首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multitemporal digital terrain models (DTM) are an important source for many purposes such as the detection of areas, which are susceptible to natural hazards such as landslides and glacial lake outburst floods, or for the examination of changes in glacier thickness. To exploit the potential of stereo satellite and aerial imagery for time series analysis, the employed methodology and software can be critical. A statistical analysis based on quartiles is presented to eliminate the influence of registration and elevation errors in DTMs. For our analysis, we used multi-temporal airborne and spaceborne stereoscopic images. The oldest images were recorded in the 1960s by the US American reconnaissance satellite Corona, while the most recent imagery are 2007 Cartosat-1 stereo scenes, along with one ASTER stereo pair. Complex panoramic distortion and limited spatial resolution resulted in the Corona and ASTER DTMs having the highest RMSEz. Due to differing acquisition techniques, applied software packages and temporal differences DTMs will never be identical. Therefore, we propose a relative vertical accuracy assessment with a master DTM. We chose the Cartosat-1 DTM as it showed the highest absolute accuracy. Inaccuracies between the master and the slave DTMs were adjusted by means of trend surfaces and outliers were successfully eliminated applying the interquartile range.  相似文献   

2.
Monitoring the evolution of polar glaciers, ice caps and ice streams is of utmost importance because they constitute a good indicator of global climate change and contribute significantly to ongoing sea level rise. Accurate topographic surveys are particularly relevant as they reflect the geometric evolution of ice masses. Unfortunately, the precision and/or spatial coverage of current satellite missions (radar altimetry, ICESat) or field surveys are generally insufficient. Improving our knowledge of the topography of Polar Regions is the goal of the SPIRIT (SPOT 5 stereoscopic survey of Polar Ice: Reference Images and Topographies) international polar year (IPY) project. SPIRIT will allow (1) the acquisition of a large archive of SPOT 5 stereoscopic images covering most polar ice masses and, (2) the delivery of digital terrain models (DTM) to the scientific community.Here, we present the architecture of this project and the coverage achieved over northern and southern polar areas during the first year of IPY (July 2007 to April 2008). We also provide the first accuracy assessments of the SPIRIT DTMs. Over Jakobshavn Isbrae (West Greenland), SPIRIT elevations are within ±6 m of ICESat elevations for 90% of the data. Some comparisons with ICESat profiles over Devon ice cap (Canada), St Elias Mountains (Alaska) and west Svalbard confirm the good overall quality of the SPIRIT DTMs although large errors are observed in the flat accumulation area of Devon ice cap. We then demonstrate the potential of SPIRIT DTMs for mapping glacier elevation changes. The comparison of summer-2007 SPIRIT DTMs with October-2003 ICESat profiles shows that the thinning of Jakobshavn Isbrae (by 30–40 m in 4 years) is restricted to the fast glacier trunk. The thinning of the coastal part of the ice stream (by over 100 m) and the retreat of its calving front (by up to 10 km) are clearly depicted by comparing the SPIRIT DTM to an ASTER April-2003 DTM.  相似文献   

3.
在无控制点的卫星影像正射校正中,大多采用DSM/DEM数据作为辅助数据来消除或限制因地形起伏引起的形变,然而经不同格网密度的DSM/DEM正射校正后的影像对后续处理会产生不同程度的影响,如对地物分类精度产生影响。针对这一问题,本文分别采用不同的DSM/DEM数据(China DSM 15 m、ASTER GDEM 30 m和SRTM 90 m)对资源三号影像进行正射校正,然后对正射校正后影像利用支持向量机进行分类,比较正射校正后影像结果的分类精度。结果表明:在相同重采样方法下,影像经China DSM 15 m DSM正射校正后结果的分类精度优于ASTER GDEM 30 m DEM和SRTM 90 m DEM。  相似文献   

