression. Extension setting was characteristic of the Cape Verde Ridge and the Carter Rise in the Holocene.  相似文献   

9.
《Geodinamica Acta》2001,14(1-3):45-55
Field studies on the Neogene successions in south of İzmir reveal that subsequent Neogene continental basins were developed in the region. Initially a vast lake basin was formed during the Early–Middle Miocene period. The lacustrine sediments underwent an approximately N–S shortening deformation to the end of Middle Miocene. A small portion of the basin fill was later trapped within the N–S-trending, fault-bounded graben basin, the Çubukludağ graben, opened during the Late Miocene. Oblique-slip normal faults with minor sinistral displacement are formed possibly under N–S extensional regime, and controlled the sediment deposition. Following this the region suffered a phase of denudation which produced a regionwide erosional surface suggesting that the extension interrupted to the end of Late Miocene–Early Pliocene period. After this event the E–W-trending major grabens and horsts of western Anatolia began to form. The graben bounding faults cut across the Upper Miocene–Pliocene lacustrine sediments and fragmented the erosional surface. The Çubukludağ graben began to work as a cross graben between the E–W grabens, since that period.  相似文献   

10.
A paleomagnetic study was carried out on Neogene volcanic rocks at 30 sites within the Galatean massif (40.4°N, 31.5°E) to determine possible block rotations due to stress variations. Two phases of rotation could be characterized as the result of Neogene volcanic activity. We suggest that the first stage of rotation was isolated in Early Middle Miocene calc-alkali rocks, with a relative counterclockwise rotation of R ± ΔR = −20.2 ± 9.3° with respect to Eurasia. This accommodates the south-westward rotational collapse of the Western Anatolia peninsula across a pole on the Bitlis suture. In the neotectonic period, on other hand, a relative clockwise rotation of R ± ΔR = 27.3 ± 6.4° with respect to Eurasia is predicted. In contrast to the uniform clockwise rotations, extremely large clockwise rotations up to 264° are restricted in a narrow zone between two dextral faults. We believe that the second stage rotations support the idea of individual microblock rotations due to deformation along the North Anatolian Fault zone.  相似文献   

11.
Abstract

Positive structural inversion involves the uplift of rocks on the hanging-walls of faults, by dip slip or oblique slip movements. Controlling factors include the strike and dip of the earlier normal faults, the type of normal faults — whether they were listric or rotated blocks, the time lapsed since extension and the amount of contraction relative to extension. Steeply dipping faults are difficult to invert by dip slip movements; they form buttresses to displacement on both cover detachments and on deeper level but gently inclined basement faults. The decrease in displacement on the hanging-walls of such steep buttresses leads to the generation of layer parallel shortening, gentle to tight folds — depending on the amount of contractional displacement, back-folds and back-thrust systems, and short-cut thrust geometries — where the contractional fault slices across the footwall of the earlier normal fault to enclose a “floating horse”. However, early steeply dipping normal faults readily form oblique to strike slip inversion structures and often tramline the subsequent shortening into particular directions.

Examples are given from the strongly inverted structures of the western Alps and the weakly inverted structures of the Alpine foreland. Extensional faulting developed during the Triassic to Jurassic, during the initial opening of the central Atlantic, while the main phases of inversion date from the end Cretaceous when spreading began in the north Atlantic and there was a change of relative motion between Europe and Africa. During the mid-Tertiary well over 100 km of Alpine shortening took place; Alpine thrusts, often detached along, or close to, the basement-cover interface, stacking the late Jurassic to Cretaceous sediments of the post-extensional subsidence phase. These high level detachments were joined and breached by lower level faults in the basement which, in the external zones of the western Alps, generally reactivated and rotated the earlier east dipping half-graben bounding faults. The external massifs are essentially uplifted half-graben blocks. There was more reactivation and stacking of basement sheets in the eastern part of this external zone, where the faults had been rotated into more gentle dips above a shallower extensional detachment than on the steeper faults to the west.

There is no direct relationship between the weaker inversion of the Alpine foreland and the major orogenic contraction of the western Alps; the inversion structures of southern Britain and the Channel were separated from the Alps by a zone of rifting from late Eocene to Miocene which affected the Rhone, Bresse and Rhine regions. Though they relate to the same plate movements which formed the Alps, the weaker inversion structures must have been generated by within plate stresses, or from those emanating from the Atlantic rather than the Tethyan margin.  相似文献   

12.
Abstract

The Cenozoic westward motion of the Betic-Rif internal zone (“Alboran block”) between Iberia and Africa is constrained by paleogeographic considerations and by wrench faulting which affects both sides of the external zones. However, in the Alboran domain itself there was so far no evidence of significant internal deformation related to this westward displacement which was consequently consider as an en bloc” motion. Our work, in Eastern Andalucia, demonstrates that the main tectonic units building up the Betic zone should be regarded as large-scale tectonic sheets with a typical duplex style. The direction of the tectonic transport is to the West. At meso-scale, the major structures exhibit a combination of hindward and foreward dipping imbricates on the respective east and west sides of antiformal stacks or “rigid cores”. On a broader scale, the same geometric framework appears on both east and west sides of the Sierra Nevada window which we interpret as a tectonic culmination on the hangingwall of a Subbetic décollement zone. The development of this tectonics, in retrogressive metamorphic conditions, postdates the ductile deformation of the internal complexes. The morpho-tectonic relationships between the culmination of the metamorphic cores and the Neogene basins give a way to date the westward motion of the “Alboran System of Nappes” of the middle and upper Miocene.  相似文献   

