首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The Roc de Frausa Massif, located at the Eastern Pyrenees, is formed by a stratoid Pre-Hercynian deformed granite (orthogneiss) interbedded with metasedimentary series. Hercynian granitoids (St. Llorenç — La Jonquera pluton) surround the southern and eastern part of the massif and Hercynian basic igneous rocks (Ceret stock) occupy the central part of it. The Pre-Hercynian granite and the sedimentary series were involved, during the Hercynian orogeny, in complex polyphasic tectonics and metamorphism. As a result, an ubiquitous penetrative foliation was developed during the earlier stages. This foliation was subsequently folded into a complex antiformal structural formed by a double dome : Roc de Frausa dome and Mas Blanc dome. Main lithological boundaries (gneiss — metasediments and metasediments — granitoids) are broadly parallel to the regional foliation, and they all display the dome geometry. Interference fold pattern between two late phases, an ealier one with NE-SW trending folds and a younger one with NW-SE trending folds is responsible for the dome geometry. Mylonitic deformation, with W-E to NW-SE orientations has been attributed to the last folding phase. Regional metamorphic climax and contact metamorphism, the last one resulting from Hercynian granitoid emplacement, preceeded the above mentioned late folding event, which developed under retrograde metamorphic conditions. Regional peak metamorphism is recognized by the static crystallization of cordierite + potassium feldspar. This paragenesis indicates pressure — temperature conditions of about 3.1 Kbar and 660 °C maximum. Contact metamorphism overprints the earlier regional metamorphism. Parageneses and thermal gradient of contact metamorphism around La Jonquera pluton are very similar to those related to regional metamorphism, whereas parageneses produced around Ceret stock present garnet + potassium feldspar. Geothermometry indicates metamorphic conditions locally higher for this paragenesis (around 700 °C).  相似文献   

2.
A foreland basin succession has been identified in the Frasnian of the Central Pyrenees. This succession comprises a carbonate-dominated transgressive system which recorded the cratonward migration of the foreland basin subsidence, and siliciclastic depocenters which recorded the progression of the thrust-fold deformation. The foreland basin system has always been maintained in deep-marine environments, i.e., at an underfilled depositional state. It was associated with a thrust wedge which descended toward a deep-marine hinterland, i.e., with a type of orogenic wedge usually related to subduction zones. The Frasnian foreland basin system differs from the one known in the Carboniferous which evolved to overfilled depositional state and was associated with a thrust wedge rising toward a mountainous hinterland. Consequently, the Hercynian orogeny in the Pyrenees seems to result first, from a Frasnian thrusting controlled by a subduction zone located north of the Pyrenees, and second, from a Carboniferous thrusting controlled by the surrection of a frontal thrust belt in the Pyrenees. The association of underfilled foreland basin systems and hinterland-dipping thrust wedges, as exemplified in the Frasnian of the Pyrenees, can be interpreted as illustrative of the initial stages of thrust-wedge growth in deep-marine settings.  相似文献   

3.
Abstract Fluids with compositions in the system CO2-H2O-NaCl were trapped in quartz veins enclosed in low-grade metamorphic rocks (chlorite zone) on the southern flank of the Canigó Massif, eastern Pyrenees. The veins, which also contain arsenopyrite crystals, were formed contemporaneously with the main Hercynian foliation and metamorphism. Volumetric properties of the fluid and the results of arsenopyrite geothermometry suggest P-T trapping conditions of 4.6–6 kbar and 450–530° C. This implies that an episode of metamorphism with an average geothermal gradient of 25° C km−1 occurred during the main deformation event. This episode preceded the low- P /high- T metamorphism described around domes and to date considered as characteristic of the Hercynian orogeny in the Pyrenees.  相似文献   

