首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Neogene deformations have deeply disturbed the initial architecture of the pile of nappes within the Eastern Betic zone. The Arc of Aguilas, displaying a southeast-facing concavity, is a spectacular example of such a post-nappe structuration. Miocene deposits involved in the torsion of the Arc provide a chronology of the deformation. The Arc of Aguilas is one element within a system of rigid-plastic indentation including the following units, from the inner (SE) to the outer (NW) zones : — A rigid block, little deformed, located in the present day abyssal plain, play the part of the indenter.

— A structural pad corresponding to the Aguilas Arc itself. It was severely folded during Miocene times.

— A large peripheral zone mainly subjected to faulting during the Neogene (essentially strike-slip faults). These faults control the evolution of different types of sedimentary basins during the Late Neogene (Tortonian to Pliocene).

Two large shear zones: N020 sinistral (Palomares and Terreros faults), N100 dextral (Las Moreras faults) guided the deformation of the Aguilas Arc within a compressive stressfield of which major tensor axis oscillated between NW-SE and N-S.  相似文献   

2.
The Campo de Dal??as, located between the central and eastern Betic Cordilleras, shows an evolution determined by the overprinting of two main stress fields since Pliocene times. The first of these develops hybrid and tensional joint sets up to Pleistocene (100 000 yr) and is characterized by NNW–SSE horizontal trend of compression and an ENE–WSW horizontal extension. The second stress field has prolate to triaxial extensional ellipsoids, also with ENE–WSW horizontal extension, and continues to be active today. The most recent stresses produce the reactivation of previous joints as faults whose trends are comprised mainly from N120°E to N170°E and have a normal and transtensional regime, with dextral or sinistral components. The palaeostress evolution of this region is similar to that undergone by other basins of the Eastern Betic Cordilleras, although the Pliocene–Pleistocene transcurrent deformations in the Campo de Dal??as only develop joints and not strike-slip faults.  相似文献   

3.
ABSTRACT

The formation of the Qilian mountains and the evolution of adjacent basins were controlled by the uplift and northeastward growth of the Tibetan Plateau. In a field survey conducted on the main Cenozoic basin sediments in the Qilian Mountains and adjacent areas, fission track age data of apatite obtained previously were analyzed. Cenozoic tectonics and landform evolution in the area where the Qilian Mountains now stand and its response to the uplift of the Tibetan Plateau were studied. In the Oligocene Epoch, the Tibetan Plateau was initially uplifted and extended northeastward, forming the Guide-Xining-Lanzhou-Linxia foreland basin on the northern margin of the western Qinling Mountains, and the foreland basin in the area where the Qilian Mountains now stand received widespread sediments. In the Miocene, influenced by the enhanced uplift and northeastward thrust of the Tibetan Plateau, a stage of intracontinental squeezing orogeny and foreland basin splitting began in the area where the Qilian Mountains now stand. In the Pliocene Epoch, the Qilian Mountains were continuously uplifted, the basins shrank, large lake basins disappeared gradually, and large-area red-clay-type aeolian sediments appeared. During the Quaternary Period, the uplift of the Tibetan Plateau accelerated, causing a rapid rise in the altitude of the Qilian Mountains. Global climate change occurred and mountain glaciers began to develop. Quaternary moraine deposits appeared for the first time in the area, and very thick loess sediments appeared in the Longzhong area, east of the area where the Qilian Mountains now stand, forming the famous Loess Plateau.  相似文献   

4.
ABSTRACT

The broad zone between old oceanic lithosphere of the NW Pacific and Eastern Eurasian continental lithosphere is home to a chain of marginal basins. Different from oceans, marginal basins are more influenced by the underlying subduction zone both geophysically and geochemically and are more likely to be blanketed by sediments from the nearby continent. This special issue collects 19 papers that explore the tectonic, magmatic, sedimentary and fluid activity features of marginal basins during rifting, spreading and post-spreading stages. Most papers in this special issue focus on South China Sea marginal basins, where abundant research provides interesting insights into how marginal sea basins evolve. Because South China Sea basins are fully evolved and their key features have not been overprinted by younger deformation, the results of this special issue are very useful for understanding the evolution of other marginal basins.  相似文献   