13.
Abstract

Large structures, lineations, foliations and sense of shear criteria are examined on the scale of the whole Ibero-Armorican Arc. Four sections (Galicia, Brittany-Vendée, Limousin and Eastern Massif Central) exemplify the major thrust sheets observed around the Arc. Stretching lineations are contemporaneous with the siluro-devonian metamorphism and are either transverse, oblique or parallel to the collision zone. A kinematic analysis shows that these lineations have resulted from a dominanüy transverse shear deformation which was followed by, or combined with, a longitudinal shear direction. On the scale of the entire Arc, this variation in the shear direction is interpreted as resulting from an early head on thrusting relative movement evolving to large scale movements parallel to the plate boundaries. Experiments with sand-silicone models support a model which generates the Arc by interaction between a transform sinistral direction, and a converning zone at a high angle to the transform direction.  相似文献   

14.
15.
Kadir Dirik 《Geodinamica Acta》2013,26(1-3):147-158
Abstract

Central Anatolia has undergone complex Neotectonic deformation since Late Miocene-Pliocene times. Many faults and intracontinental basins in this region were either formed, or have been reactivated, during this period. The eastern part of central Anatolia is dominated by a NE-SW-trending, left lateral transcurrent structure named the Central Anatolian fault zone located between Sivas in the northeast and west of Mersin in the southwest. Around the central part, it is characterized by transtensional depressions formed by left stepping and southward bending of the fault zone. Pre-Upper Miocene basement rocks of the region consist of the central Anatolian crystalline complex and a sedimentary cover of Tertiary age. These rock units were strongly deformed by N-S con- vergence. The entire area emerged to become the site of erosion and formed a vast plateau before the Late Miocene. A NE-SW- trending extensional basin developed on this plateau in Late Miocene-Early Pliocene times. Rock units of this basin are characterized by a thick succession of pyroclastic rocks intercalated with calcalkaline-alkaline volcanics. The volcanic sequence is uncon- formably overlain by Pliocene lacustrine-fluviatile deposits interrelated with ignimbrites and tuffs. Thick, coarse grained alluvial/colluvial fan deposits of marginal facies and fine grained elastics and carbonates of central facies display characteristic synsedimentary structures with volcanic intercalations. These are the main lines of evidence for development of a new transtensional H?rka— k?zd?rmak basin in Pliocene times. Reactivation of the main segment of the Central Anatolian fault zone has triggered development of depressions around the left stepping and southward bending of the central part of this sinistral fault zone in the ignimbritic plateau during Late Pliocene-Quaternary time. These transtensional basins are named the Tuzla Gölü and Sultansazl??? pull-apart basins. The Sultansazl??? basin has a lazy S to rhomboidal shape and displays characteristic morphologic features including a steep and stepped western margin, large alluvial and colluvial fans, and a huge composite volcano (the Erciyes Da??).

The geometry of faulting and formation of pull-apart basins can be explained within the framework of tectonic escape of the wedgelike Anatolian block, bounded by sinistral East Anatolian fault zone and dextral North Anatolian transform fault zone. This escape may have been accomplished as lateral continental extrusion of the Anatolian Plate caused by final collision of the Arabian Plate with the Eurasian Plate. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

16.
A 100 km long balanced structural transect is presented for the Patagonian Andes at 50° S Latitude. The area studied is characterized by a fold belt in the eastern Andean foothills and basement-involved thrusts in a western-basement thrust zone. The basement thrust zone exposes pre-Jurassic, polydeformed sedimentary and layered metamorphic rocks emplaced over Lower Cretaceous rocks above an E-vergent thrust located at the western end of the fold belt.

The fold belt is developed in a 3 km thick deformed Cretaceous–Paleogene sedimentary cover with few basement outcrops and scarce calc-alkaline magmatism. Cover structures related to shallow décollements have a N-S to NW-SE strike, with fold wavelengths from 1100 to 370 m in the east to 20 to 40 m in the west. However, long-wavelength basement-involved structures related to deeper décollements have a dominant N-S to NE-SW trend along the eastern and western parts of the fold belt. Field evidence showing different degrees of inversion of N-S–trending normal faults suggests that the orientation of the Cenozoic compressive basement structures was inherited partially from the original geometry of Mesozoic normal faults.