4.
The Hercynian Bordères-Louron pluton (20 km2) in the Central Pyrenees intrudes Devonian and Carboniferous metasediments. It shows a concentric zoning and consists of a significant proportion of (quartz) gabbros in its periphery, and of granodiorites, biotite monzogranites and biotite-muscovite monzogranites in its core. AMS study shows that the pluton corresponds to an elongated dome with a N100°E-trending axis. The anisotropy intensity Ppara% is high in the south and in the core of the pluton, whereas it is low in the north. The shape parameter T indicates that the fabric is strongly planar in a large central band oriented NW-SE, whereas it is strongly linear in the western and eastern tips of the pluton. These characteristics suggest that the Bordères-Louron pluton emplaced in two episodes: (1) intrusion of mafic magmas along a N100°E sill parallel to the regional foliation of the host metasediments; and (2) injection of three successive silicic batches (granodiorite, biotite monzogranite, two-micas monzogranite) which pushed aside the early mafic injections. In situ U-Pb dating of zircon grains indicates that the emplacement age of the biotite monzogranite is 309 ± 4 Ma, synchronous with the D 2 dextral transpressive event and close to the ages of the eastern Pyrenean plutons, may be slightly older.  相似文献   

5.
《Geodinamica Acta》2013,26(6):385-392
In low grade rocks of the Eastern Pyrenees syn-orogenic Variscan extension is achieved by kilometric scale low-angle brittle normal faults. Evidence of these faults is generally depicted by subtractive contacts between Devonian upon Cambro-Ordovician rocks. Normal faults are cut by a Variscan granodiorite pluton and U-Pb available geochronologic data of the granodiorite, 305 Ma ± 3 [30], indicates that the age of extension can be attributed to Moscovian times. Extension postdates the main period of Variscan crustal thickening and occurs in N-S to NE-SW direction, roughly perpendicular to the trend of the main Variscan compressional structures. Such relationships point out that the onset of Variscan extension occurs after compression and prior to the granodiorite emplacement and to the deposition of post-orogenic volcanics.  相似文献   

6.
Abstract

Biostratigraphical data using larger foraminifera and planktonic foraminifera permitted us to establish the correlation between shallow platform sediments rich in larger foraminifera (Montsec and Serres Marginals thrust sheets) and deeper ones containing planktonic foraminifera (Boixols thrust sheet).

Consequently, the Santa Fe limestones containing Ovalveolina-Praealveolinaassemblage represent the Cenomanian. Early Turonian ( ‘IT~ archaeocretacea and P. helvetica zones) exist in both, Montsec and Boixols thrust sheets and it is constituted by Pithonella limestones. Late Turonian (M. schneegansi zone) is only present in Boixols thrust sheet (Reguard Fm.), the Montsec thrust sheet having an erosive hiatus.

Late Coniacian-Early Santonian (D. Concavata zone) is represented in the Montsec thrust sheet (Cova Limestones) and in the eastern part of the Boixols thrust sheet (St. Corneli Fm.) by two differents facies giving two different microfaunal assemblages; the firts one, characterized by Ophtalmidiidae s.l indicate a restricted lagoonal environment while the second one, characterized by diverses species of complex agglutinated, Fabulariidae, Meandropsinidae and Rotaliidae, represents an open shallow platform. In the Boixols thrust sheet (Anseroles Fm.) dominate the planktonic foraminifera and small benthic.

In the late Santonian (D. asyrnetrica zone) the sea reached as far as Serres Marginales thrust sheet where sediments (Tragó de Noguera unit) are terrigenous and deposited in a very shallow platform. In the Montsec thrust sheet (Montsec marls) the larger foraminifera indicate a platform deeper than that of the Serres Marginals thrust sheet. In the Boixols thrust sheet the sediments are deposited in an outer platform (Herbasavina Fm.) or turbiditic basin (Mascarell Mb.).

During Campanian times the transgresion reaches the maximum. In the Serres Marginals sediments are deposited in a restricted shallow environment rich in Meandropsinidae (Serres Limestones). In the Montsec thrust sheet they are deposited in a platform with patch reefs and shoals (Terradets limestones) and in the Boixols one in an outer platform, talus and/or basin.