4.
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on-board the National Aeronautics and Space Administration's (NASA's) Terra spacecraft provides along-track digital stereo image data at 15-m resolution. As part of ASTER digital elevation model (DEM) accuracy evaluation efforts by the US/Japan ASTER Science Team, stereo image data for four study sites around the world have been employed to validate prelaunch estimates of heighting accuracy. Automated stereocorrelation procedures were implemented using the Desktop Mapping System (DMS) software on a personal computer to derive DEMs with 30- to 150-m postings. Results indicate that a root-mean-square error (RMSE) in elevation between ±7 and ±15 m can be achieved with ASTER stereo image data of good quality. An evaluation of an ASTER DEM data product produced at the US Geological Survey (USGS) EROS Data Center (EDC) yielded an RMSE of ±8.6 m. Overall, the ability to extract elevations from ASTER stereopairs using stereocorrelation techniques meets expectations.  相似文献   

5.
Digital elevation model (DEM) data of Shuttle Radar Topography Mission (SRTM) are distributed at a horizontal resolution of 90 m (30 m only for US) for the world, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM data provide 30 m horizontal resolution, while CARTOSAT-1 (IRS-P5) gives 2.6 m horizontal resolution for global coverage. SRTM and ASTER data are available freely but 2.6 m CARTOSAT-1 data are costly. Hence, through this study, we found out a horizontal accuracy for selected ground control points (GCPs) from SRTM and ASTER with respect to CARTOSAT-1 DEM to implement this result (observed from horizontal accuracy) for those areas where the 2.6-m horizontal resolution data are not available. In addition to this, the present study helps in providing a benchmark against which the future DEM products (with horizontal resolution less than CARTOSAT-1) with respect to CARTOSAT-1 DEM can be evaluated. The original SRTM image contained voids that were represented digitally as ?140; such voids were initially filled using the measured values of elevation for obtaining accurate DEM. Horizontal accuracy analysis between SRTM- and ASTER-derived DEMs with respect to CARTOSAT-1 (IRS-P5) DEM allowed a qualitative assessment of the horizontal component of the error, and the appropriable statistical measures were used to estimate their horizontal accuracies. The horizontal accuracy for ASTER and SRTM DEM with respect to CARTOSAT-1 were evaluated using the root mean square error (RMSE) and relative root mean square error (R-RMSE). The results from this study revealed that the average RMSE of 20 selected GCPs was 2.17 for SRTM and 2.817 for ASTER, which are also validated using R-RMSE test which proves that SRTM data have good horizontal accuracy than ASTER with respect to CARTOSAT-1 because the average R-RMSE of 20 GCPs was 3.7 × 10?4 and 5.3 × 10?4 for SRTM and ASTER, respectively.  相似文献   

6.
Morphometric parameters derived from three different sources viz., Survey of India topographic map (1:50,000), SRTM (Shuttle Radar Topographic Mission 90 m) and DEM derived from ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer — 30 m) are evaluated to examine any difference within the results for the proper planning and management of the watersheds. Extracting drainage network from DEMs is mainly based on the flow of water from higher to lower elevation and steepest descent in a pixel. Common morphometric parameters are considered for analysis. The results show that the morphometric parameters derived from the SRTM and ASTER data provide good and satisfying results. The results will be more efficient when the DEM cell size is smaller or the resolution of the image is higher.  相似文献   

7.
由于数据获取与后期处理方式不同,先进星载热发射和反射辐射仪全球数字高程模型(advanced spaceborne thermalemissionandreflectionradiometerglobaldigitalelevationmodel,ASTERGDEM)和航天飞机雷达地形测绘任务(shuttle radar topography mission,SRTM)数据在高程精度上存在差异,采用弹性反馈(resilient backpropagation,RProp)神经网络算法对二者进行融合处理,实现优势互补以提升高程精度。选取两个黄土丘陵沟壑地貌样区分别用于模型建立与效果验证,1∶10 000高程精度为参考数据,在建模样区应用RProp神经网络算法构建ASTER GDEM高程校正模型、SRTM1高程校正模型、ASTER GDEM与SRTM1高程融合模型,同时应用误差反向传播(back propagation,BP)神经网络建立ASTER GDEM与SRTM1高程融合模型,将这些模型的高程精度优化效果进行对比,并在验证样区检验RProp融合模型的可行性。结果表明,RProp融合模...  相似文献   

