首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 4 × 4 T -propagator matrix of a 3D central ray determines, among other important seismic quantities, second-order (parabolic or hyperbolic) two-point traveltime approximations of certain paraxial rays in the vicinity of the known central ray through a 3D medium consisting of inhomogeneous isotropic velocity layers. These rays result from perturbing the start and endpoints of the central ray on smoothly curved anterior and posterior surfaces. The perturbation of each ray endpoint is described only by a two-component vector. Here, we provide parabolic and hyperbolic paraxial two-point traveltime approximations using the T -propagator to feature a number of useful 3D seismic models, putting particular emphasis on expressing the traveltimes for paraxial primary reflected rays in terms of hyperbolic approximations. These are of use in solving several forward and inverse seismic problems. Our results simplify those in which the perturbation of the ray endpoints upon a curved interface is described by a three-component vector. In order to emphasize the importance of the hyperbolic expression, we show that the hyperbolic paraxial-ray traveltime (in terms of four independent variables) is exact for the case of a primary ray reflected from a planar dipping interface below a homogeneous velocity medium.  相似文献   

2.
Besides classical imaging techniques, full-waveform inversion is an increasingly popular method to derive elastic subsurface properties from seismic data. High-resolution velocity models can be obtained, and spatial sampling criteria are less strict than for imaging methods, because the entire information content of the seismic waveforms is used. As high operational costs arise from seismic surveys, the acquirable data volume is often limited by economic criteria. By selecting optimal locations for seismic sources, the information content of the data can be maximized, and the number of sources and thus the acquisition costs can be reduced compared with standard acquisition designs. The computation of such optimized designs for large-size 3D inverse problems at affordable computational cost is challenging. By using a sequential receiver-wise optimization strategy, we substantially reduce the computational requirements of the optimization process. We prove the applicability of this method by means of numerical 3D acoustic examples. Optimized source designs for different receiver patterns are computed for a realistic subsurface model, and the value of the designs is evaluated by comparing checkerboard inversion tests with different acquisition designs. Our examples show that inversion results with higher accuracy can be obtained with the optimized designs, regardless of the number of sources, the number of receivers, or the receiver distribution. Larger benefits of the optimized designs are visible when a sparse receiver geometry is used.  相似文献   

3.
In this paper we develop a recursive algorithm to obtain the layer parameters of an elastic medium (density, P-wave velocity, S-wave velocity) from reflection coefficient matrices in terms of energy flux ratios for a non-normal incidence case. We define a layer impedance matrix, analogous to the impedance of an acoustic medium. Next we derive a matrix relationship between the layer impedance matrix of the n+ 1st layer and the reflection coefficient and parameter matrices of the nth layer. This relationship leads to recursively computing the parameters of the subsurface. We show that the elastic case—unlike the acoustic case—allows one to recover the layer parameters from the impedance matrix for non-normal incidence. The results of this work play a key role in the solution of the inverse problem with non-normal-incidence plane-wave seismic data when using a downward continuation technique.  相似文献   

4.
Two dimensional inverse modeling, a process to be applied after standard processing and interpretation, uses interfaces picked by the user. These interfaces are transformed into an approximate subsurface model. The subsurface model is represented by curved interfaces and interval velocities. The interfaces have to be unique functions of the line coordinate. Otherwise they may be arbitrarily curved and may begin or terminate anywhere along the section, e.g., at faults, pinchouts, salt domes and the like. Interval velocities may vary laterally along the section. The inverse modeling algorithm then modifies the model until traveltimes calculated from this model match the traveltimes observed as closely as possible in a least squares sense. The traveltimes corresponding to the model are obtained through ray tracing taking exact account of refraction. The traveltimes observed are the arrival times of single impulses before stacking contributing to the interfaces. These traveltimes are provided by ANAKON, a continuous interface analysis system. The comparison of INMOD results with those of well measurements and those of classical interval velocity computation from seismic data shows the accuracy of the method. Deviations of INMOD derived interface depths are within 2% of well data.  相似文献   

5.
地震波走时和射线的有限差分计算   总被引:5,自引:0,他引:5  
以往都是采用射线追踪的方法计算地震波的走时和射线,但是当速度模型复杂时这种方法存在一些问题。本文提出另一种计算地震波走时和射线的方法。该方法从程函方程出发,利用互换原理和Fermat原理计算出各种波的到时和射线。解决了射线追踪方法存在的问题。为地震波走时和射线的计算以及地震波走时反演开辟了一条新途径。  相似文献   