During Early Maastrichtian times (C. falsostuarti zone) terrigenous materials arrived in the basin, the rate of sedimentation increased outstripping the subsidence rate and the retreat of the sea to the north. Late Maastrichtian (C. gansseri zone) is only present in the Boixols thrust sheet.  相似文献   

7.
Abstract A Hercynian charnockite occurs within high-grade gneisses in the Agly Massif, French Pyrenees. Its thermal history has been evaluated using the Fe-Mg distribution coefticient ( K D) between garnet and biotite. These minerals have different origins but similar compositions in the charnockites and host gneisses. In the charnockite, the Bi–Ga pairs are the retrograde products of Opx alteration. This Opx reaction with feldspar can be written. Opx + PI + Fluid 1(H2O + Al + K + Fe + Ti) = Bi + Ga + Q + Fluid 2(H2O + Na). The garnets are relatively Ca poor (4–2.5% grossular); they are automorphic and zoned in the gneisses and poikiloblastic in the charnockites. Both types show a retrograde rim (of few hundred microns'width) across which Fe and Mn increase as Mg decreases. The biotites show a good correlation between the octahedral cations (Ti4++ Fe2+) and (Mg2++ Al3+VI); Ti and Fe both increase, whereas Mg and AlVI decrease. There is an inverse linear correlation between Fe2+ and Mg2+ and the Fe/Mg ratio increases as Ti increases. The relation between Ti and K Ga-BiDFe-Mg is less clear: it seems that K D slightly decreases as Ti increases. The equilibration temperatures of Ga–Bi pairs are discussed: the charnockite Ga-Bi pairs have equilibrated between 550°C and 600°C; whereas those of the gneisses have equilibrated between 550°C and 650°C. Two main thermal steps appear: one in the gneisses between 600-650°C and a second one in both the gneisses and the charnockites between 550°C and 600°C.  相似文献   

8.
The stability of the landslide of Vallcebre has been evaluated by means of a GIS. The landslide mechanism is a translational failure which has been analysed as an infinite slope. Soil strength parameters and groundwater conditions are obtained from laboratory tests and monitoring devices. Geometric parameters necessary to compute the factor of safety at each individual cell are generated by interpolation from the boreholes present in the landslide. The results have been checked with the actual behaviour of the landslide and are consistent. The comparison between a conventional slope stability analysis and the GIS-based approach gives similar results, showing the feasibility of the latter.  相似文献   

9.
The Velay dome (French Massif Central) offers a quasi-continuous section across an anatectic domain comprising low- to high-grade schists, gneisses and granites. Two main tectonometamorphic events, and their related generation of granitic material, were recognized in addition to a major Barrrovian tangential event (D2) attributed to intracontinental collision tectonics: (i) a medium- to low- P , high- T event (D3) which gave rise to migmatites and syntectonic monzonitic granites and granodiorites, and (ii) a widespread melting event (D4) which led to the generation of migmatities, the Velay granite and post-anatectic granites.
Thermobarometry on samples collected from both the metamorphic envelope and the granitic core distinguishes two distinct geotherms: (i) a first, associated with the D3 event, characterized by P > 5 kbar, T ≤ 750° C and water-present melting (biotite remains stable) which led to large-scale migmatization but minor amount of granites; (ii) a second, associated with the D4 event and characterized by vapour-absent melting ( P = 4–5 kbar, T = 760–850° C) which gave rise to the Velay granites and late-migmatitic granites. The temperature increase during the D4 event is attributed to the intrusion of hot mafic magmas within the crust.
The time-integrated features of the different granitic rocks in the Velay dome can be directly related to a H2O in the source region and illustrate the progressive dehydration of a middle to lower crustal segment over 60 Ma.  相似文献   

10.
李伍平  王涛等 《地质论评》2001,47(4):368-376
东天山红柳河地区分布着大量的海西期花岗岩体,从早到晚,依次为河西站岩体、红柳河岩体、河西岩体和天湖岩体,主要岩石类型为花岗闪长岩、二长花岗岩和斜长花岗岩,河西站和红柳河花岗岩的岩相学和地球化学具有S型花岗岩的特征,而河西岩体和天湖岩体显示出I型花岗岩特征,河西花岗岩微量元素含量最低,具Eu弱正异常,类似于adakite岩地球化学特点;其他花岗岩微量元素含量高,具Eu负异常,与洋脊花岗岩相比,该区花岗岩不同程度地富集K2O、Rb、Ba、Th和Ce,亏损Ta、Nb、Zr、Hf、Y、Yb等,河西花岗岩、河西站和红柳河花岗岩、天湖花岗岩分别具有火山弧、同碰撞才碰撞后花岗岩特点,河西花岗岩和其他花岗岩分别起源于先前存在的大洋拉斑玄武岩残片和古老地壳岩石的部分熔融,这些花岗岩均形成于陆内造山环境,与东天山海西晚期地壳-岩石圈的挤压和伸展作用有关。  相似文献   

