首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Geology Review》2012,54(15):1839-1855
ABSTRACT

The Late Cretaceous accretionary complex of the ?zmir–Ankara–Erzincan suture zone, near Artova, is composed mainly of peridotites (variably serpentinized), amphibolite, garnet-micaschist, calc-schist, marble, basalt, sandstones, neritic limestones. The metamorphic rocks were interpreted as the metamorphic sole rocks occurring at the base of mantle tectonites, because: (i) amphibolites were observed together with the serpentinized peridotites suggesting their occurrences in the oceanic environment; (ii) foliation in amphibolites and serpentinized peridotites run subparallel to each other; (iii) all these metamorphic rocks and serpentinized peridotites are cross-cut by the unmetamorphosed dolerite dikes with island arc tholeiite-like chemistry. Geochemical characteristics of the amphibolites display enriched mid-ocean ridge basalt (E-MORB)- and ocean island basalt (OIB)-like signatures. The dolerite dikes, on the other hand, yield an island arc tholeiite-like composition. Geothermobarometric investigations of the metamorphic sole rocks suggest that the metamorphic temperature was ~650 ± 30°C and the pressure condition was less than 0.5 GPa. Dating of hornblende grains from amphibolite yielded age values ranging from 139 ± 11 to 157 ± 3.6 Ma (2σ). The oldest weighted average age value is regarded as approximating the timing of the intra-oceanic subduction. These cooling ages were interpreted to be the intra-oceanic subduction/thrusting time of the ?zmir–Ankara–Erzincan oceanic domain.  相似文献   

2.
3.
The Khambin volcanotectonic complex is a horst framing the Late Cretaceous Lake Gusinoe basin in the northwest. This complex is due to the intracontinental rift conditions which existed in western Transbaikalia in the Late Mesozoic. They gave rise to a system of subparallel grabens and horsts in present-day topography. The magmatic evolution of this complex spans from 159 to 117 Ma and is divided into three stages. The first stage (159–156 Ma) witnessed the formation of thick (up to 1500 m) volcanic masses of trachybasalts, basaltic trachyandesites, trachytes, trachydacites, trachyrhyolites, and pantellerites. The next two stages were the formation of isolated ancient volcanoes (127–124 Ma) composed of trachybasalts, basaltic trachyandesites, phonotephrites, tephriphonolites, and alkali trachytes and the formation of the Murtoi (Lake Gusinoe) essexite dike (122–117 Ma). The main trends for igneous associations from early to late stages are reduced magmatism and reduced rock diversity because of the decreasing portion of felsic volcanic rocks. Mafic rocks show an increase in total alkalinity, the content of incompatible elements (Th, U, K, Rb, Pb, Nb, Ta, Zr, Hf), total REE content, and the LREE/HREE ratio. The Sr–Nd isotopic composition of these rocks remained nearly constant and corresponds to that of OIB-EMII mantle sources. Compositional variations are attributed to a time-dependent decrease in the degree of partial melting of a similar magma source.  相似文献   

4.
The Zapug–Duobuza magmatic arc (ZDMA), located along the southern edge of the south Qiangtang terrane in western Tibet, extends east–west for ~ 400 km. Small scattered granite and porphyry intrusions crop out in the ZDMA, but a large amount of granite may be buried by Late Cretaceous to Paleogene thrusting. Two stages of magmatism have been identified, at 170–150 Ma and 130–110 Ma. The widely distributed Middle–Late Jurassic granite intrusions in the ZDMA exhibit SrNd isotopic characteristics similar to those of ore-bearing porphyries in the Duolong giant CuAu deposit, and their εHf(t) values mostly overlap those of other porphyry CuMo deposits in the ZDMA and the Gangdese zone. The SrNdHf isotopic geochemistry suggests variable contributions of mantle and Qiangtang crustal sources, and indicates the presence of two new ore districts with potentials for CuAu, Fe, and PbZn ores, located in the Jiacuo–Liqunshan and Larelaxin–Caima areas. Except for the Duolong ore-forming porphyries, which show significant contributions of mantle components intruded into an accretionary mélange setting, the Early Cretaceous granites in other areas of the belt are of mostly crustal origin, from sources in Qiangtang felsic basement and Permo-Carboniferous strata, indicating the weak ore-forming potential of skarn-type Fe and PbZn deposits. The ephemeral but deep Bangong Co–Nujiang ocean in the Early Jurassic evolved into a shallow compressional marine basin in the Middle–Late Jurassic, possibly transitioning to northward flat subduction of oceanic crust at this time. The subducted slab broke off in the Early Cretaceous, initiating a peak in arc magmatism and metallogenesis at 125–110 Ma.  相似文献   

