首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seasonal snow melt in the Wind River Range, Wyoming, has been ending earlier over the last several decades leaving the region to rely more on supplemental melt water from mountain glaciers. This leads to the necessity of understanding recent glacial changes. This study uses elevation data from 1966, 2006 and 2011 to calculate surface elevation and volume changes that have occurred on Continental Glacier. Results indicate a mean volume change of ?0.034 ± 0.02 km3 and surface elevation change of ?0.36 ± 0.19 m y?1 between 1966 and 2006. Detailed spatial analysis shows that the glacier is divided into two sections which are thinning at different rates (lower section: ?0.06±0.19 m y?1; upper section: ?0.51 ± 0.19 m y?1). The upper section has experienced 97% of the thinning (or 742.5 × 103 m3 of melt water equivalent per year) and increased its rate since 2006 by 27.5%.  相似文献   

2.
冰川流速是表征冰川运动的重要参数之一,对于冰川动力学、气候变化以及物质平衡等研究具有重要意义。冰川流速的影响因素多样,其中气象因子主要是通过改变冰川物质平衡、活动性以及水力特征来对冰川运动产生影响,所以冰川流速也可能与气象因子一样具有季节性差异。基于2017-11-06—2020-11-02期间31景哨兵1号(Sentinel-1)雷达影像,采用外部数字高程模型(digital elevation model,DEM)辅助的偏移量追踪法对中国西藏自治区昌都市八宿县境内然乌湖流域的雅弄冰川进行了冰川表面流速提取,并结合研究区冰舌面积变化以及气象因子(平均气温、降水量、降雪日数以及平均日照数)对雅弄冰川流速季节性变化进行了分析。结果表明:雅弄冰川流速分布呈现中上部流速高而下部流速低的特点,且冰川中部主流线流速明显高于两侧速度。30组冰川流速变化具有明显的季节性,夏季流速高而冬春季流速低。与流速变化相同,冰舌面积变化同样具有季节性差异,冬季面积明显大于夏季面积。与气象影响因子对比分析发现,气温、降水以及日照均对冰川表面流速具有正效应,促进冰川运动,而降雪抑制了部分热量及辐射传递,进而抑制了冰川融水过程,减缓了冰川运动。在气象因子影响力上,气温对冰川运动的效应最明显,降雨次之,日照影响最小。  相似文献   

3.
Abstract

This paper presents the first measurement of multi-decadal thickness and volume changes (1969–2000) of the Dongkemadi Ice Field (DIF) in the Tanggula Mountains, central Qinghai-Tibetan Plateau, China, using multi-source remote sensing data. These include the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) acquired in February, 2000, a DEM generated by digitising analogue topographic maps from 1969, and Landsat ETM+ imagery from 2000. Digital glacier outlines and GIS-based processing were used to calculate an elevation difference map to evaluate the relative elevation error of these two DEMs over ice-free areas. This method was also used to identify regions of glacier elevation thinning and thickening corresponding to glacier mass loss and gain. Analysis of 67,520 points on flat grass and rock terrain surrounding the DIF, with a slope less than 25°, showed a mean elevation difference of –0.90 m and a standard deviation of 5.58 m. A thickness change error within ±6 m was estimated. Between 1969 and 2000, 76.51% of the whole DIF area appeared to be thinning while 23.49% showed thickening. The average glacier surface thinning was –12.58 m with a standard deviation of 18.29 m and the estimated volume loss was 1.17 km3. The standard deviation of volume change was 0.0006 km3 over the DIF. A thinning rate up to 0.41±0.194 m a?1 or 0.038 km3 a?1 for the volume loss was observed for the whole ice field, which seems to be evidence for the ongoing retreat of glaciers on the Qinghai-Tibetan Plateau. It was found that the spatial thickness change pattern derived from the remote sensing method was consistent with the thickness change results of the Small Dongkemadi Glacier (SDG) from field measurements. The estimated error of the annual thickness change rate was on the order of 5%. The relationship between elevation change and absolute glacier elevation over typical glaciers was also analysed, showing considerable variability. These changes have possibly resulted from increased temperature and decreased precipitation in this region.  相似文献   