5.
西藏阿里札达盆地上新统鼠兔类牙齿化石的发现   总被引:4,自引:2,他引:4  
首次在西藏阿里札达盆地上新世河湖相沉积地层中发现了鼠兔类牙齿化石,对鼠兔类牙齿化石的基本特征进行了描述,并在同一层位中采集了大量孢粉、古动物和古植物化石。结合区域地质特征,产出鼠兔类牙齿化石地层的古地磁、ESR测年资料,沉积学特征等的简要分析,认为札达盆地鼠兔类的演化迁徙与上新世时气候由温暖湿润向寒冷潮湿-温和干旱的变化有关。显然,这一发现有助于认识青藏高原新近纪上新世的生物演化、气候变化和构造活动,并为研究青藏高原新近纪以来的生物进化、湖泊与河流演化、气候变化、古地理与古环境变迁和古近系、新近系、第四系地层划分等提供了新资料。  相似文献   

6.
Abstract

During the Neogene (uppermost Aquitanian-Lower Burdigalian, Tortonian and Pliocene), three successive marine episodes took place in the present-day Malaga Basin. The first of these affected a wide area of the Belic Internal Zones and was brought to an abrupt conclusion by the westward displacement of these Zones, together with important horizontal movements associated with N70-100 direction strike-slip faults and the superposition of materials from the Campo de Gibraltar. The two other marine episodes were clearly controlled by vertical movements of NW-SE and NK-SW faults, caused by a clear E-W distension which, according to regional data, was associated with some compression in an approximately N-S direction. The area has also been affected, although to a lesser extent, by the uplift of the Betic Cordillera from the Upper Miocene to the present day.  相似文献   

7.
Abstract

The Cenozoic westward motion of the Betic-Rif internal zone (“Alboran block”) between Iberia and Africa is constrained by paleogeographic considerations and by wrench faulting which affects both sides of the external zones. However, in the Alboran domain itself there was so far no evidence of significant internal deformation related to this westward displacement which was consequently consider as an en bloc” motion. Our work, in Eastern Andalucia, demonstrates that the main tectonic units building up the Betic zone should be regarded as large-scale tectonic sheets with a typical duplex style. The direction of the tectonic transport is to the West. At meso-scale, the major structures exhibit a combination of hindward and foreward dipping imbricates on the respective east and west sides of antiformal stacks or “rigid cores”. On a broader scale, the same geometric framework appears on both east and west sides of the Sierra Nevada window which we interpret as a tectonic culmination on the hangingwall of a Subbetic décollement zone. The development of this tectonics, in retrogressive metamorphic conditions, postdates the ductile deformation of the internal complexes. The morpho-tectonic relationships between the culmination of the metamorphic cores and the Neogene basins give a way to date the westward motion of the “Alboran System of Nappes” of the middle and upper Miocene.  相似文献   

8.
《Geodinamica Acta》2013,26(2):87-101
The Paleogene Alicante Trough of the South-Iberian Margin (External Betic Zone) consists of a narrow sedimentary basin that has active margins located to the north-northwest (active mainly during the Eocene) and to the south-southeast (active during the Oligocene). Both margins, consisting of shallow unstable platforms, were the source areas for the external-platform slope (in the opposite margins) and deepbasin (in the middle) depositional realms. The southern margin, lost under the Mediterranean Sea, is recognized only by the reconstructed Oligocene slope sediments.