5.
As one of the mélanges in the southern side of the Yarlung-Zangbo suture zone,the Saiqu mélange in southern Tibet is important for understanding the evolution of the Neo-Tethys ocean.The age of the Saiqu mélange,however,has been debated due to the lack of reliable fossil evidence in matrix strata.Based on lithological similarities with platform strata in southern Tibet and limited fossils from exotic blocks,previous studies variously ascribed the Saiqu mélange to be Triassic in general,Late Triassic,or Late Cretaceous.Here we reported planktonic foraminiferal faunas from the matrix strata of the Saiqu mélange.The new fossils yield a Late Cretaceous age,which is so far the best age constraint for the mélange.Regional stratigraphic correlation indicates that the Cretaceous Oceanic Red Beds (CORBs)in Saiqu may be time equivalent to the CORBs of the Zongzhuo Formation in neighboring regions.Thus the Saiqu mélange should be correlated to the Upper Cretaceous Zongzhuo Formation rather than the Triassic Xiukang Group,as previously suggested.  相似文献   

6.
As one of the mélanges in the southern side of the Yarlung-Zangbo suture zone, the Saiqu mélange in southern Tibet is important for understanding the evolution of the Neo-Tethys ocean. The age of the Saiqu mélange, however, has been debated due to the lack of reliable fossil evidence in matrix strata. Based on lithological similarities with platform strata in southern Tibet and limited fossils from exotic blocks, previous studies variously ascribed the Saiqu mélange to be Triassic in general, Late Triassic, or Late Cretaceous. Here we reported planktonic foraminiferal faunas from the matrix strata of the Saiqu mélange. The new fossils yield a Late Cretaceous age, which is so far the best age constraint for the mélange. Regional stratigraphic correlation indicates that the Cretaceous Oceanic Red Beds (CORBs) in Saiqu may be time equivalent to the CORBs of the Zongzhuo Formation in neighboring regions. Thus the Saiqu mélange should be correlated to the Upper Cretaceous Zongzhuo Formation rather than the Triassic Xiukang Group, as previously suggested.  相似文献   

7.
Continuous shallow marine carbonates spanning the Triassic–Jurassic boundary are exposed in the Karaburun Peninsula, Western Turkey. The studied section (Tahtaiskele section) consists of Upper Triassic cyclic shallow marine carbonates intercalated with clastics overlain by Lower Liassic carbonates. Based on the microfacies stacking patterns, three main types of shallowing-upward cycles have been recognized. Cycles are mostly composed of subtidal facies at the bottom, intertidal/supratidal facies and/or subaerial exposure structures at the top. The duration of the cycles suggests that cycles were driven by the precessional Milankovitch rhytmicity. In the sequence stratigraphic frame of the Tahtaiskele section 4 sequence boundaries were detected and globally correlated. The first sequence boundary is located at the Alaunian–Sevatian boundary nearly coinciding with the first appearance of Triasina hantkeni. The second falls in the Rhaetian corresponding to a major sea level fall which led to the invasion of forced regressive siliciclastic deposits over the peritidal carbonates. The third occurs close to the T/J boundary and the fourth lies slightly above the base of the Jurassic. In the studied section, extinction, survival and recovery intervals have been recognized based on the stratigraphic occurrence patterns of benthic foraminifera and algae. Foraminifers became nearly totally extinct in the inner carbonate shelves at the Triassic–Jurassic boundary and an interval of approximately 0.5 my passed before the begining of the recovery of Jurassic foraminifera.  相似文献   