4.
Glaciers are natural reservoirs of fresh water in frozen state and sensitive indicators of climate change. Among all the mountainous glaciated regions, glaciers of Himalayas form one of the largest concentrations of ice outside the Polar Regions. Almost all the major rivers of northern India originate from these glaciers and sustain perennial flow. Therefore, in view of the importance and role of the glaciers in sustaining the life on the Earth, monitoring the health of glaciers is necessary. Glacier??s health is monitored in two ways (i) by mapping the change in extent of glaciers (ii) by finding variation in the annual mass balance. This paper has been discussed the later approach for monitoring the health of glaciers of Warwan and Bhut basins. Mass balance of glaciers of these two basins was determined based on the extraction of snow line at the end of ablation season. A series of satellite images of AWiFS sensor were analysed for extraction of snowline on the glaciers for the period of 2005, 2006 and 2007. The snow line at the end of ablation season is used to compute accumulation area ratio (AAR = Accumulation area/Glacier area) for each glacier of basins. An approach based on relationship of AAR to specific mass balance (computed in field) for glaciers of Basapa basin was employed in the present study. Mean of specific mass balance of individual glacier for the year 2005, 2006 and 2007 of Warwan basin was found to be ?ve 0.19?m, ?ve 0.27?m and ?ve 0.2?m respectively. It is 0.05?m, ?ve 0.11?m and ?ve 0.19?m for Bhut basin. The analysis suggests a loss of 4.3 and 0.83?km3 of glacier in the monitoring period of 3?years for Warwan and Bhut basins respectively. The overall results suggest that the glaciers of Warwan basin and Bhut basins have suffered more loss of ice than gain in the monitoring period of 3?years.  相似文献   

5.
冰川表面流速是反映冰川动态变化的重要指标,能够为冰川物质平衡提供重要信息.利用2016年的13景Sentinel-1A影像和合成孔径雷达(synthetic aperture radar,SAR)偏移量追踪法测定岗纳楼冰川表面流速场,并根据地表温度是否大于0℃将其分为冰封期(10月—次年3月)和消融期(4月—9月).其...  相似文献   

6.
Parkachik Glacier is located in the Suru sub-basin of the Upper Indus River, Zanskar Himalaya. The Glacier has been analysed using Corona KH-4B (1971), Landsat-TM (1999), field survey (2015), Google EarthTM (2015) and ASTER GDEM (2015) for frontal recession and area changes. Overall, from 1971 to 2015, the Glacier has retreated by 127 ± 0.09 m i.e. (0.75 ± 0.07%) at a rate of 2.9 ± 0.004 ma?1 with a simultaneous decrease in area from 49.5 to 48.8 km2 i.e. 740 ± 0.7 m2 (1.5 ± 0.09%) at a rate of 74 ± 0.7 m2a?1. However, during recent decade (1999–2015), the rate of glacier recession of 3.9 ± 0.004 ma?1 with a corresponding area loss of 500 ± 0.74m2 (1 ± 0.1%) was higher than the retreat rate of 2.3 ± 0.001 ma?1 and an area loss of 240 ± 0.02m2 (0.48 ± 0.08%) during 1971–1999. In the field, the evidences of glacier recession are present in the form of separated dead ice blocks from the main Glacier, recessional dumps/moraines, active ice calving activity and a small proglacial pond/lake at the terminus/snout of the Glacier. However, the recession over the studied period has been very slow and is controlled by its topographic configuration, particularly the large altitudinal range (6030–3620 m), almost northerly aspect and steep slope (average ~ 30°).  相似文献   

