首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Internal regions of orogenic belts may be characterized by an alignment of fold axes with mineral elongation lineations. This relationship is commonly interpreted as representing progressive tightening and rotation towards the shear direction of early buckle folds, the hinges of which were initiated orthogonal to this direction. Detailed structural analysis of lower amphibolite facies Dalradian metasediments of the Ballybofey (fold) Nappe, north-west Ireland, shows that an intense S3 schistosity is developed axial planar to mesoscopic and minor F3 folds. In areas of low D3 strain, F3 fold axes plunge gently towards the north-east, whereas in regions of greater strain plunges are towards the south-east subparallel to the constant mineral lineation. Minor folds which initiated at angles of 70–80° from the mineral lineation subsequently rotated towards the shear direction in a consistent clockwise sense. Progressive and variable non-coaxial deformation oblique to the original mean F3 orientation has resulted in a unimodal distribution pattern of fold axes. Analysis of the angular rotation of fold axes enables estimates of the bulk shear strain to be evaluated and models of progressive deformation to be assessed.  相似文献   

2.
Three major episodes of folding are evident in the Eastern Ghats terrain. The first and second generation folds are the reclined type; coaxial refolding has produced hook-shaped folds, except in massif-type charnockites in which non-coaxial refolding has produced arrow head folds. The third generation folds are upright with a stretching lineation parallel to subhorizontal fold axes. The sequence of fold stylesreclinedF 1and coaxialF 2, clearly points to an early compressional regime and attendant progressive simple shear. Significant subhorizontal extension duringF 3folding is indicated by stretching lineation parallel to subhorizontal fold axes. In the massif-type charnockites low plunges ofF 2folds indicate a flattening type of deformation partitioning in the weakly foliated rocks (magmatic ?). The juxtaposition of EGMB against the Iron Ore Craton of Singhbhum by oblique collision is indicative of a transpressional regime.  相似文献   

3.
On the southern border of the Central Iberian Zone there are two sectors with different styles of deformation. To the south-west, in the Hornachos sector, large-scale recumbent folds associated with ductile shearing can be seen. This shearing is characterized by a direction of movement parallel to the fold axes and can be correlated for 150 km along strike. The K-values of the strain ellipsoid range from 0.8 to 2.0. Stretching in the X direction, parallel to the recumbent fold axes, is more than 100%. To the north-east, in the Oliva sector, first-phase folds are upright and the strain intensity is lower than in the Hornachos sector. Metamorphic, geometric and kinematic considerations lead us to conclude that the shearing in the Hornachos sector is better explained as conjugate to a main shear zone along which the southern border of the Central Iberian Zone is moved onto the Ossa-Morena Zone. This main thrust is at present obliterated by a left-lateral extensional shear zone that affects a high pressure exotic unit located between the Central Iberian and the Ossa-Morena Zones. This high pressure unit constitutes a suture of the Variscan belt in the Iberian Peninsula.  相似文献   

4.
5.
The Central Zone (CZ) of the Limpopo Complex of southern Africais characterized by a complex deformational pattern dominatedby two types of fold geometries: large sheath folds and crossfolds. The sheath folds are steeply SSW-plunging closed structureswhereas the cross folds are north–south-oriented withnear-horizontal fold axes. In the area south of Messina thiscomplexly folded terrain grades continuously towards the southinto a crustal-scale ENE–WSW-trending ductile shear zonewith moderate dip towards the WSW. All sheath folds documentconsistent top-to-the-NE thrust movement of high-grade material.The timing of this shear deformational event (D2) and thus ofthe gneissic fabric (S2) is constrained (at  相似文献   

