首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a remote sensing and geographic information system (GIS)-based study that has three objectives: (1) characterize fine particulate matter (PM2.5), insolation and land surface temperature (LST) using NASA satellite observations, Environmental Protection Agency (EPA) ground-level monitor data and North American Land Data Assimilation System (NLDAS) data products on a national scale; (2) link these data with public health data from the REasons for Geographic And Racial Differences in Stroke (REGARDS) national cohort study to determine whether these environmental risk factors are related to cognitive decline, stroke and other health outcomes and (3) disseminate the environmental datasets and public health linkage analyses to end users for decision-making through the Centers for Disease Control and Prevention (CDC) Wide-ranging Online Data for Epidemiologic Research (WONDER) system. This study directly addresses a public health focus of the NASA Applied Sciences Program, utilization of Earth Sciences products, by addressing issues of environmental health to enhance public health decision-making.  相似文献   

2.
Abstract

Remote sensing techniques provide meaningful information to mineral exploration by identifying the hydrothermally altered minerals and the fracture/fault systems. In this article, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data were processed to detect the hydrothermal alteration zones in Hamama area in the central part of the Eastern Desert of Egypt. Band ratios and principal component analyses successfully revealed the extent and the geometry of the hydrothermal alteration zones that trend in an NE–SW direction. Matching pixel spectrum derived from Minimum Noise Fraction, Pixel Purity Index, and n-dimensional visualization with reference spectra allowed characterizing key hydrothermal alteration minerals, including chlorite, kaolinite-smectite, muscovite, and haematite, in a successive alteration pattern. Field investigations and X-Ray Diffraction analysis validated the results revealed by ASTER data. In addition, the present prospects of significant gold and massive sulphide mineralizations are consistent with the detected hydrothermal alteration zone.  相似文献   

3.
Offshore natural seepage confirms the occurrence of an active petroleum system with thermal maturation and migration, regardless its economic viability for petroleum production. Ocean dynamics, however, impose a challenge for correlation between oil seeps detected on the water surface and its source at the ocean floor. This hinders the potential use of seeps in petroleum exploration. The present study aims to estimate oil exposure time on the water surface via remote sensing in order to help locating ocean floor seepage sources. Spectral reflectance properties of a variety of fresh crude oils, oil films on water and oil–water emulsions were determined. Their spectral identity was used to estimate the duration of exposure of oil–water emulsions based on their temporal spectral responses. Laboratory models efficiently predicted oil status using ultraspectral (>2000 bands), hyperspectral (>300 bands), and multispectral (<10 bands) sensors covering near infrared and shortwave infrared wavelengths. An oil seepage recorded by the ASTER sensor on the Brazilian coast was used to test the designed predictive model. Results indicate that the model can successfully forecast the timeframe of crude oil exposure in the ocean (i.e., the relative “age” of the seepage). The limited spectral resolution of the ASTER sensor, though, implies less accurate estimates compared to higher resolution sensors. The spectral libraries and the method proposed here can be reproduced for other oceanic areas in order to approximate the duration of exposure of noticeable natural oil seepages. This type of information is optimal for seepage tracing and, therefore, for oceanic petroleum exploration and environmental monitoring.  相似文献   

4.
5.
6.
This study focuses on the spatiotemporal dynamics of agricultural lands and differences in rapidly developing urban and declining rural counties in Iowa, USA between 1984 and 2000. The study presents an analysis of land-cover maps derived from Landsat TM and ETM+ satellite imagery and different landscape metrics using FRAGSTATS and IDRISI software. The study provides evidence of both loss of croplands and change in fragmentation between 1984 and 2000. Fragmentation in agriculture-dominated areas increased with the development of urban centres and diversification of land uses. Fragmentation of landscapes, including agricultural land, was found to be higher in the urbanized counties, but was stable or even declined over time in these counties. In contrast, in the context of remote rural areas, agricultural landscapes experienced rapid increase in fragmentation and farmland loss. The urban–rural gradient analysis used in this study showed that the highest fragmentation occurred on the city edges. These findings suggest that farmland fragmentation is a complex process associated with socio-economic trends at regional and local scales. In addition, socio-economic determinants of landscape fragmentation differ between areas with diverging development trajectories. Intensive cropland fragmentation in remote agricultural regions, detected by this research, should be further studied and its possible effects on both agricultural productivity and biodiversity should be carefully considered.  相似文献   