The eight successions studied, on opposites external-platform-slope margins and the deep within the central part of the basin, lead us to divide the basin into two depositional realms: the subsident Western Depositional Area (WDA) and the not subsident Eastern Depositional Area (EDA). This study has also enabled us to divide the infilling of the basin into two depositional sequences: Eocene p.p. (EDS) and Oligocene p.p. (ODS) in age, respectively, bound by two sequence boundaries (unconformities) at the Early Eocene (P6 zone) and Early Oligocene (P19 zone). The EDS and ODS are comprised of turbiditic and olisthostromic deposits and frequently slumps, evidencing an active tectonic in the margin-basin system.

The correlation of the Paleogene sedimentary reconstructed in the Alicante Trough with other four synthetic successions throughout the External (three in the Subbetic Domain) and one in the Internal Betic Zone indicate a Paleogene generalised deformational framework. In addition, this evolution is contemporaneous to the Pyrenean, Iberian and the Nevado-Filabride Alpine deformation. The Paleogene tectonic recognised in the External Betic Zone is younger since the main orogenic deformation took place in the late Burdigalian to early Tortonian. The origin of these early tectonics is discussed in relation to the Nevado-Filabride Alpine deformation.  相似文献   

9.
Abstract

The Zentralgneise in the Hohe Tauern (Penninic Zone, Eastern Alps, Austria) can be interpreted essentially as metamorphosed Late Paleozoic orogenic plutonites with original compositions mainly of granites, granodiorites and tonalites, rarely also of diorites, quartzdiorites, quartzmonzodiorites, quartzmonzonites and quartzsyenites. Most of the granitoids show attributes of “Cordilleran I-type granites” respectively “volcanic arc granites”.

Due to their similarity to subduction derived granitoids from present day active continental margins in the Circum-Pacific area, it is assumed, that the I-type granitoids of the Hohe Tauern reflect the influence of a Variscan destructive plate boundary.

Among the Zentralgneise also minor amounts of granites with features towards the S-type occur, which are more likely related to collision than to subduction.

Seen as a whole, the Late Paleozoic plutonism played probably part in a compressional continental margin and originated during a Variscan subduction-collision scenario, that occurred along the southern flank of Central European Hercynian fold belt.  相似文献   

10.
The paper presents results of paleomagnetic studies of traps of the Franz Josef Land (FJL) Archipelago. This area is considered to be part of the Barents Sea Large Igneous Province (LIP) and is usually associated with the Early Cretaceous stage of plume activity, by analogy with other manifestations of late Mesozoic trap magmatism in the High Arctic. Recent isotope-geochemical studies, however, suggest a much longer history of basaltoid magmatism in the FJL area, from Early Jurassic through Early Cretaceous, with three pulses at 190, 155, and ≈ 125 Ma. Given a significant difference in age, paleomagnetic directions and corresponding virtual geomagnetic poles are supposed to form discrete groups near the Jurassic-Early Cretaceous paleomagnetic poles of Eastern Europe. However, the calculated virtual geomagnetic poles, on the contrary, show a single “cloud” distribution, with its center being shifted to the Early Cretaceous paleomagnetic poles of Siberia. The performed analysis demonstrates that the significant variance is caused mostly by the high-latitude position of the FJL and secular variations of the geomagnetic field during the formation of the traps. Products of the Early Cretaceous magmatism evidently prevail in the data sample. The coincidence of the average paleomagnetic pole of the FJL traps with the Early Cretaceous (145-125 Ma) interval of the apparent polar wander path of Siberia rather than Eastern Europe confirms the hypothesis of the Mesozoic strike-slip activity within the Eurasian continent. This activity might be a natural result of the evolution of the Arctic Ocean.  相似文献   

11.
Abstract

A paleomagnetic study has been carried out on three sedimentary formations of the Permian Rodez basin in the southern France. Two of them yield paleomagnetic poles of Saxonian and Thuringian age showing counterclockwise rotation of moderate amplitude, during or after the Thuringian deposition. For the French Massif Central, contrary to its stable southern (Lodève basin) and eastern (Largentière basin) borders, on its southwestern border, in a large area including the Rodez, Saint-Affrique and perhaps Brive basins suffered rotations due to the extensional tectonics during the Late Variscan period. © 2002 Editions scientifiques et médicales Elsevier SAS. All rights reserved.  相似文献   