6.
Blueschist-facies rocks of the central Seward Peninsula cropout over 8000 km2. Protoliths were Lower Paleozoic-Precambrian(?) shallow-water miogeoclinal sediments that were metamorphosed during the Middle Jurassic. Thermobarometric estimates yield ‘peak’ metamorphic conditions of 10–12 kbar at 460 ± 30°C. Crystallization of blueschist-facies minerals was synkinematic with development of a transposition foliation. This foliation is parallel to lithologic contacts and is axial planar to recumbent mesoscopic isoclinal folds. These folds are refolded by larger scale recumbent tight to isoclinal folds. Both fold sets have hinges parallel to a well-developed N—S stretching lineation. Sheath folds are also present. The long axes of the sheath folds also parallel the stretching lineation. This deformation was non-coaxial as indicated by microstructures and quartz c-axis fabrics. Folds nucleated, then rotated into parallelism with the stretching direction. Kinematic indicators show unequivocal top-to-the-north shear sense, compatible with blueschist formation during mid-Jurassic collision between the Brooks Range continental margin and a N-facing island arc (Yukon-Koyukuk). Convergence of these two plates is believed to have been nearly N—S (in present co-ordinates).  相似文献   

7.
Boudins with long axes (BA) oriented subnormal to bedding and to associated fold axes are observed in folded rocks in a thrust sheet exposed near the base of a regionally extensive allochthon in west-central Nevada, USA. Formation of the boudins is related to development of a regional fold-set coeval with major thrusting. The axes of boudins lie at a high angle to bedding, and in some instances, boudins define tight to isoclinal folds which are geometrically associated with the regional deformation. Quartz c-axis fabrics from oriented thin-sections of the boudins indicate extension parallel to the boudin axes (BA).

These relations and other mesoscopic structural data indicate a complex deformational history for boudin development. The history involves thin layers (to become boudins) deformed in folds disharmonic to major structures within the thrust sheet followed by flattening and associated extension parallel to fold axes. During flattening, arcuation occurred within the deforming mass resulting in rotation of fold axes and boudin axes (BA) toward the axis of finite extension (X). Extension parallel to BA recorded in the petrofabrics of boudins records incremental strain axes oriented at a high angle (50°) to the finite X and is probably related to an early plane-strain state associated with disharmonic folding. The finite extension (X) is down-dip in axial planes of major folds formed during thrusting and indicates a northwest to southeast transport for the thrusts.  相似文献   


8.
Transpressional deformation has played an important role in the late Neoproterozoic evolution of the ArabianNubian Shield including the Central Eastern Desert of Egypt. The Ghadir Shear Belt is a 35 km-long, NW-oriented brittleductile shear zone that underwent overall sinistral transpression during the Late Neoproterozoic. Within this shear belt, strain is highly partitioned into shortening, oblique, extensional and strike-slip structures at multiple scales. Moreover, strain partitioning is heterogeneous along-strike giving rise to three distinct structural domains. In the East Ghadir and Ambaut shear belts, the strain is pure-shear dominated whereas the narrow sectors parallel to the shear walls in the West Ghadir Shear Zone are simple-shear dominated. These domains are comparable to splay-dominated and thrust-dominated strike-slip shear zones. The kinematic transition along the Ghadir shear belt is consistent with separate strike-slip and thrustsense shear zones. The earlier fabric(S1), is locally recognized in low strain areas and SW-ward thrusts. S2 is associated with a shallowly plunging stretching lineation(L2), and defines ~NW-SE major upright macroscopic folds in the East Ghadir shear belt. F2 folds are superimposed by ~NNW–SSE tight-minor and major F3 folds that are kinematically compatible with sinistral transpressional deformation along the West Ghadir Shear Zone and may represent strain partitioning during deformation. F2 and F3 folds are superimposed by ENE–WSW gentle F4 folds in the Ambaut shear belt. The sub-parallelism of F3 and F4 fold axes with the shear zones may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation in fold zones. Dextral ENEstriking shear zones were subsequently active at ca. 595 Ma, coeval with sinistral shearing along NW-to NNW-striking shear zones. The occurrence of upright folds and folds with vertical axes suggests that transpression plays a significant role in the tectonic evolution of the Ghadir shear belt. Oblique convergence may have been provoked by the buckling of the Hafafit gneiss-cored domes and relative rotations between its segments. Upright folds, fold with vertical axes and sinistral strike-slip shear zones developed in response to strain partitioning. The West Ghadir Shear Zone contains thrusts and strikeslip shear zones that resulted from lateral escape tectonics associated with lateral imbrication and transpression in response to oblique squeezing of the Arabian-Nubian Shield during agglutination of East and West Gondwana.  相似文献   