8.
The drainage network of a sixth-order tropical river basin, viz. Ithikkara river basin, was extracted from different sources such as Survey of India topographic maps (1: 50,000; TOPO) and digital elevation data of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (30 m) and Shuttle Radar Topography Mapping Mission (SRTM) (90 m). Basin morphometric attributes were estimated to evaluate the accuracy of the digital elevation model (DEM)-derived drainage networks for hydrologic applications as well as terrain characterization. The stream networks derived from ASTER and SRTM DEMs show significant agreement (with slight overestimation of lower order streams) with that of TOPO. The study suggests that SRTM (despite the coarser spatial resolution) provides better results, in drainage delineation and basin morphometry, compared to ASTER. Further, the variability of basin morphometry among the data sources might be attributed to spatial variation of elevation, raster grid size and vertical accuracy of the DEMs as well as incapability of the surface hydrologic analysis functions in the GIS platform.  相似文献   

9.
为探究ASTER GDEMV3、SRTM1 DEM和AW3D30 DEM 3种开源DEM数据的高程精度,本文以高精度ICESat-2 ATLAS测高数据为参考数据,利用GIS统计分析、误差相关分析及数理统计对DEM的高程精度进行对比评价。结果表明:①AW3D30的质量最稳定;SRTM1 DEM在平原精度最高;在高原山地精度由高到低依次为AW3D30 DEM、ASTER GDEMV3、SRTM1 DEM。②DEM数据高程精度受地表覆盖影响较大,且与地形因素密切相关,在相同地表覆盖的两个研究区中DEM数据高程精度表现情况不一致,SRTM在平原地表覆盖下精度表现最好,平均误差为3.15 m,AW3D30 DEM在山地地表覆盖下精度表现最好,平均误差为7.61 m。③坡度对DEM数据的高程精度影响较大,在两个研究区3种DEM数据的高程误差均随坡度的增加而增加;坡向对DEM数据的高程精度影响较小,未发现明显的规律。  相似文献   

10.
孙静  赵萍  叶琦 《东北测绘》2012,(10):137-142
提出了针对ASTER数据同时反演大气水汽含量与地表温度的三通道算法,即利用ASTER数据的第12,13,14三个热红外波段建立三个热辐射传输方程。再利用MODTRAN软件分别模拟ASTER 12,13,14波段透过率与大气水汽含量的关系,通过分析可知ASTER三个热红外波段的透过率与大气水汽含量的关系可用近似线性方程表示,从而得到另外三个方程。这样就构成了一个包含六个未知数、六个方程的方程组,形成了针对ASTER数据同时反演大气水汽含量与地表温度的三通道算法。由于各参数都可以通过方程组计算出来,所以,这种算法仅需要ASTER数据就可反演出大气水汽含量与地面温度,且关键参数大气透过率的计算精度提升到了AS-TER数据一个像元(15×15)m2的程度。  相似文献   

11.
何兆培  杨斌 《地理空间信息》2013,11(1):104-107,14
利用3个不同的软件对四川省龙门山中段ASTER 15 m分辨率的立体像对进行了DEM提取,并对其精度进行了初步评价。分别使用立体测量法和干涉测量法提取DEM,并通过检验点法和剖面线法对比分析。结果表明,利用ERDAS的干涉测量法提取出的DEM效果较好,高程精度可达30 m,对后续数据深挖掘和高层次地形分析具有应用价值。  相似文献   

12.
ASTER立体像对提取玛尔挡坝区DEM及精度评价   总被引:4,自引:0,他引:4  
ASTER立体像对提取DEM已经成为近年来DEM提取研究的热点问题。本文基于ENVI软件,利用AS-TER立体像对提取青藏高原玛尔挡坝区DEM,并对其进行精度评价和误差来源分析。结果表明,利用ENVI软件提取ASTER-DEM方法可行,提取的DEM效果较好,能与地形图重叠,高程精度可达30m,而且地形较平坦地区精度高于地形陡峭地区;控制点的多少及精度、成像时的环境和气象条件、波段特性、影像空间分辨率等都影响着DEM的精度。  相似文献   