12.
湖南第四纪地层划分及其下限   总被引:4,自引:0,他引:4  
根据第四纪沉积物特征、孢粉组合、古脊椎动物、古地磁等有关资料,将湖南省区内第四系地层自老至新划分为:泪罗组、新开铺组、陈家咀组、白沙井组、马王堆组、白水江组、丁蜀组及水陆洲组等。原划为早更新世湖仙山组或伍家峪组均为上新世乃至中新世地层,并确定其第四纪下限为25MaB.P.  相似文献   

13.
New micropaleontological and paleomagnetic data were obtained by studying core samples of Cenozoic continental deposits from two boreholes drilled in the south of Tyumen oblast (Western Siberia). Palynological assemblages in deposits of the Tavda (upper part), Novomikhailovka, Turtas, Abrosimovka, Tobolsk, Smirnovka, and Suzgun formations were described. Deposits of these formations are enriched in spore-pollen assemblages, which can be correlated with assemblages of regional palynozones of the West Siberian Plain. Ostracods were described in Quaternary deposits. On the basis of biostratigraphic and paleomagnetic data, the Late Eocene (Priabonian)–Holocene age of deposits was substantiated. For the first time, beds with dinocysts of genus Pseudokomewuia were identified in deposits of the Turtas Formation (Upper Oligocene) of the Ishim lithofacial area. In total, nine regional magnetozones were distinguished in the paleomagnetic section. On the basis of palynological and paleomagnetic data, sections of two boreholes were correlated, and hiatuses in sedimentation were revealed. A large hiatus is at the Eocene-Oligocene boundary (Western Siberia): the Lower Oligocene Atlym Horizon and Miocene–Pliocene and Eopleistocene sediments are missing. The Oligocene interval of the section is represented in a reduced volume.  相似文献   

14.
Abstract

Silicified fossil macrofloras of the Willalinchina Sandstone, at Stuart Creek in the Billa Kalina Basin of northern South Australia, are most likely early Miocene–early Pliocene with preference for the younger age, based on reinterpretation of published evidence including basin stratigraphy, paleogeography, isotopic and other dating. The macrofloras include Eucalyptus and occur in fluvial channel sandstones. The Willalinchina Sandstone is equated with the Danae Conglomerate Member of the Mirikata Formation, interpreted as older than the Watchie Sandstone, Millers Creek Dolomite Member and Billa Kalina Clay Member, and here regarded as of upper Neogene age. The Billa Kalina Basin lies between Lake Eyre, Torrens and Eucla basins, and has affinities with all three. The Kingoonya Paleochannel, peripheral to the Eucla Basin, joins the southern margin of the Billa Kalina Basin across the Stuart Range Divide, and contains the Garford Formation of mid-Miocene to Pliocene age (palynological dating), here partly equated with the Mirikata Formation. Interpretations of paleolake Billa Kalina and associated paleochannel environments are made, based on a new assessment of stratigraphic and paleogeographic relationships.
  1. KEY POINTS
  2. The Billa Kalina Basin sediments in northern South Australia are equated with the later Neogene ‘upper’ Garford Formation of the Kingoonya Paleochannel, which flowed into the Eucla Basin, and depositional processes are clarified.

  3. A variety of consistent age data from adjacent basins and the Kingoonya Paleochannel indicate the Stuart Creek ‘silcrete floras’, associated with the Willalinchina Sandstone channel deposits, are Neogene, probably early Pliocene, but the possibility remains that they may be incised into the Watchie Sandstone and therefore late Pliocene.

  4. The Billa Kalina Basin was linked to the Kingoonya Paleochannel through much of its history, with flow disrupted by the Stuart Range Divide, local tectonics, and regional tilting.