9.
The Numba ductile deformation zone (NDDZ) is characterised by folds recorded during the three deformation phases that affected the banded amphibole gneiss. Fold-shape analyses using the program Fold Profiler with the aim to show the importance of folding events in the structural analysis of the NDDZ and its contribution to the Pan-African orogeny in central Africa have been made. Classical field method, conic sections method and Ramsay’s fold classification method were applied to (i) have the general orientation of folds, (ii) analyze the fold shapes and (iii) classify the geometry of the folded bands. Fold axes in banded amphibole gneiss plunge moderately (\(<\)15\(^{\circ }\)) towards the NNE or SSW. The morphology of F\(_{1}\), F\(_{2}\) and F\(_{3}\) folds in the study area clearly points to (i) Z-shape folds with SE vergence and (ii) a dextral sense of shear motion. Conic section method reveals two dominant families: F\(_{1}\) and F\(_{3}\) folds belong to parabolic shape folds, while F\(_{2}\) folds belong to parabolic shape and hyperbolic shape folds. Ramsay’s scheme emphasizes class 1C (for F\(_{1}\), F\(_{2}\) and F\(_{3}\) folds) and class 3 (for F\(_{2}\) folds) as main fold classes. The co-existence of the various fold shapes can be explained by (i) the structuration of the banded gneiss, (ii) the folding mechanisms that associate shear with a non-least compressive or flattening component in a ductile shear zone and (iii) the change in rheological properties of the band during the period of fold formation. These data allow us to conclude that the Numba region underwent ductile dextral shear and can be integrated (i) in a correlation model with the Central Cameroon Shear Zone (CCSZ) and associated syn-kinematic intrusions and (ii) into the tectonic model of Pan-African belt of central Africa in Cameroon.  相似文献   

10.
Analysis of the mesoscopic structure of the early Paleozoic Shoo Fly complex, northern Sierra Nevada, California, reveals three phases of deformation and folding. The first phase of folding is pre-Late Devonian and the second two are constrained by regional relations as due to the Late Jurassic Nevadan orogeny. Main phase Nevadan deformation produced penetrative slaty cleavage which is steep, NNW-trending and parallel to tectonostratigraphic terranes of the region. Cleavage is axial-planar to ubiquitous isoclinal similar folds. Fold axes define a NNW-trending girdle with a distinct, near-vertical maximum. Main phase Nevadan folds have nearly ideal class 2 orthogonal thickness geometry although some class 1C forms exist in more competent units. The overall geometry of main phase folds suggests formation by progressive deformation in a flattening regime with cleavage as the flattening plane and a steep extension axis defined by the fold axis maximum. A steep extension axis direction for main phase Nevadan deformation is supported by analysis of interference relations where folds of this generation deform pre-Late Devonian folds. Late Nevadan folds range from kink flexures to ideal class 2 similar folds with incipient axial-planar cleavage. The kinematic significance of late Nevadan folds cannot be evaluated because of their varying style and orientation throughout the northern Sierra Nevada.Penetrative ductile deformation and near-vertical extension during the Nevadan orogeny was synchronous with accretion of oceanic and/or island arc rocks against the western margin of the northern Sierra Nevada. The kinematic framework of deformation defined for Nevadan deformation is consistent with essentially orthogonal convergence of these exotic terranes with the Sierran margin and argues against a transform/transpressive regime.  相似文献   

