共查询到1条相似文献,搜索用时 0 毫秒
1.
In this study, an evaluation of fuzzy-based classifiers for specific crop identification using multi-spectral temporal data spanning over one growing season has been carried out. The temporal data sets have been georeferenced with 0.3 pixel rms error. Temporal information of cotton crop has been incorporated through the following five indices: simple ratio (SR), normalized difference vegetation index (NDVI), transformed normalized difference vegetation index (TNDVI), soil-adjusted vegetation index (SAVI) and triangular vegetation index (TVI), to study the effect of indices on classified output. For this purpose, a comparative study between two fuzzy-based soft classification approaches, possibilistic c-means (PCM) and noise classifier (NC), was undertaken. In this study, advanced wide field sensor (AWiFS) data for soft classification and linear imaging self scanner sensor (LISS III) data for soft testing purpose from Resourcesat-1 (IRS-P6) satellite were used. It has been observed that NC fuzzy classifier using TNDVI temporal index – dataset 2, which comprises four temporal images performs better than PCM classifier giving highest fuzzy overall accuracy of 96.03%. 相似文献