The deformation propagated toward the foreland in at least two events of deformation. The effects of Paleogene (Eocene?) compressive episode are observed in the western fold belt and a Neogene (Late Miocene) compressive episode is present in the eastern fold belt. Basement-involved structures typically refold older cover structures, producing a mixed thick and thin-skinned structural style. By retrodeforming a regional balanced cross section in the fold belt, a minimum late Miocene shortening of 35 km (26%) was calculated.  相似文献   

17.
Role of strike-slip faults in the Betic-Rifian orogeny   总被引:1,自引:0,他引:1  
A new model for the Betic-Rifian orogeny of the Western Mediterranean (Spain and North Africa) is proposed in which four strike-slip faults play an important role; the faults are not of the same age. Two faults, the left-lateral Jebha fault to the south (in Morocco and principally in the Mediterranean Sea) and the right-lateral North Betic fault (southern Spain) to the north, define the boundaries of the Alboran block (Betic and Rifian internal zones). Final movement along these faults was during the Burdigalian time. Two other faults, the left-lateral Nekor fault (North Africa) to the south of the Jebha fault and the right-lateral Crevillente fault, somewhat to the north of the North Betic fault, define a larger Alboran block (including part of the Betic and Rifian external zones) that was present during the Tortonian.The following sequence of events is proposed:
1. (a) During the Eocene and Oligocene, the African and European plates converged in a N-S sense causing the breakup and overthrusting of the Betic, Rifian and Kabyle internal zones and then the movement towards the WSW of the Alboran block by slip along the Jebha and North Betic faults.
2. (b) By the end of Burdigalian time, movement along the Jebha and North Betic faults ceased.
3. (c) With continued N-S convergence, the Nekor and Crevillente faults, which bound a larger Alboran block, were formed during the mid- and late Miocene. The Arc of Gibraltar (the zone lying between the four major faults) seems to be a result of WSW motion of a crustal block being thrust over external zones.
The model proposed adds to the earlier idea that tectogenesis proceeds from the interior to the exterior of an erogenic belt. In the Betic-Rifian orogeny major strike-slip fracture zones shifted to the exterior of the orogenic belt as the orogeny progressed in order to relieve the stress caused by locking of the more internal faults.  相似文献   

18.
Abstract

During the Neogene (uppermost Aquitanian-Lower Burdigalian, Tortonian and Pliocene), three successive marine episodes took place in the present-day Malaga Basin. The first of these affected a wide area of the Belic Internal Zones and was brought to an abrupt conclusion by the westward displacement of these Zones, together with important horizontal movements associated with N70-100 direction strike-slip faults and the superposition of materials from the Campo de Gibraltar. The two other marine episodes were clearly controlled by vertical movements of NW-SE and NK-SW faults, caused by a clear E-W distension which, according to regional data, was associated with some compression in an approximately N-S direction. The area has also been affected, although to a lesser extent, by the uplift of the Betic Cordillera from the Upper Miocene to the present day.  相似文献   

19.
Abstract

Two groups of stretching lineations can be distinguished in the Central Alpine " root zone " between Ticino and Mera :

1) Steeply plunging lineations formed during retrograde metamor-Phism under amphibolite/greenschist facies conditions indicate an uplift movement of the Central Alps. The lineations can be related to an important back-thrusting event of late Oligocene/early Miocene age.

2) Gently plunging lineations formed under lower greenschist facies conditions display a pattern typical of a dextral strike-slip system. These lineations are of early Miocene age.

This cpmbined movement, achieved by ductile deformation along the lnsubric line was followed by a stage of brittle deformation in a dextral strike-slip system (= Tonale line).

The signification of this interpretation is shown in a new crustal cross section through the Central Alpine/Southern Alpine border zone in the Iicino area.  相似文献   

20.
西秦岭北缘构造带是青藏高原东北部一条重要的北西西向构造带,它由一组近于平行的断裂组成,中部发育活动的左旋走滑断裂,两侧发育向外扩展的多条逆冲断裂,剖面上呈向北偏心的花状构造。自古近纪中晚期以来西秦岭北缘构造带成为青藏高原早期的北东边界,其新生代构造活动控制了两侧的新生代盆地沉积演化和构造变形。在构造带南侧滩歌盆地自古近纪中晚期堆积了一套厚度较大的砾岩和砂岩地层,但未见新近纪地层;沿西秦岭北缘构造带中部在中新世形成具有剪切拉张性质的武山—漳县盆地,沉积了厚度超过千米的砾岩、砂岩和泥岩序列;在构造带北侧陇西盆地从古近纪中晚期至中新世晚期一直处于前陆盆地发育阶段,沉积了连续的新生代地层序列。在中新世晚期以后,整个构造带遭受挤压变形,逆冲活动强烈,中部的武山—漳县盆地和北侧的陇西盆地相继消亡,新生代地层发生强烈构造变形,位于构造带南侧的滩歌盆地也同时发生轻微缩短变形。第四纪晚期以来西秦岭北缘构造带断裂活动主要表现为左旋走滑运动方式,而逆冲断裂活动则迁移到了北东方向的海原断裂和香山—天景山断裂(又称中卫—同心断裂)等构造带之上,实现了大区域范围内的应变分配。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号