  相似文献   

15.
Radiolarian assemblages were examined in two Quaternary cores (V24-58; RC11-209) from the tropical Padific Ocean. Eight radiolarian datum levels were identified in each core, and “absolute” ages were estimated for these levels by interpolation between paleomagnetic reversal boundaries previously established for the cores. The tropical radiolarian zonation for the Quaternary proposed by Nigrini (1971) appears to be most useful in terms of the reliability and ease of identification of the proposed zonal boundaries. Our estimated ages for the base of each of these zones are: Buccinosphaera invaginata Zone (Zone 1): 210,000 yr BP; Collosphaera tuberosa Zone (Zone 2): 370,000 yr BP; Amphirhopalum ypsilon Zone (Zone 3): 940,000 yr BP; Anthocyrtidium angulare Zone (Zone 4): 1,700,000 yr BP.A comparison of our age estimates with those of Quaternary radiolarian datum levels in cores from other regions suggests that significant diachroneity on a scale of up to several hundred thousand years may exist for some (and perhaps all) of these “events.” Diachroneity is most readily studied and documented in late Neogene cores where the absolute ages of the magnetic polarity reversals are known most precisely, but may also exist (though difficult to recolve) in earlier Cenozoic sediments. The existence of such diachroneity, if demonstrated through further studies, would have significant implications for our understanding of evolutionary patterns of planktonic communities in different biogeographic regions.  相似文献   

16.
The Uquía Formation crops out in the Quebrada de Humahuaca in Jujuy province, Eastern Cordillera, NW Argentina. This unit is composed of a sequence of fluviatile sediments and water-laid air-fall tuff beds; it is approximately 260 m thick and unconformably overlain by Pleistocene conglomerates and Quaternary alluvium. The sediments have been folded into a syncline and broken by several faults that generally trend northwest–southeast. Following Castellanos stratigraphy, we characterize three units (Lower, Middle, and Upper) of the Uquía Formation. Biochronologically, the Lower Unit is assigned to the late Chapadmalalan, the Middle Unit (“Uquian fauna”) to the late Vorohuean and Sanandresian, and the Upper Unit to the Ensenadan. Biostratigraphic evidence provides a calibration of important biochronologic events in the Great American Biotic Interchange (GABI), namely, the first appearances of Erethizon, Hippidion, and proboscideans at 2.5 Ma (late Pliocene) in South America. Geological and paleobiological evidence suggest that during the late Pliocene, the area could have been a wide intermountain valley at 1400–1700 m elevation, with a more humid environment than that of the present day and some wet–dry seasonality that permitted the coexistence of forest and open areas. Uquian mammals also indicate that northwestern Argentina and the Pampean region have represented distinct biogeographical areas since at least the late Pliocene.  相似文献   