11.
Ultramafic rocks of Tibet and Xinjiang are the products of partial melting of the upper mantle. The evolution of their mineral composition is marked by two parallel evolutionary series: one is the progressive increase of the 100 Mg/(Mg+Fe~(2+) ratio of silicate minerals in order of lherzolite→harzburgite→dunite, i.e. the increase in magnesium; the other is the increase of the 100 Cr/(Cr+Al) ratio of accessory chrome spinel in the same order, i. e. the increase in Chromium. The above-mentioned evolutionary trends are contrary to that of magmatic differentiation. The evolution of fabrics of ultramafic rocks is characterized by progressive variation in order of protogranular texture→melted residual texture, symplectic texture and clastophyritic texture→equigranular mosaic texture and tabular mosaic texture. Experiments of partial melting of lherzolite have convincingly shown that the evolution of Alpine ultramafic rocks resulted from the partial melting of pyrolite. Various subtypes of them represent different degrees of partial melting. The vertical zoning marked by more basic rocks in the upper part and more acid rocks in the lower actually belongs to the fusion zoning of pyrolite.  相似文献   

12.
本文采用岩浆岩石地球化学作图软件,处理了海南岛晚海西-印支期埃达克质岩以及钾玄质岩的岩石化学分析数据,目的在于探讨其形成构造环境.根据地球化学-构造环境判别图解,海南岛在海西-印支期属于火山-岩浆弧环境,并将其与隔海相望的印支陆块东侧和华南板块同构造旋回的埃达克质岩进行对比.对比结果表明:海南岛与长山带晚海西-印支期埃达克质岩具有相似的构造环境,主要为主动大陆汇聚边缘带,其次为碰撞后板内地壳伸展-减薄环境.而华南板块同期的埃达克质岩则为大陆板内陆-陆同碰撞成因,与陆内深大断裂的活动有关.  相似文献   

13.
Pegmatite dyke swarms are exposed within the easternmost Pyrenees at Cabo de Creus. These dykes were emplaced into high-grade metamorphosed sedimentary strata of Cambro-Ordovician age, but lack obvious field relationship to Hercynian intrusive rocks. Together with structural and geochemical data, equilibrium oxygen isotope fractionations at temperatures of ≈ 600°C, the lack of obvious subsolidus exchange, and the H- and O-isotopic signatures of water in equilibrium with pegmatite mica and quartz are interpreted to indicate a derivation from anatexis of a metapelitic source at shallow crustal levels.  相似文献   

14.
Abstract Ultramafic rocks of Tibet and Xinjiang are the products of partial melting of the upper mantle. The evolution of their mineral composition is marked by two parallel evolutionary series: one is the progressive increase of the 100 Mg / (Mg+Fe2+) ratio of silicate minerals in order of lherzolite?harzburgite?dunite, i.e. the increase in magnesium; the other is the increase of the 100 Cr/(Cr+Al) ratio of accessory chrome spinel in the same order, i.e. the increase in Chromium. The above- mentioned evolutionary trends are contrary to that of magmatic differentiation. The evolution of fabrics of ultramafic rocks is characterized by progressive variation in order of protogranular texture? melted residual texture, symplectic texture and clastophyritic texture? equigranular mosaic texture and tabular mosaic texture. Experiments of partial melting of lherzolite have convincingly shown that the evolution of Alpine ultramafic rocks resulted from the partial melting of pyrolite. Various subtypes of them represent different degrees of partial melting. The vertical zoning marked by more basic rocks in the upper part and more acid rocks in the lower actually belongs to the fusion zoning of pyrolite.  相似文献   