6.
2D inversion of refraction traveltime curves using homogeneous functions   总被引:1,自引:0,他引:1  
A method using simple inversion of refraction traveltimes for the determination of 2D velocity and interface structure is presented. The method is applicable to data obtained from engineering seismics and from deep seismic investigations. The advantage of simple inversion, as opposed to ray‐tracing methods, is that it enables direct calculation of a 2D velocity distribution, including information about interfaces, thus eliminating the calculation of seismic rays at every step of the iteration process. The inversion method is based on a local approximation of the real velocity cross‐section by homogeneous functions of two coordinates. Homogeneous functions are very useful for the approximation of real geological media. Homogeneous velocity functions can include straight‐line seismic boundaries. The contour lines of homogeneous functions are arbitrary curves that are similar to one another. The traveltime curves recorded at the surface of media with homogeneous velocity functions are also similar to one another. This is true for both refraction and reflection traveltime curves. For two reverse traveltime curves, non‐linear transformations exist which continuously convert the direct traveltime curve to the reverse one and vice versa. This fact has enabled us to develop an automatic procedure for the identification of waves refracted at different seismic boundaries using reverse traveltime curves. Homogeneous functions of two coordinates can describe media where the velocity depends significantly on two coordinates. However, the rays and the traveltime fields corresponding to these velocity functions can be transformed to those for media where the velocity depends on one coordinate. The 2D inverse kinematic problem, i.e. the computation of an approximate homogeneous velocity function using the data from two reverse traveltime curves of the refracted first arrival, is thus resolved. Since the solution algorithm is stable, in the case of complex shooting geometry, the common‐velocity cross‐section can be constructed by applying a local approximation. This method enables the reconstruction of practically any arbitrary velocity function of two coordinates. The computer program, known as godograf , which is based on this theory, is a universal program for the interpretation of any system of refraction traveltime curves for any refraction method for both shallow and deep seismic studies of crust and mantle. Examples using synthetic data demonstrate the accuracy of the algorithm and its sensitivity to realistic noise levels. Inversions of the refraction traveltimes from the Salair ore deposit, the Moscow region and the Kamchatka volcano seismic profiles illustrate the methodology, practical considerations and capability of seismic imaging with the inversion method.  相似文献   

7.
—Different techniques in Geophysics and Geology are used to derive the structure of the subsurface. They are based on different data sets, i.e., seismic and geological data, and a combination of these techniques should produce better earth models. The case study presented in this paper is based on data of the German Continental Reflection program (DEKORP) collected in the Münsterland basin and the Rhenish Massif located at the northern border of the Rhenohercynian fold and thrust belt of the Mid-European Variscides. In this study we present an attempt to integrate balanced profiles, i.e., structural geology, and reflection seismics. The integration is performed by synthetically modelling seismic waves according to the acquisition of the field data, where the velocity model is based on the balanced profile. The synthetic data are compared with the field observations. Differences between observed data and field data are either caused by velocity errors in the model or by errors in the balanced profile. Criteria are developed to interpret these differences in order to improve the joint model of geologists and geophysicists. The case study presented in this paper shows that the combination of balanced profiles and reflection seismics may lead to shortcuts in the determination of seismic velocities of the subsurface. These shortcuts can reduce processing times and processing costs of reflection seismic data.  相似文献   