11.
It has long been recognised that within zones of intense non-coaxial deformation, fold hinges may rotate progressively towards the transport direction ultimately resulting in highly curvilinear sheath folds. However, there is a surprising lack of detailed and systematic field analysis of such “evolving” sheath folds. This case study therefore focuses on the sequential development of cm-scale curvilinear folds in the greenschist-facies El Llimac shear zone, Cap de Creus, Spain. This simple shear-dominated dextral shear zone displays superb three dimensional exposures of sheath folds defined by mylonitic quartz bands within phyllonite. Increasing amounts of fold hinge curvature (δ) are marked by hinge segments rotating into sub-parallelism with the mineral lineation (Lm), whilst the acute angle between the axial-planar hinge girdle and foliation (ω) also displays a sequential reduction. Although Lm bisects the noses of sheath folds, it is also clearly folded and wrapped-around the sheath hinges. Lm typically preserves a larger angle (θ) with the fold hinge on the lower limb (L) compared to the upper (U) limb (θL > θU), suggesting that Lm failed to achieve a steady orientation on the lower limb. Adjacent sheath fold hinges forming fold pairs may display the same sense of hinge arcing to define synthetic curvature, or alternatively opposing directions of antithetic curvature. Such patterns reflect original buckle fold geometries coupled with the direction of shearing. The ratio of long/short fold limbs decreases with increasing hinge curvilinearity, indicating sheath folds developed via stretching of the short limb, rather than migrating or rolling hinge models. This study unequivocally demonstrates that both hinges of fold pairs become curvilinear with sheaths closing in the transport direction recording greater hinge-line curvilinearity compared to adjacent return hinges. This may provide a useful guide to bulk shear sense.  相似文献   

12.
ABSTRACT

The South China block (SCB), located in the convergence zones of the western Pacific subduction tectonic domain and Tethyan tectonic domain, has experienced complex tectonic processes, including the continent–continent collision caused by the closure of the Palaeo-Tethys Ocean, and the subduction of the Palaeo-Pacific plate. However, due to complex intracontinental deformation and abundant magmatism, there are serious divergences in the corresponding records of the tectonic transformation from Palaeo-Tethys to Palaeo-Pacific. We have analysed the map-scale superimposed fold system developed in central SCB and also inverted the palaeo-stress field based on the fault–slip vectors. On this basis, the deformation styles and superposition mechanism of two-stage folds were recovered to establish the tectonic stress field in early Mesozoic and tectono-magmatic events by combining the chronology of the accompanying syntectonic magma. The early E–W/WNW-trending folds and Triassic magmatic system were identified; these were controlled by the NE–SW-trending compressive stress field, to coordinate with the collisions between the SCB and the Indochina block in the southwest, and the North China block in the north. The late NE/NNE-trending folds superimposed on the early folds in an orthogonal way to form a large-scale dome-basin superimposed fold system, which were controlled by the WNW–ESE-trending compressive stress field. According to the strata relations involved in deformation and the chronology data of magmatic rocks, it could be determined that NE/ENE-trending folds would be formed during the Mid- to Late Jurassic, corresponding to the westward subduction events of the Palaeo-Pacific plate. The establishment of the large-scale superimposed fold styles and the identification of fold deformation in the Triassic and Jurassic are important for understanding the early Mesozoic tectonics of South China, and even for all East Asia continent. In particular, it can provide important temporal and spatial constraints to explain the complex deformation process and geodynamic settings of South China in the early Mesozoic.  相似文献   

13.
First phase folds F1 developed in polydeformed Ajabgarh Group rocks of Proterozoic age are studied using various geometrical methods of analysis for compatibility of homogeneous strain in both class 1–3 pairs by correlatingt′ ga/α plots with existing curves for competent layers and matchingt ga/α plots with the flattening curves for the incompetent layers. F1 folds were initiated by the process of buckling but underwent [(λ21) = 0.2 to 0.7] for competent layers andR- values of 1.1 to 5 for incompetent layers. The varying flattening is also revealed by the geometry of folds. The apparent buckle shortening of folds which ranges between 49 and 67 per cent with a majority of the folds having shortening values between 50% and 55% (exclusive of layer parallel strain) and inverse thickness method strain up to 50%. Besides flattening, the fold geometry was also modified by the pressure solution. This is borne by the presence of dark seams rich in phyllosilicates and disseminated carbonaceous material offsetting limbs of buckled quartz veins in slates  相似文献   