7.
Dokriani Glacier is regarded as one of the important glaciers of Bhagirathi River basin, which fed river Ganges. The length of the glacier is about 4.6 km, and snout elevation is about 4028 m m.s.l. The mass balance of this glacier was calculated using field-based measurements for few years during 1994 to 2000. However, due to remote and poor accessibility, the field-based measurements could not continue; thus, remote sensing-based methods become useful tool to estimate the long-term mass balance of the glacier. In this study, glacier mass balance has been determined using accumulation area ratio (AAR) method. Remote sensing data sets, e.g. Landsat TM, ETM?+?and OLI, have been used to estimate AAR for different years from 1994 to 2014. An attempt has also been made to develop a mathematical relationship between remote sensing-derived AAR and field-observed mass balance data of the glacier. Further, this relationship has been used to estimate mass balance of the glacier for different years using remote sensing-derived AAR. Estimated mass balance was validated from ground-observed mass balance for few years. The field-observed and remote sensing-derived mass balance data are compared and showed high correlation. It has been observed that AAR for the Dokriani Glacier varies from 0.64 to 0.71. Mass balance of the glacier was observed between ??15.54 cm and ??50.95 cm during the study period. The study highlights the application of remote sensing in mass balance study of the glaciers and impact of climate change in glaciers of Central Indian Himalaya.  相似文献   

8.
Using Landsat data at decadal interval (1980–2013), the glacier fluctuations (glacier area, equilibrium line altitude and specific mass balance) of nine benchmark glaciers in Kashmir Himalaya were estimated. The observed changes were related to topographic and climatic variables in order to understand their influence. From the data analysis, it was observed that the glaciers have shrunk by 17%, ELA has shifted upwards (80–300 m) and SMB shows variation in glacier mass loss from ?0.77 to ?0.16 m.w.e. Annual air temperature showed a significant increasing trend, and a slight but insignificant decrease in precipitation was observed during the period. It is evident that in the same climatic regime, varying topography plays a key role in determining the glacier changes. It is believed that the observed changes in the glacier geometry and dynamics, if continued, shall have adverse effect on the streamflows, water supplies and other dependent sectors in the region.  相似文献   

9.
控制点布设对冰川区无人机摄影测量精度的影响   总被引:2,自引:0,他引:2  
冰川监测是冰冻圈科学研究中的一项重要基础内容,获取高质量冰川DEM和DOM数据是研究的基础。随着无人机技术的兴起,给冰川监测提供了全新的技术手段,然而冰川区开展无人机摄影测量时,地面控制点的布设与测量成为能否获取高精度数据产品的关键,而山地冰川往往伴随着地形复杂,行走困难,野外实地测量难以全面实施等不利因素。本研究中以位于祁连山西段大雪山地区的老虎沟12号冰川末端部分为研究区域,设计实施了多种控制点布设方案,使用低空微型无人机飞行3个架次,获取研究区航摄影像。通过对比控制点在不同分布情况及数量情况下,DEM和DOM数据检查点的精度,评价不同控制点布设方案的可行性。对比结果显示,在航飞过程中使用单格网模式即可获取高精度的影像数据;实施地面控制作业时,使用5—7个控制点均匀分布在测量区即可获取较高精度的图像数据;当冰川区不能满足均匀布设控制点时,可沿冰川主流线布设足够数量的控制点,所得图像精度也可以满足冰川学研究要求;若只能在冰川中下部或者中上部布设控制点,则控制点应覆盖冰面起伏较大的区域。  相似文献   

10.
基于SAR偏移量跟踪法提取岗纳楼冰川流速   总被引:2,自引:1,他引:1  
冰川动态变化监测有助于反映全球和区域气候演变,保护自然环境和自然资源。近年来,基于SAR数据研究冰川运动已成为主流技术之一。基于SAR提取冰川流速主要包括合成孔径雷达干涉测量、多孔径雷达干涉和偏移量追踪法。本文采用SAR偏移量追踪法中的强度追踪法,提取青海省哈拉湖东北部岗纳楼冰川沿距离向、方位向的冰川流速。试验结果表明,距离向冰川运动速度提取效果较好,最大流速达15.36 m/a,流速从中轴向两侧递减,在冰舌末端趋于0;方位向提取的冰流速最大达18.27 m/a,但因电离层干扰,方位向流速图中存在一些方位向条纹。此外,由于冰流速在方位向分量小等因素的影响,本文研究提取的方位向流速精度低于距离向。  相似文献   