8.
An algorithm for solving the inverse kinematic problem of traveltime seismic tomography is developed and tested. The algorithm is intended for imaging the three-dimensional (3D) velocity model composed of a layer underlain by a half-space. This algorithm considers the bottom boundary of the layer as a first-order seismic velocity discontinuity with unknown position that has to be determined in the inversion together with the velocity variations inside the overlying layer and the sub-interface boundary velocities. The inversion can be applied to the travel times of refracted, head and reflected waves. The main idea behind the algorithm is the adaptive parameterization of the medium by the sparse Haar wavelet series expansion. In order to throw off the poorly resolved coefficients of expansion, we suggest using two empirical local resolution measures: the number of seismic rays crossing the support of the corresponding wavelet support area and their angular coverage, i.e., the spread in the azimuths of these rays. The adequacy of these measures is tested by their comparison with the estimation of the diagonal elements of the resolution matrix on the synthetic examples. This comparison proved that the proposed measures can be successfully applied for statistical estimation of the resolution and for constructing the adaptive parameterization. It was shown also that the best results are achieved while using the number of rays normalized to the size of the wavelet support together with their angular coverage. An automated procedure for throwing off poorly resolved unknowns is developed. The parameters of this procedure can be tuned to provide the desired level of detail of the model to be reconstructed. The synthetic checkerboard testing proved the efficiency of the algorithm. The proposed algorithm can be applied to solve different types of problems, including regional seismic studies, as well as exploration and engineering seismology. The use of this algorithm is especially convenient when the medium is essentially three-dimensional and when the conventional seismic methods implying regular network measurements directly above the studied structure (such as the common depth point method) are inapplicable, e.g., in the seismic studies of the foundations of buildings and in rugged terrains.  相似文献   

9.
Imaging the change in physical parameters in the subsurface requires an estimate of the long wavelength components of the same parameters in order to reconstruct the kinematics of the waves propagating in the subsurface. One can reconstruct the model by matching the recorded data with modeled waveforms extrapolated in a trial model of the medium. Alternatively, assuming a trial model, one can obtain a set of images of the reflectors from a number of seismic experiments and match the locations of the imaged interfaces. Apparent displacements between migrated images contain information about the velocity model and can be used for velocity analysis. A number of methods are available to characterize the displacement between images; in this paper, we compare shot‐domain differential semblance (image difference), penalized local correlations, and image‐warping. We show that the image‐warping vector field is a more reliable tool for estimating displacements between migrated images and leads to a more robust velocity analysis procedure. By using image‐warping, we can redefine the differential semblance optimization problem with an objective function that is more robust against cycle‐skipping than the direct image difference. We propose an approach that has straightforward implementation and reduced computational cost compared with the conventional adjoint‐state method calculations. We also discuss the weakness of migration velocity analysis in the migrated‐shot domain in the case of highly refractive media, when the Born modelling operator is far from being unitary and thus its adjoint (migration) operator poorly approximates the inverse.  相似文献   

10.
In the problems of three-dimensional (3D) travel time seismic tomography where the data are travel times of diving waves and the starting model is a system of plane layers where the velocity is a function of depth alone, the solution turns out to strongly depend on the selection of the starting model. This is due to the fact that in the different starting models, the rays between the same points can intersect different layers, which makes the tomography problem fundamentally nonlinear. This effect is demonstrated by the model example. Based on the same example, it is shown how the starting model should be selected to ensure a solution close to the true velocity distribution. The starting model (the average dependence of the seismic velocity on depth) should be determined by the method of successive iterations at each step of which the horizontal velocity variations in the layers are determined by solving the two-dimensional tomography problem. An example illustrating the application of this technique to the P-wave travel time data in the region of the Black Sea basin is presented.  相似文献   

11.
本文的理论方法是以几何射线理论为基础发展起来的、天然地震走时反演技术及天然地震层析成像技术。它存在着震源函数与介质参数的解耦问题。本研究采取了五种方法来改善反演结果。包括,利用,Pg,Pn等震相增大约束条件;用已有精度较高的人工地震测深结果作速度约柬:用波形反演来修改模型,把诸多物理量开发出来互为约束,以修改后的模型再作反演,使解的稳定性大大提高:采用最优化过程,选择遗传算法。可以进行震源定位,走时反演,波形反演:得到任意深度的速度分布及从地表到Moho面的速度剖面。用于在祁连山地区的结果表明,这些层析剖面对认识大地构造、重大深部事件动力学是很有益的。  相似文献   

12.
Modern seismic processing techniques developed in recent years have provided the explorationist with more meaningful data than would have been predicted even by optimists. Correct migration of seismic data, relative amplitude preservation of reflections, and seismic trace inversion represent the necessary efforts to ensure that the best possible picture of in situ physical properties of the subsurface section is revealed. Moreover, compacted and over-pressured zones can be predicted from surface data prior to drilling a well through them. The basic tool for predicting overpressured zones from the surface is still the velocity analysis derived from good reflection data with few erratic multiples. The extraction of regional normal compaction trends from the seismic velocities allows one—where velocities deviate from the trend—to locate the top of overpressure. Moreover, the statistical behavior of the ratios of the sonic log vs pore pressure in existing boreholes enables one to convert the deviation from the trend of the seismic velocities into overpressure rates expected at the seismic reflection horizon. This paper presents a field case study showing how the knowledge of well site lithology together with the more detailed information extracted from inverted seismic data enables the prediction to match well conditions with high reliability.  相似文献   