8.
As one of the mélanges in the southern side of the Yarlung-Zangbo suture zone, the Saiqu mélange in southern Tibet is important for understanding the evolution of the Neo-Tethys ocean. The age of the Saiqu mélange, however, has been debated due to the lack of reliable fossil evidence in matrix strata. Based on lithological similarities with platform strata in southern Tibet and limited fossils from exotic blocks, previous studies variously ascribed the Saiqu mélange to be Triassic in general, Late Triassic, or Late Cretaceous. Here we reported planktonic foraminiferal faunas from the matrix strata of the Saiqu mélange. The new fossils yield a Late Cretaceous age, which is so far the best age constraint for the mélange. Regional stratigraphic correlation indicates that the Cretaceous Oceanic Red Beds (CORBs) in Saiqu may be time equivalent to the CORBs of the Zongzhuo Formation in neighboring regions. Thus the Saiqu mélange should be correlated to the Upper Cretaceous Zongzhuo Formation rather than the Triassic Xiukang Group, as previously suggested.  相似文献   

9.
A landslide susceptibility assessment for İzmir city (Western Turkey), which is the third biggest city of Turkey, was performed by a logistic regression method. A database of landslide characteristics was prepared using detailed field surveys. The major landslides in the study area are generally observed in the field, dominated by weathered volcanics, and 39.63% of the total landslide area is in this unit. The parameters of lithology, slope gradient, slope aspect, distance to drainage, distance to roads and distance to fault lines were used as variables in the logistic regression analysis. The effect of each parameter on landslide occurrence was assessed from the corresponding coefficients that appear in the logistic regression function. On the basis of the obtained coefficients, lithology plays the most important role in determining landslide occurrence and distribution. Slope gradient has a more significant effect than the other geomorphological parameters, such as slope aspect and distance to drainage. Using a predicted map of probability, the study area was classified into five categories of landslide susceptibility: very low, low, moderate, high and very high. Whereas 49.65% of the total study area has very low susceptibility, very high susceptibility zones make up 11.69% of the area.  相似文献   

10.
The results of this study were used to identify a reversed polarity magnetozone, referred to as M17r, in Berriasian sections of the Nordvik Peninsula (northern East Siberia) within the normal polarity magnetozone (M18n) from previous studies. The new magnetozone embraces the Volgian–Ryazanian boundary (Chetaites chetae/C. sibiricus zonal boundary). It was also found that the former magnetozone M17r at Nordvik, which includes the C. sibiricus/Hectoroceras kochi zonal boundary should correspond to magnetozone M16r. Using magnetostratigraphic and biostratigraphic criteria proves that the Boreal C. sibiricus Zone is correlated with at least the major part of the Tethyan Tirnovella occitanica Zone, and the Boreal H. kochi Zone is correlated with the lower part of the Malbosiceras paramimounum Subzone of the Tethyan Fauriella boissieri Zone.  相似文献   

11.
Late Jurassic and Early Cretaceous charophyte assemblages from the northern part of the Aquitaine Basin in south-west France are reviewed here to understand their palaeoecological, palaeobiogeographical and biostratigraphic features. Three sites were studied: the Tithonian-lower Berriasian of Chassiron, and the Berriasian of Cherves-de-Cognac and Angeac-Charente. Abundant porocharaceans, less abundant clavatoraceans and scarce characeans recorded in Cherves-de-Cognac and Angeac-Charente indicate that brackish water environments were substituted by freshwater environments eastwards. The occurrence of Clavator grovesii var. grovesii and morphotypes intermediate with C. grovesii var. discordis in the same areas is significant from a biostratigraphic viewpoint, since these species belong to the Maillardii, Incrassatus and Nurrensis European charophyte biozones, representing the Berriasian. This observation refutes a previous dating of the Angeac-Charente site and highlights the absence of Hauterivian–Barremian records in northern Aquitaine, which is in contrast to the more complete Lower Cretaceous record in southern Aquitaine. These contrasting records could be due to differences in the available sedimentary space produced by the opening of the Bay of Biscay during the Barremian.  相似文献   