14.
The patterns of deformed early lineations (L1) over later folds (F2) can be classified into several morphological types depending on the nature of variation of L1 F2 over the folds. The field relations indicate that the folds under consideration are neither shear folds nor parallel folds modified by flattening. The lineation patterns are therefore interpreted in terms of an empirical model of simultaneous buckling and flattening in which it is assumed that (i) the central surface of the folded layer remains a sine curve in transverse profile, (ii) the ratio of rates of buckle shortening to homogeneous strain is proportional to sin 2a, with a as the dip angle and (iii) the progressive deformation is coaxial with the Z-axis of bulk strain parallel to the planar segments of the early folds. The model gives an insight into the relative importance of different physical factors which control the development of dissimilar lineation patterns. Not all lineation patterns are explicable by this simplified model. Thus complex patterns with variable L1 F2 along the fold axis may develop by a progressive rotation of the geometrically defined fold hinge through successive material lines. The theoretical results have been applied to interpret the lineation patterns in Central Rajasthan, India. It is concluded that L1 was initially very close to the E-ESE trending subhorizontal Z-axis of bulk deformation during F2-folding and that the X-axis was subhorizontal or gently plunging with a N-NNE trend.  相似文献   

15.
拉卡兰褶皱带中,发育于Ballarat-Bandigo冲断带中的低级变质砂、泥岩的宏观构造以间离劈理和人字形褶皱为特征,而且劈理在褶皱中呈扇形发育。劈理和褶皱的几何关系分析显示:劈理和褶皱的形成为压溶作用、压扁作用、弯曲作用和被动旋转共同作用的结果,而褶皱砂、泥岩中变形构造则以与压溶作用和再沉淀过程有关的显微构造为其典型特征。Fry法进行的全岩应变测量显示,褶皱砂岩的内部应变相当低(X/Z=1.40—1.83),褶皱应变格局给出变形机制的信息包括:缩短过程中的压扁作用和压溶作用、褶皱过程中由弯滑导致的层平行剪应变、以及褶皱后期发育阶段内弧区强烈的压溶作用。宏观构造、显散构造以及应变特征多方面信息证明:低级变质的沉积岩在褶皱变形过程中,压溶作用为一重要的变形机制。应变分解显示在30%—50%的总地壳水平缩短量下,弯曲导致的缩短最为14%—36%,压扁导致的缩短量为3%—14%,压溶导致的缩短量为8%—26%,而且压溶作用主要发生在褶皱内弧区。  相似文献   

16.
The banded iron-formation in the southeastern Bababudan Hills display a macroscopic synformal bend gently plunging towards WNW. The bedding planes in smaller individual sectors show a cylindrical or conical pattern of folding. The dominant set of minor folds has WNW-ESE trending axial planes and the axes plunge towards WNW at gentle to moderate angles, though there is considerable variation in orientation of both axes and axial planes. A later set of sporadically observed folds has N-S trending axial planes. The macroscopic synformal bend within the study area forms the southeastern corner of a horseshoe shaped regional synformal fold closure which encompasses the entire Bababudan range. The minor folds are buckle folds modified to a varying extent by flattening. In some examples the quartzose layers appear to be more competent than the ferruginous layers; in others the reverse is true. The folds are frequently noncylindrical and the axes show curvature with branching and en echelon patterns. Such patterns are interpreted to be the result of complex linking of progressively growing folds whose initiation is controlled by the presence of original perturbations in the layers. Domes and basins have at places developed as a result of shortening along two perpendicular directions in a constrictional type of strain. Development of folds at different stages of progressive deformation has given rise to nonparallelism of fold axes and axial planes. The axes and axial planes of smaller folds developed on the limbs of a larger fold are often oriented oblique to those of the latter. Progressive deformation has caused rotation and bending of axial planes of earlier formed folds by those developed at later stages of the same deformational episode. Coaxial recumbent to nearly reclined fold locally encountered on the N-S limb of the macroscopic fold may belong to an earlier episode of deformation or to the early stage of the main deformation episode. The E-W to ESE-WNW strike of axial plane of the regional fold system in the Bababudan belt contrasts with the N-S to NNW-SSE strike of axial planes of the main fold system in the Chitradurga and other schist belts of Karnataka.  相似文献   