7.
Remote sensing is the only feasible means of mapping and monitoring land cover at regional to global scales. Unfortunately the maps are generally derived through the use of a conventional 'hard' classification algorithm and depict classes separated by sharp boundaries. Such approaches and representations are often inappropriate particularly when the land cover being represented may be considered to be fuzzy. The definition of boundaries between classes can therefore be difficult from remotely sensed data, particularly for continuous land cover classes which are separated by a fuzzy boundary which may also vary spatially in time. In this paper a neural network was used to derive fuzzy classifications of land cover along a transect crossing the transition from moist semi-deciduous forest to savanna in West Africa in February and December 1990. The fuzzy classifications revealed both sharp and gradual boundaries between classes located along the transect. In particular, the fuzzy classifications enabled the definition of important boundary properties, such as width and temporal displacement.  相似文献   

8.
From remotely sensed woody cover, we tested whether sables under hunting pressure preferred closed woodland habitats and whether those not under hunting preferred more open woodland habitats. We applied a two factorial logistic regression analysis to model the probability of occurrence of sable antelope in hunted and non-hunted areas of northwest Zimbabwe as a function of vegetation cover density (estimated by a normalized difference vegetation index (NDVI)). We validated the results by high-spatial resolution imagery derived tree canopy area. We subsequently compared the predictions from the two models in order to compare sable cover selection between hunted and non-hunted areas. Our results suggest that hunted sables are likely to select closed woodland, while non-hunted ones would prefer more open woodland habitats. We also established a significant positive relationship between NDVI and tree canopy cover, thus emphasizing the importance of remote sensing in studies that measure the impact of hunting on habitat selection of targeted species.  相似文献   

9.
Locally computed statistics of image texture and a case-based reasoning (CBR) system were evaluated for mapping of forest attributes. Cluster analysis was preferred to regression models, as a pre-selection method of features. The best stand-based accuracy using satellite sensor images was 74.64 m−3 ha−1 (36%) RMSE for stand volume, 1.98 m−3 ha−1 a−1 (49%) for annual increase in stand volume, where κ = 0.23 for stand growth classes and κ = 0.41 for dominant tree species in stands. The top pixel-based accuracy using orthophotos was 76.54 m−3 ha−1 (41%) RMSE for stand volume, 1.87 m−3 ha−1 a−1 (44%) for annual increase in stand volume, where κ = 0.24 for stand growth classes and κ = 0.38 for dominant tree species in stands. Mean saturation in 30 m radius was the most useful feature when orthophotos were used, and standard deviation of Landsat ETM 6.2 values in 80 m radius was the best when satellite sensor images were used. The most valuable feature components (radii, channels and local statistics) for orthophotos were: 30 m kernel radius, lightness and the mean of pixel values; for satellite sensor images: 80 m kernel radius, near-infrared channel (ETM 4) and the mean of pixel values. Locally computed statistics.  相似文献   

10.
Acquiring and formalizing cartographic knowledge still is a challenge, especially when the generalization process concerns small-scale maps. We concentrate on the settlement selection process for small-scale maps, with the aim of rendering it more holistic, and making methodological contributions in four areas. First, we show how written specifications and rules can be validated against the actual published map products, thus pointing to gaps and potential improvements. Second, we use data enrichment based on supplementing information extracted from point-of-interest data in order to assign functional importance to particular settlements. Third, we use machine learning (ML) algorithms to infer additional rules from existing maps, thus making explicit the deep knowledge of cartographers and allowing to extend the cartographic rule set. And fourth, we show how the results of ML can be transformed into human-readable form for potential use in the guidelines of national mapping agencies. We use the case of settlement selection in the small-scale maps published by the Polish national mapping agency (GUGiK). However, we believe that the methods and findings of this paper can be adapted to other environments with minor modifications.  相似文献   