12.
The Middle-Late Jurassic mountain building process in the Western Tethyan realm was triggered by west- to northwestward-directed ophiolite obduction onto the wider Adriatic shelf. This southeastern to eastern Adriatic shelf was the former passive continental margin of the Neo-Tethys, which started to open in the Middle Triassic. Its western parts closed from around the Early/Middle Jurassic boundary with the onset of east-dipping intra-oceanic subduction. Ongoing contraction led to ophiolite obduction onto the former continental margin since the Bajocian. Trench-like basins formed concomitantly within the evolving thin-skinned orogen in a lower plate situation. Deep-water basins formed in sequence with the northwest-/westward propagating nappe fronts, which served as source areas of the basin fills. Basin deposition was characterized by coarsening-upward cycles, i.e. sedimentary mélanges as synorogenic sediments. The basin fills became sheared successively by ongoing contractional tectonics with features of typical mélanges. Analyses of ancient Neo-Tethys mélanges along the Eastern Mediterranean mountain ranges allow both, a facies reconstruction of the outer western passive margin of the Neo-Tethys and conclusions on the processes and timing of Jurassic orogenesis. Comparison of mélanges identical in age and component spectrum in different mountain belts figured out one Neo-Tethys Ocean in the Western Tethyan realm, instead of multi-ocean and multi-continent scenarios.  相似文献   

13.
Radiolarian biostratigraphic research has been carried out along two continuous sections through the Xialu Chert, one of the accreted sheets included in the Yarlung-Zangbo Suture Zone. Six radiolarian zones have been identified as follows: Laxtorum(?) jurassicum Zone (Aalenian), Tricolocapsa plicarum Zone (Bajocian–lower Bathonian), Stylocapsa(?) spiralis Zone (upper Callovian–Oxfordian), Hsuum maxwelli Zone (Kimmeridgian), Pseudodictyomitra carpatica Zone (upper Tithonian–lower Valanginian), and Turbocapsula costata Zone (Aptian).A reconstructed stratigraphy of the Xialu Chert, based on lithological succession and radiolarian dating, indicates that the chert exhibits a long depositional history, at least from early Middle Jurassic (Aalenian) to late Early Cretaceous (Aptian). The separation of the Lhasa Block from the northern Gondwana margin must, therefore, be dated before the Aalenian. The absence of calcareous sediments in the Xialu Chert indicates that the oceanic basin was deeper than the CCD throughout the depositional history. The transition from chert to siliceous mudstone is recorded sometime in Early Cretaceous, most probably around the Barremian/Aptian boundary. This means that the oceanic plate had already started being consumed at a trench by that time. The accretion of the Xialu Chert occurred after the Aptian time.  相似文献   

14.
15.
Blocks of cherty rocks and Aptychus Limestone embedded into ophiolite mélange south of Avala Gora (Serbia) contain radiolarians of different ages. We distinguished here Late Jurassic (middle Oxfordianearly Tithonian), Middle-Late Jurassic (Bathonian-early Tithonian), and Middle Triassic (early Ladinian) radiolarian assemblages. The respective stratigraphic data suggest that the ophiolite mélange was formed after the early Tithonian.  相似文献   

16.
17.
18.
19.
西准噶尔地区巴尔雷克蛇绿混杂岩中的玄武岩与蛇纹岩、放射虫硅质岩和晚泥盆世铁列克提组的泥质粉砂岩与沉凝灰岩形成混杂堆积.对玄武岩进行详细的岩石地球化学研究表明,SiQ含量为42.15%~44.71%,高TiO2 (3.17%~3.77%)、Na2O(1.73%~2.28%),低Al2O3 (13.54%~14.31%)、K2O(1%~1.82%),MgO含量相对稳定(6.75%~8.14%),Mg#为43~46,属于碱性玄武岩系列.稀土总量∑REE=186×10-6~219.06×10-6,轻、重稀土分馏较为明显((La/Yb)N=11.37~12.62),无明显Eu异常(Eu/Eu* =0.96~1),稀土配分模式类似于OIB.相对富集LILE(如Rb、Ba、Th),亏损HFSE(如Zr、Hf),没有明显的Nb和Ta异常,具有高的Ti/Yb(7395~8724)和Zr/Yb(120~136)比值,为典型的OIB地球化学特征.综合研究认为玄武岩形成于弧后盆地的海山环境,其岩浆源区可能为EMI型富集地幔,即软流圈的上涌导致尖晶石相二辉橄榄岩地幔源区大比例部分熔融形成的玄武岩.在区域上,蛇绿混杂岩中的玄武岩所代表的泥盆纪古洋盆是西准噶尔古洋盆向北收缩的残余洋盆.  相似文献   

20.
Mineralogy and Petrology - We examine ultramafic and olivine-rich troctolite blocks of the East Taiwan Ophiolite (ETO) in the Lichi Mélange. Although ultramafic rocks are extensively...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号