共查询到2条相似文献,搜索用时 15 毫秒
1.
Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio,certainty factor,and index of entropy 总被引:3,自引:0,他引:3
The main objective of the study was to evaluate and compare the overall performance of three methods, frequency ratio (FR), certainty factor (CF) and index of entropy (IOE), for rainfall-induced landslide susceptibility mapping at the Chongren area (China) using geographic information system and remote sensing. First, a landslide inventory map for the study area was constructed from field surveys and interpretations of aerial photographs. Second, 15 landslide-related factors such as elevation, slope, aspect, plan curvature, profile curvature, stream power index, sediment transport index, topographic wetness index, distance to faults, distance to rivers, distance to roads, landuse, NDVI, lithology and rainfall were prepared for the landslide susceptibility modelling. Using these data, three landslide susceptibility models were constructed using FR, CF and IOE. Finally, these models were validated and compared using known landslide locations and the receiver operating characteristics curve. The result shows that all the models perform well on both the training and validation data. The area under the curve showed that the goodness-of-fit with the training data is 79.12, 80.34 and 80.42% for FR, CF and IOE whereas the prediction power is 80.14, 81.58 and 81.73%, for FR, CF and IOE, respectively. The result of this study may be useful for local government management and land use planning. 相似文献
2.
This study evaluates and compares landslide susceptibility maps of the Baxie River basin, Gansu Province, China, using three models: evidential belief function (EBF), certainty factor (CF) and frequency ratio (FR). First, a landslide inventory map is constructed from satellite image interpretation and extensive field data. Second, the study area is partitioned into 17,142 slope units, and modelled using nine landslide influence parameters: elevation, slope angle, slope aspect, relief amplitude, cutting depth, gully density, lithology, normalized difference vegetation index and distance to roads. Finally, landslide susceptibility maps are presented based on EBF, CF and FR models and validated using area under curve (AUC) analysis. The success rates of the EBF, CF and FR models are 0.8038, 0.7924 and 0.8088, respectively, while the prediction rates of the three models are 0.8056, 0.7922 and 0.7989, respectively. The result of this study can be reliably used in land use management and planning. 相似文献