17.
One of the rules of thumb of structural geology is that drag folds, or minor asymmetric folds, reflect the sense of layer-parallel shear during folding of an area. According to this rule, right-lateral, layer-parallel shear is accompanied by clockwise rotation of marker surfaces and left-lateral by counterclockwise rotation. By using this rule of thumb, one is supposed to be able to examine small asymmetric folds in an outcrop and to infer the direction of axes of major folds relative to the position of the outcrop. Such inferences, however, can be misleading. Theoretical and experimental analyses of elastic multilayers show that symmetric sinusoidal folds first develop in the multilayers, if the rheological and dimensional properties favor the development of sinusoidal folds rather than kink folds, and that the folded layers will then behave much as passive markers during layerparallel shear and thus will follow the rule of thumb of drag folding. The analyses indicate, however, that multilayers whose properties favor the development of kink folds can produce monoclinal kink folds with a sense of asymmetry opposite to that predicted by the rule of thumb. Therefore, the asymmetry of folds can be an ambiguous indicator of the sense of shear.The reason for the ambiguity is that asymmetry is a result of two processes that can produce diametrically opposed results. The deformation of foliation surfaces and axial planes in a passive manner is the pure or end-member form of one process. The result of the passive deformation of fold forms is the drag fold in which the steepness of limbs and the tilt of axial planes relative to nonfolded layering are in accord with the rule of thumb.The end-member form of a second process, however, produces the opposite geometric relationships. This process involves yielding and buckling instabilities of layers with contact strength and can result in monoclinal kink bands. Right-lateral, layer-parallel shear stress produces left-lateral monoclinal kink bands and left-lateral shear stress produces right-lateral monoclinal kink bands. Actual folds do not behave as either of these ideal end members, and it is for this reason that the interpretation of the sense of layer-parallel shear stress relative to the asymmetry of folds can be ambiguous.Kink folding of a multilayer with contact strength theoretically is a result of both buckling and yielding instabilities. The theory indicates that inclination of the direction of maximum compression to layering favors either left-lateral or right-lateral kinking, and that one can predict conditions under which monoclinal kink bands will develop in elastic or elastic—plastic layers. Further, the first criterion of kink and sinusoidal folding developed in Part IV remains valid if we replace the contact shear strength with the difference between the shear strength and the initial layer-parallel shear stress.Kink folds theoretically can initiate only in layers inclined at angles less than to the direction of maximum compression. Here φ is the angle of internal friction of contacts. For higher angles of layering, slippage is stable so that the result is layer-parallel slippage rather than kink folding.The theory also provides estimates of locking angles of kink bands relative to the direction of maximum compression. The maximum locking angle between layering in a nondilating kink band and the direction of maximum compression is . The theory indicates that the inclination of the boundaries of kink bands is determined by many factors, including the contact strength between layers, the ratio of principal stresses, the thickening or thinning of layers, that is, the dilitation, within the kink band, and the orientation of the principal stresses relative to layering. If there is no dilitation within the kink band, the minimum inclination of the boundaries of the band is to the direction of maximum compression, or to the direction of nonfolded layers. Here α is the angle between the direction of maximum compression and the nonfolded layers. It is positive if clockwise.Analysis of processes in terminal regions of propagating kink bands in multilayers with frictional contact strength indicates that an essential process is dilitation, which decreases the normal stress, thereby allowing slippage and buckling even though slopes of layers are low there.  相似文献   