13.
The effect on accuracy resulting from some changes to the conventional least squares matching method is investigated. Parallaxes computed automatically with matching methods have been compared with manual measurements made in a stereocomparator. Examples have been taken from both large and small scale aerial photographs and from close range images. Different linear geometric and radiometric parameters have been used as additional unknowns. The use of data snooping in digital matching with the least squares matching method has also been investigated. The results show that the introduction of additional affine parameters has a positive effect on the accuracy when the window size is larger than 30 × 30 pixels. The use of the data snooping technique is promising. The best precision obtained was between 10 pm and 15 μm, expressed as radial root mean square deviation, corresponding to approximately half a pixel. Gross error detection is possible to a large extent with photographs of good image quality.  相似文献   

14.
Abstract

Remote sensing techniques provide meaningful information to mineral exploration by identifying the hydrothermally altered minerals and the fracture/fault systems. In this article, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data were processed to detect the hydrothermal alteration zones in Hamama area in the central part of the Eastern Desert of Egypt. Band ratios and principal component analyses successfully revealed the extent and the geometry of the hydrothermal alteration zones that trend in an NE–SW direction. Matching pixel spectrum derived from Minimum Noise Fraction, Pixel Purity Index, and n-dimensional visualization with reference spectra allowed characterizing key hydrothermal alteration minerals, including chlorite, kaolinite-smectite, muscovite, and haematite, in a successive alteration pattern. Field investigations and X-Ray Diffraction analysis validated the results revealed by ASTER data. In addition, the present prospects of significant gold and massive sulphide mineralizations are consistent with the detected hydrothermal alteration zone.  相似文献   

15.
This work is aimed at the environmental remote sensing community that uses UAV optical frame imagery in combination with airborne and satellite data. Taking into account the economic costs involved and the time investment, we evaluated the fit-for-purpose accuracy of four positioning methods of UAV-acquired imagery: 1) direct georeferencing using the onboard raw GNSS (GNSSNAV) data, 2) direct georeferencing using Post-Processed Kinematic single-frequency carrier-phase without in situ ground support (PPK1), 3) direct georeferencing using Post-Processed Kinematic double-frequency carrier-phase GNSS data with in situ ground support (PPK2), and 4) indirect georeferencing using Ground Control Points (GCP). We tested a multispectral sensor and an RGB sensor, onboard multicopter platforms. Orthophotomosaics at <0.05 m spatial resolution were generated with photogrammetric software. The UAV image absolute accuracy was evaluated according to the ASPRS standards, wherein we used a set of GCPs as reference coordinates, which we surveyed with a differential GNSS static receiver. The raw onboard GNSSNAV solution yielded horizontal (radial) accuracies of RMSEr≤1.062 m and vertical accuracies of RMSEz≤4.209 m; PPK1 solution gave decimetric accuracies of RMSEr≤0.256 m and RMSEz≤0.238 m; PPK2 solution, gave centimetric accuracies of RMSEr≤0.036 m and RMSEz≤0.036 m. These results were further improved by using the GCP solution, which yielded accuracies of RMSEr≤0.023 m and RMSEz≤0.030 m. GNSSNAV solution is a fast and low-cost option that is useful for UAV imagery in combination with remote sensing products, such as Sentinel-2 satellite data. PPK1, which can register UAV imagery with remote sensing products up to 0.25 m pixel size, as WorldView-like satellite imagery, airborne lidar or orthoimagery, has a higher economic cost than the GNSSNAV solution. PPK2 is an acceptable option for registering remote sensing products of up to 0.05 m pixel size, as with other UAV images. Moreover, PPK2 can obtain accuracies that are approximate to the usual UAV pixel size (e.g. co-register in multitemporal studies), but it is more expensive than PPK1. Although indirect georeferencing can obtain the highest accuracy, it is nevertheless a time-consuming task, particularly if many GCPs have to be placed. The paper also provides the approximate cost of each solution.  相似文献   