15.
黑龙江宝山地区在构造上位于兴蒙造山带东部的松嫩地块和佳木斯地块之间的伊春-延寿花岗岩带北段,区内分布大面积的古生代-中生代花岗岩.其中海西晚期花岗岩,岩性主要为碱长花岗岩、二长花岗岩和花岗闪长岩等,锆石U-Pb法 LA-ICP MS测年结果为252.6±3 Ma.其主量元素表现出富Si、略富Al、富碱质和低Mg、低Ca的特点;微量元素表现出富集Rb、Nd、K、Pb、U和亏损Nb、Ta、P、Ti等高场强元素的特点,并且Sr、Ba呈明显的负异常;稀土元素具有明显的轻稀土元素富集、重稀土元素相对亏损的特征,轻重稀土元素分馏程度较高.岩石总体上属于高钾钙碱性花岗岩,是岩浆经历了高度结晶分异作用的产物.矿物化学和岩石地球化学特征表明其特征类似于S型花岗岩,源岩物质来自于地壳.  相似文献   

16.
We studied the structural, petrological, and geochemical characteristics, as well as the geotectonic setting, of the Hercynian (300 ± 3 Ma) Voras plutonic rocks intrusive into the lower part of the Pelagonian nappe pile (East Pelagonian Zone, EPZ). These rocks are compared with the neighbouring Hercynian Varnountas and Kastoria plutons intruding the tectonic upper Pelagonian part (Korabi West Pelagonian Zone, KoWPZ). Based on modal and chemical compositions, four rock-types can be distinguished for the Voras ploutonic rocks: (1) hornblende-biotite granodiorite to granite (HbBtGrd), (2) biotite granite (BtGr), (3) leucogranite (LGr), and (4) mafic microgranular enclaves (MMEs) occurring typically in HbBtGrd and BtGr. Aplites intrude HbBtGrd and BtGr whereas xenoliths are rare. The MMEs are metaluminous, while all the other rock-types are slightly peraluminous. Crystallization pressures range from 2.4 to 2.9 kbar for the HbBtGrd and 3.0 kbar for the MME. Field observations, chemical, mineralogical, and petrographical data suggest that theMME and HbBtGrd + BtGr formed as a result of a two-step evolution process. In the first step, a mantle-sourced basic magma with composition similar to the more basic MMEs fractionated (F = 0.40, 60% crystallization) and concurrently mixed with an acid magma, of composition similar to the more acid BtGr. The crystallized mineral assemblage is Qtz38.27Pl27.83Hb14.84Bt10.61Kf6.13Ap2.30Zrn0.02. The process evolved with a low r-value (r = 0.3) giving the more basic HbBtGrd. In the second step, evolved magma (more basic HbBtGrd) fractionated, while simultaneously mixing with the same acid magma, but with higher r-value (r = 0.8), giving the more evolved HbBtGrd and the BtGr after 50% crystallization (F = 0.50) to the phase assemblage Qtz30.07Pl27.75Hb5.59Bt3.33Kf23.26Tit5.86Ap1.91Zrn0.04Mt2.19. We interpret the evolution of the LGr through fractional crystallization; it formed by partial melting of gneisses or felsic charnokites and granoulites. The less evolved MME (basic end-member) had a mantle origin, whereas for the more evolved BtGr (acid end-member) we favour partial melting of gneisses or mafic charnokites. Detailed structural analysis shows a strong, polyphase Alpine deformation which affected the Hercynian Voras ploutonic rocks and is thoroughly imprinted on the host Pelagonian metamorphic basement rocks. No evidence of relict Hercynian structures has been recognized, possibly due to intense reworking by the younger Alpine deformation. We have identified five tectonic events (D1–D5) from the Late Jurassic to recent, that evolved progressively from ductile, synmetamorphic (D1, D2) to semi-ductile (D3), and finally brittle (D4, D5) conditions. Voras plutonic rocks in the EPZ, and Varnountas and Kastoria plutons in the KoWPZ, have similar major and trace element geochemistries, as well as structural evolution; they coevally intruded (Carboniferous) the Pelagonian continent as a single unit. They show similar crystallization pressures and mantle contributions for their genesis; both are related to a volcanic arc geotectonic setting, associated with the subduction of the Palaeotethys Ocean beneath the Pelagonian continental fragment, the latter possibly of Gondwana origin.  相似文献   