11.
Accurate and current road network data is fundamental to land management and emergency response, yet challenging to produce for unpaved roads in rural and forested regions using traditional cartographic approaches. Automatic extraction of roads from satellite imagery using deep learning is a promising alternative gaining increasing attention, however most efforts have focused on urban paved roads and used very high spatial resolution imagery, which is less frequently available for rural regions. Additionally, road extraction routines still struggle to produce a fully-connected, vectorized road network. In this study covering a large forested area in Western Canada, we developed and evaluated a routine to automatically extract unpaved road pixels using a convolutional neural network (CNN), and then used the CNN outputs to update a pre-existing government road network and evaluate if and how it would change. To cover the large spatial extent mapped in this study, we trained the routine using moderately high-resolution satellite imagery from the RapidEye constellation and a ground-truth dataset collected with smartphones by organizations already operating and driving in the region. Performance of the road extraction was comparable to results achieved by others using very high-resolution imagery; recall accuracy was 89–97%, and precision was 85–91%. Using our approach to update the pre-existing road network would result in both removals and additions to the network, totalling over 1250 km, or about 20 % of the roads previously in the network. We discuss how road density estimates in the study area would change using this updated network, and situate these changes within the context of ongoing efforts to conserve grizzly bears, which are listed as a Threatened species in the region. This study demonstrates the potential of remote sensing to maintain current and accurate rural road networks in dynamic forest landscapes where new road construction is prevalent, yet roads are also frequently de-activated, reclaimed or otherwise not maintained.  相似文献   

12.
蒸散发是水圈、大气圈和生物圈中水分循环和能量交换的纽带。在全球尺度上,蒸散发约占陆地降水总量的60%;作为其能量表达形式,潜热通量约占地表净辐射的80%。随着通量观测技术的发展,全球长期持续的观测数据得以获取和共享,近年来基于数据驱动的蒸散发遥感反演方法取得了较好的研究进展。本文针对数据驱动的蒸散发遥感反演方法和产品,从经验回归、机器学习和数据融合3个方面展开,对现有的研究进展进行了梳理、归纳和总结,并从驱动数据、反演方法、已有产品等方面指出目前仍存在的问题和不足。未来仍需开展数据驱动的高时空分辨率的蒸散发遥感反演方法的研究,有效考虑地表温度和土壤水分等可以指示地表蒸散发短期变化的重要信息,同时加强基于过程驱动的物理模型与数据驱动的模型的结合,使两类模型能互为补充、各自发挥所长,共同推动蒸散发遥感反演研究水平的进步。  相似文献   

13.
A topographically fragmental archipelago with dynamic waters set the preconditions for assessing coherent remotely sensed information. We generated a turbidity dataset for an archipelago coast in the Baltic Sea from MERIS data (FSG L1b), using CoastColour L1P, L2R and L2W processors. We excluded land and mixed pixels by masking the imagery with accurate (1:10 000) shoreline data. Using temporal linear averaging (TLA), we produced satellite-imagery datasets applicable to temporal composites for the summer seasons of three years. The turbidity assessments and temporally averaged data were compared to in situ observations obtained with coastal monitoring programs. The ability of TLA to estimate missing pixel values was further assessed by cross-validation with the leave-one-out method. The correspondence between L2W turbidity and in situ observations was good (r = 0.89), and even after applying TLA the correspondence remained acceptable (r = 0.78). The datasets revealed spatially divergent temporal water characteristics, which may be relevant to the management, design of monitoring and habitat models. Monitoring observations may be spatially biased if the temporal succession of water properties is not taken into account in coastal areas with anisotropic dispersion of waters and asynchronous annual cycles. Accordingly, areas of varying turbidity may offer a different habitat for aquatic biota than areas of static turbidity, even though they may appear similar if water properties are measured for short annual periods.  相似文献   