16.
This paper illustrates the benefits of DTMs created from SPOT images for the exploration of sedimentary basins. We chose an example located in the Ebro sedimentary basin in Spain, characterized by good outcropping conditions and slight deformations. The data used consist of a pair of SPOT panchromatic images and a SPOT XS image. The work consists of making up a 3D database, followed by interpretation of stereo pairs computed from orthoimages and the DTM. This interpretation is made on a stereoscopic desk and results in a digital file containing in the form of vectors all the observed faults and lithology. These vectors are then used to make calculations on the geometry of the objects they represent: we demonstrate that we can accurately measure layer directions and dips, sediment thicknesses and fault throws. Synthesis of perspective views made at the same time provide a good understanding of the structures and help to test their geometric consistency. Thus knowledge about relief given by DTMs helps to interpret remote detection images in 3D space, and particularly to accurately quantify the results of this interpretation.  相似文献   

17.
ABSTRACT

High-Resolution Topography (HRT) data sets are becoming increasingly available, improving our ability and opportunities to monitor geomorphic changes through multi-temporal Digital Terrain Models (DTMs). The use of repeated topographic surveys enables inferring the sediment dynamics of hazardous geomorphic processes such as floods, debris flows, and landslides, and allows us to derive important information on the risks often associated with these processes. The topographic surveying platforms, georeferencing systems, and processing tools have seen important developments in the last two decades, in particular Light Detection And Ranging (LiDAR) technology used in Airborne Laser Scanning (ALS) and Terrestrial Laser Scanning (TLS). Moreover, HRT data, produced through these techniques, changed a lot in terms of point cloud density, accuracy and precision over time. Therefore, old “legacy” data sets and recent surveys can often show comparison problems, especially when multi-temporal data are not homogeneous in terms of quality and uncertainties. In this context, data co-registration should be used to guarantee the coherence among multi-temporal surveys, minimizing, on stable areas, the distance between corresponding points acquired at different epochs. Although several studies highlight that this process is fundamental to properly compare multi-temporal DTMs, it is often not addressed in LiDAR post-processing workflows. In this paper we focus on the alignment of multi-temporal surveys in a topographically complex and rugged environment as the Moscardo debris-flow catchment (Eastern Italian Alps), testing various co-registration methods to align multi-temporal ALS point clouds (i.e. years 2003, 2009 and 2013) and the derived DTMs. In particular, we tested the pairwise registration with manual correspondences, the Iterative Closest Point (ICP) algorithm and a mathematical model that allows aligning simultaneously a generic number of point clouds, the so-called Generalized Procrustes Analysis (GPA), also in its GPA-ICP variant. Then, to correct the possible small inaccuracies generated from the gridding interpolation process, a custom-developed DTM co-registration tool (GRD-CoReg) was used to align gridded data. Both alignment phases (i.e. at point cloud and DTM level) proved to be fundamental and allowed us to obtain proper and reliable DTMs of Difference (DoDs), useful to quantify the debris mobilized and to detect the spatial and temporal patterns of catchment-scale erosion and deposition. The consistency of DoDs data was verified through the comparison between the erosion estimate of DoDs and the volumes of debris-flow events measured by the monitoring station close to the Moscardo torrent catchment outlet. The GPA-ICP algorithm followed by the GRD-CoReg tool proved to be the most effective solution for improving DoDs results with a decrease of systematic trend due to vertical and horizontal uncertainties between surveys, especially at steep slopes. The net volume difference (i.e. the sediment output from the catchment) of the 2003–2013 period changed from 3,237,896 m3 to 135,902 m3 in DoDs obtained from not co-registered and co-registered DTMs. The volume of debris flows measured at the catchment outlet during the same time interval amounts to 169,660 m3. The comparison with debris-flow volume measures at the monitoring station shows, therefore, that the DTMs obtained from the co-registration processes generate more reliable DoDs than those obtained from the raw DTMs (without the alignment).  相似文献   