13.
In geophysical inverse problems, the posterior model can be analytically assessed only in case of linear forward operators, Gaussian, Gaussian mixture, or generalized Gaussian prior models, continuous model properties, and Gaussian-distributed noise contaminating the observed data. For this reason, one of the major challenges of seismic inversion is to derive reliable uncertainty appraisals in cases of complex prior models, non-linear forward operators and mixed discrete-continuous model parameters. We present two amplitude versus angle inversion strategies for the joint estimation of elastic properties and litho-fluid facies from pre-stack seismic data in case of non-parametric mixture prior distributions and non-linear forward modellings. The first strategy is a two-dimensional target-oriented inversion that inverts the amplitude versus angle responses of the target reflections by adopting the single-interface full Zoeppritz equations. The second is an interval-oriented approach that inverts the pre-stack seismic responses along a given time interval using a one-dimensional convolutional forward modelling still based on the Zoeppritz equations. In both approaches, the model vector includes the facies sequence and the elastic properties of P-wave velocity, S-wave velocity and density. The distribution of the elastic properties at each common-mid-point location (for the target-oriented approach) or at each time-sample position (for the time-interval approach) is assumed to be multimodal with as many modes as the number of litho-fluid facies considered. In this context, an analytical expression of the posterior model is no more available. For this reason, we adopt a Markov chain Monte Carlo algorithm to numerically evaluate the posterior uncertainties. With the aim of speeding up the convergence of the probabilistic sampling, we adopt a specific recipe that includes multiple chains, a parallel tempering strategy, a delayed rejection updating scheme and hybridizes the standard Metropolis–Hasting algorithm with the more advanced differential evolution Markov chain method. For the lack of available field seismic data, we validate the two implemented algorithms by inverting synthetic seismic data derived on the basis of realistic subsurface models and actual well log data. The two approaches are also benchmarked against two analytical inversion approaches that assume Gaussian-mixture-distributed elastic parameters. The final predictions and the convergence analysis of the two implemented methods proved that our approaches retrieve reliable estimations and accurate uncertainties quantifications with a reasonable computational effort.  相似文献   

14.
Full waveform inversion is a powerful tool for quantitative seismic imaging from wide‐azimuth seismic data. The method is based on the minimization of the misfit between observed and simulated data. This amounts to the solution of a large‐scale nonlinear minimization problem. The inverse Hessian operator plays a crucial role in this reconstruction process. Accounting accurately for the effect of this operator within the minimization scheme should correct for illumination deficits, restore the amplitude of the subsurface parameters, and help to remove artefacts generated by energetic multiple reflections. Conventional minimization methods (nonlinear conjugate gradient, quasi‐Newton methods) only roughly approximate the effect of this operator. In this study, we are interested in the truncated Newton minimization method. These methods are based on the computation of the model update through a matrix‐free conjugate gradient solution of the Newton linear system. We present a feasible implementation of this method for the full waveform inversion problem, based on a second‐order adjoint state formulation for the computation of Hessian‐vector products. We compare this method with conventional methods within the context of 2D acoustic frequency full waveform inversion for the reconstruction of P‐wave velocity models. Two test cases are investigated. The first is the synthetic BP 2004 model, representative of the Gulf of Mexico geology with high velocity contrasts associated with the presence of salt structures. The second is a 2D real data‐set from the Valhall oil field in North sea. Although, from a computational cost point of view, the truncated Newton method appears to be more expensive than conventional optimization algorithms, the results emphasize its increased robustness. A better reconstruction of the P‐wave velocity model is provided when energetic multiple reflections make it difficult to interpret the seismic data. A better trade‐off between regularization and resolution is obtained when noise contamination of the data requires one to regularize the solution of the inverse problem.  相似文献   