14.
The fractional vegetation cover (FVC), crop residue cover (CRC), and bare soil (BS) are three important parameters in vegetation–soil ecosystems, and their correct and timely estimation can improve crop monitoring and environmental monitoring. The triangular space method uses one CRC index and one vegetation index to create a triangular space in which the three vertices represent pure vegetation, crop residue, and bare soil. Subsequently, the CRC, FVC, and BS of mixed remote sensing pixels can be distinguished by their spatial locations in the triangular space. However, soil moisture and crop-residue moisture (SM-CRM) significantly reduce the performance of broadband remote sensing CRC indices and can thus decrease the accuracy of the remote estimation and mapping of CRC, FVC, and BS. This study evaluated the use of broadband remote sensing, the triangular space method, and the random forest (RF) technique to estimate and map the FVC, CRC, and BS of cropland in which SM-CRM changes dramatically. A spectral dataset was obtained using: (1) from a field-based experiment with a field spectrometer; and (2) from a laboratory-based simulation that included four distinct soil types, three types of crop residue (winter-wheat, maize, and rice), one crop (winter wheat), and varying SM-CRM. We trained an RF model [designated the broadband crop-residue index from random forest (CRRF)] that can magnify spectral features of crop residue and soil by using the broadband remote sensing angle indices as input, and uses a moisture-resistant hyperspectral index as the target. The effects of moisture on crop residue and soil were minimized by using the broadband CRRF. Then, the CRRF-NDVI triangular space method was used to estimate and map CRC, FVC, and BS. Our method was validated by using both laboratory- and field-based experiments and Sentinel-2 broadband remote-sensing images. Our results indicate that the CRRF-NDVI triangular space method can reduce the effect of moisture on the broadband remote-sensing of CRC, and may also help to obtain laboratory and field CRC, FVC, and BS. Thus, the proposed method has great potential for application to croplands in which the SM-CRM content changes dramatically.  相似文献   

15.
Manual field surveys for nature conservation management are expensive and time-consuming and could be supplemented and streamlined by using Remote Sensing (RS). RS is critical to meet requirements of existing laws such as the EU Habitats Directive (HabDir) and more importantly to meet future challenges. The full potential of RS has yet to be harnessed as different nomenclatures and procedures hinder interoperability, comparison and provenance. Therefore, automated tools are needed to use RS data to produce comparable, empirical data outputs that lend themselves to data discovery and provenance. These issues are addressed by a novel, semi-automatic ontology-based classification method that uses machine learning algorithms and Web Ontology Language (OWL) ontologies that yields traceable, interoperable and observation-based classification outputs. The method was tested on European Union Nature Information System (EUNIS) grasslands in Rheinland-Palatinate, Germany. The developed methodology is a first step in developing observation-based ontologies in the field of nature conservation. The tests show promising results for the determination of the grassland indicators wetness and alkalinity with an overall accuracy of 85% for alkalinity and 76% for wetness.  相似文献   

16.
机器学习方法近年来取得突破进展,其遥感应用从目标识别和地物分类领域,发展到定量化反演的多个领域。气溶胶定量遥感因其机理复杂,反演参数的种类和精度受到限制,机器学习为气溶胶遥感带来了新的研究和应用技术手段。本文汇总现有研究进展将气溶胶机器学习方法归纳为卫星遥感反演气溶胶光学厚度AOD(Aerosol Optical Depth)、卫星遥感反演其他气溶胶参数、卫星遥感反演颗粒物浓度(PMx)、地基气溶胶遥感4类。结合作者研究工作,通过分析讨论,归纳机器学习用于气溶胶定量遥感的条件为:(1)物理模型无法使用;(2)已有模型卫星产品精度低;(3)已有模型精度高但计算速度低。从应用的角度来说,可以借助于更多的具有相关性的输入信息,发挥机器学习在反演产品种类、反演精度、计算效率等方面的优势;而对定量遥感来说,应该同时重视挖掘遥感数据本身的信息来提高反演能力,并通过误差分析等手段反馈对遥感机理的理解,使机器学习与遥感机理研究相互促进。  相似文献   