17.
This paper reports an integrated petrological, geochronological, and isotopic geochemical study of the Pliocene Dzhimara granitoid massif (Greater Caucasus) located in the immediate vicinity of Quaternary Kazbek Volcano. Based on the obtained results, it was suggested that the massif has a multiphase origin, and temporal variations in the chemical composition of its granitoids and their possible sources were determined. Two petrographic types of granitoids, biotite-amphibole and amphibole, were distinguished among the studied rocks of the Dzhimara Massif belonging to the calc-alkaline and K-Na subalkaline petrochemical series. The latter are granodiorites, and the biotite-amphibole granitoids are represented by calc-alkaline granodiorites and quartz diorites and subalkaline quartz diorites. Geochemically, the granitoids of the Dzhimara Massif are of a “mixed” type, showing signatures of S-, I-, A-, and even M-type rocks. Their chemical characteristics suggest a mantle-crustal origin, which is explained by the formation of their parental magmas in a complex geodynamic environment of continental collision associated with a mantle “hot field” regime.
The granitoids of the Dzhimara Massif show wide variations in Sr and Nd isotopic compositions. In the Sr-Nd isotope diagram, their compositions are approximated by a line approaching the mixing curve between the “Common” depleted mantle, which is considered as a potential source of intra-plate basalts, and crustal reservoirs. It was suggested that the mantle source (referred here as “Caucasus”) that contributed to the petrogenesis of the granitoids of the Dzhimara Massif and most other youngest magmatic complexes of the region showed the following isotopic characteristics: 87Sr/86Sr ? 0.7041 ± 0.0001 and
+ 4.1 ± 0.1 at 147Sm/144Nd = 0.105–0.114.
The Middle-Late Pliocene K-Ar ages (3.3–1.9 Ma) obtained for the Dzhimara Massif are close to the ages of granitoids from other Pliocene “neointrusions” of the Greater Caucasus. Based on the geochronological and petrological data, the Dzhimara Massif is formed during four intrusive phases: (1) amphibole granodiorites (3.75–3.65 Ma), (2) Middle Pliocene amphibole-biotite granodiorites and quartz diorites (~3.35 Ma), (3) Late Pliocene amphibole-biotite granodiorites and quartz diorites (~2.5 Ma), and (4) K-Na subalkaline biotite-amphibole quartz diorites (~2.0 Ma).The close spatial association of the Pliocene multiphase Dzhimara Massif and the Quaternary Kazbek volcanic center suggests the existence of a long-lived magmatic system developing in two stages: intrusive and volcanic. Approximately 1.5 Ma after the formation of the Dzhimara Massif (at ca. 400–500 ka), the activity of a deep magma chamber in this area of the Greater Caucasus resumed (possibly with some shift to the east).  相似文献   

18.
Abstract

The definition of the active fault geometry and kinematics in young evolving orogens may be difficult owing to changes in the structural architecture which may occur with a frequence of few hundred thousand years. Cases from the central Apennines well illustrate this problem. The Avezzano-Bussi and Vallelonga-Salto Valley fault systems (65 and 85 km long, respectively) show clear evidence of Pliocene-early Pleistocene activity and have been responsible for the formation of intermontane basins. Available geological data, however, indicate that only minor segments (the Tre Monti and Trasacco faults, both 7 km long) of the mentioned faults have to be considered active during the late Pleistocene-Holocene, as faults accommodating minor deformations inside an intermontane basin. The L'Aquila fault system underwent significant geometrical and kinematic modifications during the Quaternary, with the reactivation of minor portions of parallel normal faults to draw a new system of en-echelon normal-oblique left-lateral faults. The Laga Mts. fault experienced an along-fault activity migration. The portion of the fault which was active earlier during the Quaternary shows a significant decrease or end of the activity while a portion previously not active displays impressive evidence of late Pleistocene-Holocene displacements. Structural changes in the intermontane basins bounded by the Colfiorito fault system also indicate that the intensity of the tectonic activity decreased during the Quaternary. Not defining the structural evolution in the above mentioned cases would imply wrong conclusions for both the fault geometry and kinematics which may be delivered for seismotectonics and seismic hazard assessment. This typically leads to overestimate the fault length and the expected magnitude or to the increase in the number of seismogenic sources affecting an area. Finally, the definition of the structural evolution permits to select between different geometrical options in terms of active faulting framework (e.g. a system of parallel normal faults vs. a system of en-echelon normal oblique faults as in the case of the L'Aquila fault system) related to different geometries at depth (detachment normal fault vs. high-angle oblique fault). © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