11.
Abstract

This paper documents ongoing glacier retreat in the eastern part of the Granatspitz Mountains (Hohe Tauern Range, Austrian Alps) for the time period 2003–2009 using aerial photogrammetry. Aerial photographs of 2003, 2006, and 2009 were made available by the Hydrological Service of the Regional Government of Salzburg, the Federal Office of Metrology, Surveying and Mapping, Vienna, and the Regional Government of the Tyrol, respectively. High resolution multi-temporal digital elevation models and digital orthophotos of the area of interest were derived using digital photogrammetric methods to provide a sound basis for glaciological research. Glacier outlines of the three glacial stages were mapped interactively. Temporal change in area and surface height of the glaciers mapped clearly document glacier retreat. Glacier mass balance based on the geodetic method was calculated for Stubacher Sonnblickkees (Glacier). Mean annual specific net balance amounts to ?656 mm w.e. for the time period 2003–2009, with a mass balance gradient of 324 mm w.e. (100 m)?1 and an equilibrium-line altitude of 2995 m a.s.l. Digital orthophoto maps and other thematic maps, e.g. showing surface height change, were prepared to support further data interpretation. Both the study area and its spatio-temporal change were visualized with special emphasis on the glaciers in a computer generated video film. Another film (exposure 29 August 2011) shows the lower part of Stubacher Sonnblickkees and its surroundings for reasons of comparison.  相似文献   

12.
利用新型C波段Sentinel-1卫星获取的2015年2月至2017年2月期间的影像数据,研究分析了天山中部南伊内里切克冰川不同时段的运动特征。利用偏移量追踪技术计算不同时间段冰川位移,首先采用三步配准的方法进行主辅影像高精度整体配准,然后基于归一化互相关(normalized cross correlation,NCC)算法通过调整窗口参数精确估算局部偏移量,进一步分离得到冰川移动信息。监测结果表明:(1)在空间分布上,狭长的冰舌区是冰川主要的高速流动区域,冰舌区底部流速小于上部,两侧流速小于中间,末端流速明显减缓。(2)在季节变化上,冰川运动速率与温度变化趋势一致,在5月至8月期间运动速率最快,沿剖面线的最高速率达49 cm/d;在11月至次年2月期间运动最为缓慢,速率为25~30 cm/d左右。(3)在年度变化上,2015年夏季的运动速率比2016年整体高约1~3 cm/d,其他季节则没有明显差异。与高分辨率L波段PALSAR-2影像的监测结果进行定量对比分析时,将冰舌区的像元进行抽稀后统计,得到两种数据获取的运动速率之差的均值为3.48 cm/d,标准差为±3.78 cm/d,证实了南伊内里切克冰川运动监测结果的可靠性。  相似文献   

13.
For the observation and monitoring of glacier surface velocity (GSV), remote sensing is an increasingly suitable tool thanks to the high temporal and spatial resolution of the data. Radar sensors have the specific advantage over optical sensors of being nearly weather and time-independent.Two image pairs separated by 11 days, acquired with the high-resolution spotlight (HS) and stripmap (SM) modes of the German sensor TerraSAR-X, were used to estimate GSV over Switzerland’s Aletsch Glacier. The SM mode covers larger ground swaths, making it more suitable for glacier-wide observations, while the HS images cover less area but offer the highest-possible spatial resolution, approximately 1 × 1 m on the ground. The images were acquired during the summer to maximise feature visibility by minimal snow cover.GSV estimation was performed using two methods, the comparison of which was a major goal of this study: traditional cross-correlation optimisation and a dense image matching algorithm based on complex wavelet decomposition. Each method was found to have unique advantages and disadvantages, but it was concluded that for GSV monitoring, cross-correlation is probably preferable to the wavelet-based approach. While it generates fewer estimates per unit area, this is not necessarily a critical requirement for all glaciological applications, and the method requires less initial “tuning” (calibration) than the wavelet algorithm, making it a slightly better tool in operational contexts. Also, the use of the highest-resolution spotlight datasets is recommended over stripmap mode images when large-area coverage is less critical. The comparative lack of visible features at the resolution of the stripmap images made reliable GSV estimation difficult, with the exception of several small areas dominated by large crevasses.  相似文献   