18.
Metasedimentary and minor metavolcanic rocks of the Early Proterozoic Pine Creek Inlier rest unconformably on Late Archaean granitic basement. Three basin-wide, regional deformation events at ca.1885–1870 Ma are recognised: I) W- to NW-verging thrusts and recumbent folds (D2), II) upright, open to tight, doubly-plunging, NNE- to NNW-trending folds (D3), and III) open, upright, E-trending folds (D4). In the centre of the Pine Creek Inlier, post-tectonic granites (1835–1820 Ma) are spatially, temporally and probably genetically associated with mesothermal gold-quartz vein deposits. The Tom's Gully deposit consists of a shallowly S-dipping quartz reef in graphitic shale and siltstone within the thermal aureole of the post-tectonic (1831 ± 6 Ma) Mt Bundey pluton. Gold mineralisation comprises two(?) SSW-plunging sulphidic ore-shoots which are intimately associated with brecciation and recrystallisation of early barren quartz. Where early quartz is absent from the thrust, gold mineralisation is not developed, indicating that this secondary brittle fracturing was essential to sulphide and gold deposition. The ore-shoots plunge parallel to the trend of D3 fold axes. The reef is hosted by a D2 thrust fault with transport to the NW. D3 folds in the hangingwall and footwall decrease in amplitude toward the reef indicating that, during continued E-W compression, the thrust acted as a décollement zone. Field relationships and microstructural studies suggest that quartz and sulphide were deposited in a reactivated thrust during wrench shear along several NNE-trending faults associated with emplacement of the Mt Bundey pluton.  相似文献   

19.
ABSTRACT

The Yao Shan complex, a massif near the southern segment of the Ailao Shan–Red River (ASRR) shear zone, bears important information on the structural framework of the massif and the kinematics of ductile shearing along the ASRR shear zone. In this contribution, structural, microstructural, quartz c-axis fabric, magnetic fabric, and geochronologic data are used to determine the structural framework of the Yao Shan massif and its tectonic implications for the ASRR shear zone. The Yao Shan complex is characterized by an overall linear A-type antiform that contains a core of high-grade metamorphic rocks with Palaeoproterozoic to Mesozoic protoliths and a mantle of Permo-Triassic low-grade rocks. Both the high-grade metamorphic core and low-grade Permo-Triassic rocks have experienced progressive ductile shearing. Anisotropy of magnetic susceptibility (AMS) results from 17 samples collected along the Xinjie–Pingbian section across the complex show that magnetic lineation (Kmax) and foliation (KmaxKint) are generally subparallel to the corresponding structural elements in the sheared rocks. The shape parameter E values of the magnetic ellipsoids are indicative of dominantly oblate and plane strain, but vary with protolith type and degree of strain among the various rock types. In agreement with the field and microstructural observations, the corrected degree of anisotropy (Pj) values reflect high shear strain in the core rocks and relatively low shear strain in the low-grade strata. A kinematic analysis based on structural and magnetic fabric data shows that both left- and right-lateral shear occurred during the deformation of the Yao Shan complex. Therefore, instead of being an element of the ASRR shear zone, the Yao Shan complex constitutes a crustal-scale inharmonic A-type fold with a fold axis parallel to the stretching lineation. Geochronologic data reveal that the folding occurred coevally with ductile shearing of the middle to lower crust between ca. 30 and 21 Ma.  相似文献   

20.
Analysis of shapes of folds, together with other structures such as axial plane foliation boudinage, mullions and cross joints, show that the F1 folds in the ‘main Raialo syncline’ were formed by buckling, and were subsequently modified by flattening normal to the axial planes and lengthening along the axis. The apparent buckle shortening of the F1 folds generally ranges between 70 and 80%. The folds were formed by simple shear (giving place to pure shear at certain stages) in an almost north-south direction on subhorizontal beds. Progressive deformation in the later stage of F1 folding resulted in gentle upright folding of F1 axial planes on F1′ axes slightly oblique to F1. The F2 folds, whose average shortening ranges from 20 to 30%, were also formed by buckling caused by horizontal compression in a nearly northwest-southeast direction. This folding was preceded and followed in some instances by homogeneous strain, as deduced fro mthe shapes of the F2 folds and the nature of variation of the F1 lineations. The F3 conjugate structures developed when the maximum compressive strain was vertical and the intermediate compressive strain northwest-southeast, almost normal to the subvertical F2 axial planes. The increase in the amplitude of the F2 folds in the last phase of F2 folding in certain zones resulted in an excess of vertical load, which dissipated with the formation of the F3 structures. In the last stage of movement (F4) the maximum compressive strain became horizontal along the strike of F2 axial planes, whereas the minimum compressive strain was normal to them. The F4 structures, therefore, point to a longitudinal shortening with reference to large scale F2 folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号