18.
This study reports results from evaluation of the quality of digital elevation model (DEM) from four sources viz. topographic map (1:50,000), Shuttle Radar Topographic Mission (SRTM) (90 m), optical stereo pair from ASTER (15 m) and CARTOSAT (2.5 m) and their use in derivation of hydrological response units (HRUs) in Sitla Rao watershed (North India). The HRUs were derived using water storage capacity and slope to produce surface runoff zones. The DEMs were evaluated on elevation accuracy and representation of morphometric features. The DEM derived from optical stereo pairs (ASTER and CARTOSAT) provided higher vertical accuracies than the SRTM and topographic map-based DEM. The SRTM with a coarse resolution of 90 m provided vertical accuracy but better morphometry compared to topographic map. The HRU maps derived from the fine resolution DEM (ASTER and CARTOSAT) were more detailed but did not provide much advantage for hydrological studies at the scale of Sitla Rao watershed (5800 ha).  相似文献   

19.
Digital Elevation Models (DEMs) contain topographic relief data that are vital for many geoscience applications. This study relies on the vertical accuracy of publicly available latest high-resolution (30?m) global DEMs over Cameroon. These models are (1) the ALOS World 3D-30?m (AW3D30), (2) the Shuttle Radar Topography Mission 1 Arc-Second C-Band Global DEM (SRTM 1) and (3) the Advanced Spaceborne Thermal Emission and Reflection Global DEM Version 2 (ASTER GDEM 2). After matching their coordinate systems and datums, the horizontal positional accuracy evaluation was carried out and it shows that geolocation errors significantly influence the vertical accuracy of global DEMs. After this, the three models are compared among them, in order to access random and systematic effects in the elevation data each of them contains. Further, heights from 555 GPS/leveling points distributed all over Cameroon are compared to each DEM, for their vertical accuracy determination. Traditional and robust statistical measures, normality test, outlier detection and removal were used to describe the vertical quality of the DEMs. The test of the normality rejected the hypothesis of normal distribution for all tested global DEMs. Overall vertical accuracies obtained for the three models after georeferencing and gross error removal in terms of Root Mean Square (RMS) and Normalized Median Absolute Deviation (NMAD) are: AW3D30 (13.06?m and 7.75?m), SRTM 1 (13.25?m and 7.41?m) and ASTER GDEM 2 (18.87?m and 13.30?m). Other accuracy measures (MED, 68.3% quantile, 95% quantile) supply some evidence of the good quality of AW3D30 over Cameroon. Further, the effect of land cover and slope on DEM vertical accuracy was also analyzed. All models have proved to be worse in the areas dominated by forests and shrubs areas. SRTM 1 and AW3D30 are more resilient to the effects of the scattering objects respectively in forests and cultivated areas. The dependency of DEMs accuracy on the terrain roughness is evident. In all slope intervals, AW3D30 is performing better than SRTM 1 and ASTER GDEM 2 over Cameroon. AW3D30 is more representative of the external topography over Cameroon in comparison with two others datasets and SRTM 1 can be a serious alternative to AW3D30 for a range of DEM applications in Cameroon.  相似文献   

20.
The classification of satellite imagery into land use/cover maps is a major challenge in the field of remote sensing. This research aimed at improving the classification accuracy while also revealing uncertain areas by employing a geocomputational approach. We computed numerous land use maps by considering both image texture and band ratio information in the classification procedure. For each land use class, those classifications with the highest class-accuracy were selected and combined into class-probability maps. By selecting the land use class with highest probability for each pixel, we created a hard classification. We stored the corresponding class probabilities in a separate map, indicating the spatial uncertainty in the hard classification. By combining the uncertainty map and the hard classification we created a probability-based land use map, containing spatial estimates of the uncertainty. The technique was tested for both ASTER and Landsat 5 satellite imagery of Gorizia, Italy, and resulted in a 34% and 31% increase, respectively, in the kappa coefficient of classification accuracy. We believe that geocomputational classification methods can be used generally to improve land use and land cover classification from imagery, and to help incorporate classification uncertainty into the resultant map themes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号