14.
COSMO-SkyMed is a constellation of four X-band high-resolution radar satellites with a minimum revisit period of 12 hours. These satellites can obtain ascending and descending synthetic aperture radar (SAR) images with very similar periods for use in the three-dimensional (3D) inversion of glacier velocities. In this paper, based on ascending and descending COSMO-SkyMed data acquired at nearly the same time, the surface velocity of the Yiga Glacier, located in the Jiali County, Tibet, China, is estimated in four directions using an offset tracking technique during the periods of 16 January to 3 February 2017 and 1 February to 19 February 2017. Through the geometrical relationships between the measurements and the SAR images, the least square method is used to retrieve the 3D components of the glacier surface velocity in the eastward, northward and upward directions. The results show that applying the offset tracking technique to COSMO-SkyMed images can be used to derive the true 3D velocity of a glacier’s surface. During the two periods, the Yiga Glacier had a stable velocity, and the maximum surface velocity, 2.4?m/d, was observed in the middle portion of the glacier, which corresponds to the location of the steepest slope.  相似文献   

15.
Information about the surface ice velocity is one of the important parameters for Mass balance and Glacier dynamics. This study estimates the surface ice velocity of Chhota Shigri glacier using Landsat (TM/ETM+) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) temporal data-sets from a period of 2009 to 2016 and 2006 to 2007, respectively. A correlation based Particle Image Velocimetry (PIV) technique has been used for the estimation of surface ice velocity. This technique uses multiple window sizes in the same data-set. Four window sizes (low, medium, high, very high) are used for each image pair. Estimated results have been compared with the published data. The outcomes attained from the medium window size closely matches with the published results. The estimated mean surface ice velocities of medium window size are 24 and 28.5 myr?1 for 2009/2010 and 2006/2007 images pair. Highest velocity is observed in middle part of the glacier while lowest in the accumulation zone of the glacier.  相似文献   

16.
The study of advancement and recession of the glaciers in the Himalayas is essential due to their contrasting response towards climatic change. In the present study, Survey of India (SOI) topographical maps of 1962, IRS: LISS-III image of 2001 and LANDSAT-5: TM (Thematic Mapper) image of 2009 were used to analyze the glacier fluctuations in a part of Zanskar valley. The analysis carried out on 212 glaciers indicated decrease of 57 km2 (8 %) of glacier area over many glacier which was partly compensated with area increase by 42 km2 (6 %) in other glaciers, resulting an overall glacier area decrease by only 15 km2 (2 %) from 1962–2001. Due to glacier fragmentation the number of glaciers increased from 212 in 1962 to 238 by 2001. Although majority of glaciers (88 %) exhibited retreat (up to 13 my?1), minor advancement (<15 my?1) also took place in few glaciers during this period. Advancement took place mainly in larger glaciers (2–5 km2 and >5 km2) located over wider altitudinal range (700 m–1,000 m) whereas smaller glaciers (<2 km2) with narrow altitudinal range (100 m–500 m) exhibited retreat. The supraglacial debris analysis indicated that percentage of debris cover over glaciers ranges from 1.43 % to 18.15 %. Smaller glaciers (<2 km2) were debris free in comparison to the larger glaciers (>5 km2). During 2001–2009 majority of the glaciers were apparently stable in terms of their area and snout position indicating less impact of climate forcing in parts of Zanskar valley as compared to other parts of the Himalaya.  相似文献   

17.
采用归一化互相关算法精确配准Landsat 8影像得到了2014年—2016年不同季节冰川的运动速率,并利用其热红外波段对不同时刻的地表温度进行反演;通过强度追踪法处理TerraSAR-X影像得到了2008年4月—10月不同时段的冰川运动速率。两种数据得到的结果表明:冰川末端流速较小,中部流速增大,流速从轴部向两侧递减;冬季流速明显小于夏季,变化趋势与温度变化具有一致性。冰川西侧分支的移动速率相对较大,从Landsat 8和TerraSAR-X提取的最大速率分别为2.56 m·d~(-1)和2.74 m·d~(-1)。最后对稳定区域的冰川流速进行统计,结果显示Landsat 8提取的冰川流速精度控制在1—9 cm d~(-1),基于TerraSAR-X的强度追踪法提取移动速率的精度控制在2cm·d~(-1),验证了两种数据监测冰川移动的可靠性。  相似文献   