19.
《Sedimentary Geology》2004,163(3-4):175-210
The Mio–Pliocene in Western Europe is a period of major climatic and tectonic change with important topographic consequences. The aim of this paper is to reconstruct these topographic changes (based on sedimentological analysis and sequence stratigraphy) for the Armorican Massif (western France) and to discuss their significance. The Mio–Pliocene sands of the Armorican Massif (Red Sands) are mainly preserved in paleovalleys and are characterized by extensive fluvial sheetflood deposits with low-preservation and by-pass facies. This sedimentological study shows that the Red Sands correspond to three main sedimentary environments: fluvial (alluvial fan, low-sinuosity rivers and braided rivers), estuarine and some rare open marine deposits (marine bioclastic sands: “faluns” of French authors). Two orders of sequences have been correlated across Brittany with one or two minor A/S cycles comprised within the retrogradational trend of a major cycle. The unconformity at the base of the lower cycle is more marked than the unconformity observed at the top, which corresponds to a re-incision of the paleovalley network. A comparison of the results of the sequence stratigraphy analysis with eustatic variations and tectonic events during the Mio–Pliocene allows (1) to discuss their influence on the evolution of the Armorican Massif and (2) to compare the stratigraphic record with other west-European basins. The unconformity observed at the base of the first minor cycle may be attributed to Serravallian–Tortonian tectonic activity and/or eustatic fall, and the unconformity of the second minor cycle may be attributed to Late Tortonian–Early Messinian tectonic activity. The earlier unconformity is coeval with the development of a “smooth” paleovalley network compared to the jagged present-day relief. A single episode of Mio–Pliocene deformation recorded in Brittany may be dated as Zanclean, thus explaining the lack of the maximum flooding surface except in isolated areas. From this study, five paleogeographic maps were drawn up also indicating paleocurrent directions: three maps for the lower cycle (Tortonian retrogradational trend, Late Tortonian to Early Messinian maximum flooding surface and Messinian progradational trend) and two for the upper cycle (Pliocene retrogradational trend and Piacenzian maximum flooding surface). These maps show (1) the variations of paleocurrent directions during the Mio–Pliocene, (2) the extent of estuarine environments during the maximum flooding intervals and (3) a paleodrainage watershed oriented NNW–SSE following the regional Quessoy/Nort-sur-Erdre Fault during the retrogradational trend of the upper cycle and possibly during the progradational trend of the lower cycle. The present-day morphology of the Armorican Massif is characterized by (1) incised valleys and jagged topography, in contrast with the “smooth” morphology described for Mio–Pliocene times and (2) a main East–West drainage watershed, located to the north, separating rivers flowing towards the English Channel from rivers flowing towards the Atlantic Ocean. The Mio–Pliocene/Pleistocene paleotopographic changes seem to be controlled by climatic effects. These can be related to the change in runoff associated with warmer and wetter conditions during the Mio–Pliocene, which control the river discharge and lead to the development of extensive fluvial sheetflood deposits. Tectonic or eustatic factors exert a second-order control.  相似文献   

20.
K-Ar ages (A. Abdel-Monem, P. D. Watkins, and P. W. Gast, 1971, American Journal of Science271, 490–521; this paper) and revised paleontological determinations (J. Meco, 1977, “Los Strombus neogenos y cuatenarios del Atlantico euroafricano”, Las Palmas, Ediciones del Excmo. Cabildo Insular de Gran Canaria) show that “Quaternary” (R. Crofts, 1967, Quaternaria 9, 247–260; G. Lecointre, K. J. Tinkler, and G. Richards, 1967, Academy of Natural Science of Philadelphia Proceedings119, 325–344) littoral deposits on Lanzarote and Fuerteventura are early Pliocene and late Pleistocene. Early and middle Pleistocene strand lines are not represented. Early Pliocene littoral and marine deposits contain a characteristic fossil assemblage: Strombus coronatus, Nerità emiliana, Gryphaea virleti, Patella cf. intermedia, and Rothpletzia rudista. Differences in elevation record differential post-Pliocene uplift of the coastal platforms on which they lie. Late Pleistocene beach deposits at low elevations belong to two groups, an older with Strombus bubonius and a younger without. Differences in elevation of early Pliocene littoral deposits are reflected by differences in elevation of late Pleistocene beach deposits nearby.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号