17.
Sensitive high-resolution ion microprobe U–Pb dating showsthat a biotite orthogneiss from the Hercynian belt of westerncentral Iberia contains 1000–300 Ma zircon. Older, 1000–570Ma ages within this range represent inherited, detrital materialamong which four age components may be recognized:  相似文献   

18.
Occurrences and distribution of extremely scarce eognathodontids do not facilitate reliable correlation across the European regions. The correlation of the traditional early Pragian of the Prague Synform (a part of the classical Barrandian area) and the Spanish Central Pyrenees (section Segre 1) is based on conodont taxa of the Icriodus steinachensis and the Pelekysgnathus serratus stocks. This correlation has the potential to be extended to other peri‐Gondwanan regions where this scarcity of eognathodontid faunas exists as well. Application of the morphotype subdivision in I. steinachensis enables approximation of the beginning of the Pragian in the Pyrenees. It is based on the entry of I. steinachensis beta morphotype; it enters together with early eognathodontid taxa in the Barrandian sections. These correlations show that routine application of certain zonal concepts can lead to misleading conclusions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Zircon UPb dating by SIMS of the Mont-Louis granite yields an age of 305±5 Ma, intrepreted to reflect the igneous emplacement age of the massif. It is in agreement with the Hercynian syntectonic character of Pyrenees granite. 40Ar/39Ar on hornblende, biotite and K-feldspar permit, to estimate the massif cooling. A rapid temperature decrease (≈30 °C/Ma) is revealed from Westphalian to Late Stephanian, coeval with the emplacement of a laccolithe in the upper crust. Then, the cooling rate decreases to ≈1 °C/Ma. This would be consistent with a long time residence for the pluton from the Late Palaeozoic to the Early Cainozoic at 6–8 km depth. To cite this article: O. Maurel et al., C. R. Geoscience 336 (2004).  相似文献   

20.
Abstract The Hercynian granitic basement which forms the Tenda Massif in NE Corsica represents part of the leading edge of the European Plate during middle-to-late Cretaceous (Eoalpine) high P metamorphism. The metamorphism of this basement, induced by the overthrusting of a blueschist facies (schistes lustrés) nappe, was confined to a major ductile shear zone (c. 1000m thick) within which deformation increases upwards towards the overlying nappe. Metamorphism within the basement mostly records lower blueschist facies conditions (crossite + epidote) except near the base of the shear zone where the greenschist facies assemblage albite + actinolitic amphibole has developed instead of crossite. Study of the primary mafic phase breakdown reactions within hornblende granodiorite reveals the following metamorphic zonation. Zone 1: biotite to chlorite. Towards zone 2: biotite to phengite. Zone 2: Hornblende to actinolitic Ca-amphibole + albite + sphene, and biotite to actinolitic Ca-amphibole + albite + phengite + Ti-ore + epidote. Zone 3: Hornblende to crossite + low Ti-biotite + phengite + sphene, and biotite to crossite + low Ti-biotite + phengite + Ti-ore + sphene ± epidote. P-T conditions at the base of the shear zone are estimated to have been 390-490°C at 600-900 M Pa (6-9kbar) and the Corsican basement is therefore deduced to have been buried to 20-30 km during metamorphism. This relatively shallow metamorphism contrasts with some other areas in the Western Alps where the Eoalpine event apparently buried the European continental crust to depths of 80 km or more. As there is no evidence for a long history of blueschist facies metamorphism prior to the involvement of the European continent, it is deduced that the Eoalpine blueschists were produced during the collision of the Insubric plate with Europe, rather than during Tethyan intraoceanic subduction. Coherent blueschist terrains such as the schistes lustres probably record buovant feature collision and obduction tectonics rather than any preceding oceanic subduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号