15.
We consider the iterative numerical method for solving two-dimensional (2D) inverse problems of magnetotelluric sounding, which significantly reduces the computational burden of the inverse problem solution in the class of quasi-layered models. The idea of the method is to replace the operator of the direct 2D problem of calculating the low-frequency electromagnetic field in a quasi-layered medium by a quasi-one dimensional operator at each observation point. The method is applicable for solving the inverse problems of magnetotellurics with either the E- and H-polarized fields and in the case when the inverse problem is simultaneously solved using the impedance values for the fields with both polarizations. We describe the numerical method and present the examples of its application to the numerical solution of a number of model inverse problems of magnetotelluric sounding.  相似文献   

16.
The electromagnetic array profiling (EMAP) exploration method can be combined with a direct one-dimensional inversion process for conversion to depth to produce a subsurface resistivity cross-section. This cross-section may then be interpreted in parallel with a seismic cross-section to enhance the prediction of rock type and structure. In complex thrust environments and areas of shallow carbonate rocks, the EMAP method is often used to provide additional data either to help the seismic processor and/or to aid the seismic interpretation. In particular, the electromagnetic (EM) data can be used to build an independent seismic velocity file for depth migration. Three EMAP test areas in the western United States are used to demonstrate such a use of EMAP as an expioration tool. The first shows how a velocity file is estimated from resistivity data for seismic depth migration processing in a complex thrust environment. In the second example, the method is applied in layer-cake geology with high seismic velocity rocks at the earth's surface. The third example is another complex thrust environment, but in this case the velocity file derived from the resistivity data is used for stacking the seismic data.  相似文献   

17.
Various methods of solving direct and inverse problems in local electromagnetic induction are presented. In the section dealing with direct problems some improvments are suggested in the finite difference method in the case of two-dimensional modeling. Two ways of dealing with inverse problems are presented, the first continous, the other parametric. Emphasis is laid upon algebraic aspects of dealing with one-dimensional inverse problems.  相似文献   

18.
二维复杂介质中地震波走时和射线的计算方法及其应用   总被引:1,自引:0,他引:1  
将Podvin和Lecomte的精确局部格点走时计算方法和Schneider等人的动态规划方法结合起来,可得到一种快速、有效的有限差分波前计算方法。使用该方法对各种类型地震波的走时和射线的计算进行了讨论,并给出了这种有限差分走时计算在叠前深度偏移中的应用实例。  相似文献   

19.
Three common expressions for the normal moveout of recorded seismic events are investigated by numerical simulation procedures for accuracy in predicting the root-mean-squared (RMS) or mean, as the case may be, subsurface velocity function from seismic data. The principal investigation, for which detailed error curves are shown, was derived for a stochastic subsurface model composed of strata with thicknesses ranging up to 91.4 m (300 ft) and boundary velocity contrasts ranging up to 45.7 m/sec (150 ft/sec); there was a 95 percent chance of velocity increase with increased depth. The effects of changes in the basic statistical subsurface model are discussed. The results appear to confirm the judiciousness of the choices of to and (x/z') as plotting parameters to be used with the respective percent errors in the three expressions, where are, respectively, the zero-offset arrival time of, the offset distance of, and the mean-squared velocity encountered by a seismic ray. Out of the three normal-moveout expressions examined, the “straight-raypath” expression with the RMS velocity substituted as its velocity term proved to be the most accurate in the determination of velocities.  相似文献   

20.
石颖  王维红 《地球物理学报》2012,55(9):3115-3125
基于波动方程预测的表面多次波压制方法可处理复杂地下介质的地震资料,但计算成本较高.基于滤波的多次波压制方法计算效率较高,但其成功应用仅局限于一次波和多次波有明显时差差别的地震数据,对来自速度逆转等复杂介质数据则较难获得满意的压制效果.本文将波动方程预测的反馈迭代法和滤波法有效结合,采用GPU(图形处理器)和CPU协同并行加速计算粗略预测表面多次波,随后在双曲Radon域比较分析原始数据和预测的多次波,设计合理有效的Butterworth型自适应滤波器,滤出原始数据Radon域中的多次波能量,进行Radon反变换后,在时空域将多次波从原始数据中减去,得多次波压制结果.文中对理论模拟的单炮数据、复杂的SMAART模型以及实际地震数据进行了计算,结果表明,结合基于波动方程预测和双曲Radon变换的方法有效突破了两种方法各自的局限性,可高效高精度地压制复杂地下介质的表面多次波.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号