17.
The concentration of people in densely populated urban areas, especially in developing countries, calls for the use of monitoring systems like remote sensing. Such systems along with spatial analysis techniques like digital image processing and geographical information system (GIS) can be used for the monitoring and planning purposes as these enable the reporting of overall sprawl at a detailed level.  相似文献   

18.
Because atmospheric effects can have a significant impact on the data obtained from multi-spectral satellite remote sensing, it is frequently necessary to make corrections before any other image processing can be started. This paper describes a robust and relatively simple atmospheric correction method that uses pseudo-invariant targets (PITs) in conjunction with the empirical line method. The method is based on the selection of a number of suitable generic PITs, on the basis that they are large, distinctive in shape, and occur in many geographical areas. Whereas the multi-temporal normalization method corrects all images to a selected reference image, in this method images are simultaneously corrected using targets with a range of estimated surface reflectance values. The paper describes some applications of the method for a range of environmental studies involving water quality and air pollution monitoring, and mapping land-cover changes.  相似文献   

19.
Soil salinity is one of the main agricultural problems which expand to larger areas. Soil scientists categorize salinity level by electrical conductivity (EC) measurement. However, field measurements of EC require extensive time, cost and experiences. Remote sensing is one suitable option to investigate and collect spatial data in larger areas. Many researches estimated soil moisture through microwave, but there are fewer studies which mentioned about direct relationship between EC and backscattering coefficient (BC). Thus, this study aims to propose the estimation of EC directly from BC of microwave. The relationship between EC obtained from field survey and BC from microwave is non-linear, artificial neural network (ANN) is one technique proposed in this study to figure out EC and BC relationship. ANN uses multilayer of interconnected processing resulting in EC value with high accuracy which is acceptable. For this reason, ANN model can be successfully utilized as an effective tool for EC estimation from microwave.  相似文献   

20.
ABSTRACT

Commercial forest plantations are increasing globally, absorbing a large amount of carbon valuable for climate change mitigation. Whereas most carbon assimilation studies have mainly focused on natural forests, understanding the spatial distribution of carbon in commercial forests is central to determining their role in the global carbon cycle. Forest soils are the largest carbon reservoir; hence soils under commercial forests could store a significant amount of carbon. However, the variability of soil organic carbon (SOC) within forest landscapes is still poorly understood. Due to limitations encountered in traditional systems of SOC determination, especially at large spatial extents, remote sensing approaches have recently emerged as a suitable option in mapping soil characteristics. Therefore, this study aimed at predicting soil organic carbon (SOC) stocks in commercial forests using Landsat 8 data. Eighty-one soil samples were processed for SOC concentration and fifteen Landsat 8 derived variables, including vegetation indices and bands were used as predictors to SOC variability. The random forest (RF) was adopted for variable selection and regression method for SOC prediction. Variable selection was done using RF backward elimination to derive three best subset predictors and improve prediction accuracy. These variables were then used to build the RF final model for SOC prediction. The RF model yielded good accuracies with root mean square error of prediction (RMSE) of 0.704 t/ha (16.50% of measured mean SOC) and 10-fold cross-validation of 0.729 t/ha (17.09% of measured mean SOC). The results demonstrate the effectiveness of Landsat 8 bands and derived vegetation indices and RF algorithm in predicting SOC stocks in commercial forests. This study provides an effective framework for local, national or global carbon accounting as well as helps forest managers constantly evaluate the status of SOC in commercial forest compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号