18.
Glaciers are widely recognized as key indicators of climate change, and melt water obtained from them is an important source of fresh water and for hydropower generation. Regular monitoring of a large number of Himalayan glaciers is important for improving our knowledge of glacier response to climate change. In the present study, Survey of India topographical maps (1966) and Landsat datasets as ETM+ (2000, 2006) and TM (2011) have been used to study glacier fluctuations in Tirungkhad basin. A deglaciation of 26.1% (29.1?km2) in terms of area from 1966 to 2011 was observed. Lower altitude small glaciers (area?<?1?km2) lost more ice (34%), while glaciers with an area <10?km2 lost less (20%). The percentage of change in glacier length was 26% (31.9?km) from 1966 to 2011. The south-facing glaciers showed high percentages of loss. From 2000 to 2011, debris cover has increased by 1.34%. The analysis of the trend in meteorological data collected from Kalpa and Purbani stations was carried out by Mann Kendall non-parametric method. During the last two decades, the mean annual temperature (Tmax and Tmin) has increased significantly, accompanied with a fall in snow water equivalent (SWE) and rainfall. The increasing trend in temperature and decreasing trend in SWE were significant at 95% confidence level. This observation shows that the warming of the climate is probably one of the major reasons for the glacier change in the basin.  相似文献   

19.
The Markov chain random field (MCRF) model is a spatial statistical approach for modeling categorical spatial variables in multiple dimensions. However, this approach tends to be computationally costly when dealing with large data sets because of its sequential simulation processes. Therefore, improving its computational efficiency is necessary in order to run this model on larger sizes of spatial data. In this study, we suggested four parallel computing solutions by using both central processing unit (CPU) and graphics processing unit (GPU) for executing the sequential simulation algorithm of the MCRF model, and compared them with the nonparallel computing solution on computation time spent for a land cover post-classification. The four parallel computing solutions are: (1) multicore processor parallel computing (MP), (2) parallel computing by GPU-accelerated nearest neighbor searching (GNNS), (3) MP with GPU-accelerated nearest neighbor searching (MP-GNNS), and (4) parallel computing by GPU-accelerated approximation and GPU-accelerated nearest neighbor searching (GA-GNNS). Experimental results indicated that all of the four parallel computing solutions are at least 1.8× faster than the nonparallel solution. Particularly, the GA-GNNS solution with 512 threads per block is around 83× faster than the nonparallel solution when conducting a land cover post-classification with a remotely sensed image of 1000?×?1000 pixels.  相似文献   

20.
This study carries out a quantitative analysis of the performance of ionospheric tomography in the topside ionosphere, utilizing data of October 2011 collected from 260 Global Navigation Satellite System (GNSS) stations in the Crustal Movement Observation Network of China. This tomographic reconstruction with a resolution of 2° in latitude, 2° in longitude and 20 km in altitude has more than 70 % of voxels traversed by GPS raypaths and is able to provide reliable bottom parts of ionospheric profiles. Compared with the observations measured by the Defense Meteorological Satellite Program (DMSP) satellites (F16, F17 and F18) at an altitude of 830–880 km, the results show that there is an overestimation in the reconstructed plasma density at the DMSP altitude, and the reconstruction is better during daytime than nighttime. In addition, the reconstruction at nighttime also indicates a solar activity and latitudinal dependence. In summary, with respect to DMSP measurements, the daytime bias is on average from ?0.32 × 105/cm3 to ?0.28 × 105/cm3, while the nighttime bias is between ?0.37 × 105/cm3 and ?0.24 × 105/cm3, and the standard deviation at daytime and at nighttime is, respectively, 0.082 × 105/cm3 to 0.244 × 105/cm3 and 0.086 × 105/cm3 to 0.428 × 105/cm3. This study suggests that vertical ionospheric profiles from other sources, such as ionosondes or GNSS occultation satellites, should be incorporated into ground-based GNSS topside tomographic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号