首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
In recent years, it has been widely agreed that spatial features derived from textural, structural, and object-based methods are important information sources to complement spectral properties for accurate urban classification of high-resolution imagery. However, the spatial features always refer to a series of parameters, such as scales, directions, and statistical measures, leading to high-dimensional feature space. The high-dimensional space is almost impractical to deal with considering the huge storage and computational cost while processing high-resolution images. To this aim, we propose a novel multi-index learning (MIL) method, where a set of low-dimensional information indices is used to represent the complex geospatial scenes in high-resolution images. Specifically, two categories of indices are proposed in the study: (1) Primitive indices (PI): High-resolution urban scenes are represented using a group of primitives (e.g., building/shadow/vegetation) that are calculated automatically and rapidly; (2) Variation indices (VI): A couple of spectral and spatial variation indices are proposed based on the 3D wavelet transformation in order to describe the local variation in the joint spectral-spatial domains. In this way, urban landscapes can be decomposed into a set of low-dimensional and semantic indices replacing the high-dimensional but low-level features (e.g., textures). The information indices are then learned via the multi-kernel support vector machines. The proposed MIL method is evaluated using various high-resolution images including GeoEye-1, QuickBird, WorldView-2, and ZY-3, as well as an elaborate comparison to the state-of-the-art image classification algorithms such as object-based analysis, and spectral-spatial approaches based on textural and morphological features. It is revealed that the MIL method is able to achieve promising results with a low-dimensional feature space, and, provide a practical strategy for processing large-scale high-resolution images.  相似文献   

2.
高分辨率遥感图像场景分类方法主要涉及两个环节:特征提取以及特征分类,分类器的设计已经相对成熟,当前工作的重点是特征提取策略的研究。为了进一步推动特征提取策略的研究,将特征提取策略对高分辨率遥感图像场景分类性能的影响进行了定性和定量评估。首先,回顾了高分辨率遥感图像场景分类的发展历程;然后,对现有高分辨率遥感图像场景分类方法的特征提取策略进行分类总结,并从理论上将各类特征提取策略对场景分类性能的影响进行定性评估;最后,在3个规模较大的数据集上对多种特征提取策略进行实验对比,将不同特征提取策略对场景分类性能的影响和各数据集的复杂度进行定量评估。  相似文献   

3.
Very high spatial and temporal resolution remote sensing data facilitate mapping highly complex and diverse urban environments. This study analyzed and demonstrated the usefulness of combined high-resolution aerial digital images and elevation data, and its processing using object-based image analysis for mapping urban land covers and quantifying buildings. It is observed that mapping heterogeneous features across large urban areas is time consuming and challenging. This study presents and demonstrates an approach for formulating an optimal land cover classification rule set over small representative training urban area image, and its subsequent transfer to the multisensor, multitemporal images. The classification results over the training area showed an overall accuracy of 96%, and the application of rule set to different sensor images of other test areas resulted in reduced accuracies of 91% for the same sensor, 90% and 86% for the different sensors temporal data. The comparison of reference and classified buildings showed ±4% detection errors. Classification through a transferred rule set reduced the classification accuracy by about 5%–10%. However, the trade-off for this accuracy drop was about a 75% reduction in processing time for performing classification in the training area. The factors influencing the classification accuracies were mainly the shadow and temporal changes in the class characteristics.  相似文献   

4.
基于多层形状特征提取与融合的城市高光谱影像解译   总被引:1,自引:0,他引:1  
以前的研究往往从像素光谱的角度来解译高光谱影像,忽略了像素间的空间上下文关系。本文提出一种基于像素和对象层形状特征提取与融合的方法,把多层形状特征和光谱信息用支持向量机(SVM)输出函数方法进行融合,用于提取城市高光谱影像的形状特性,利用影像的空间关系。实验用HydICE-DC航空高光谱数据对提出的方法进行了验证,结果表明:像素级形状指数能够提供比对象级形状指数更优的结果,但像素—对象级形状特征的融合,能够给出更高的精度。  相似文献   

5.
地貌数据集是实现地貌自动分类和加深对地貌形态学认识的重要支撑数据之一。当前缺乏高精度地貌成因类数据集,制约了地貌遥感自动解译的发展。本文在中国东北地区以沟—弧—盆体系为主的天山—兴蒙造山系中,针对强烈的构造运动和新生代以来的火山作用、流水作用形成的地貌成因类型,制作了构造地貌、火山熔岩地貌和流水地貌3类场景数据集(GOS10m)。数据集覆盖面积约5000 km2,包括哨兵2号可见光遥感影像、SRTM1 DEM及基于DEM提取的7个地貌形态参数(山体晕渲图、坡度、DEM局部平均中值、标准偏差、坡向—向北方向偏移量、坡向—向东方向偏移量和相对偏离平均值)。单张样本图为64像素×64像素,空间分辨率为10 m。采用多模态深度学习神经网络对数据进行训练并分类,平均测试精度可达到82.63%,表明构建的数据集具有较高的质量。可为地貌成因遥感自动分类研究以及推动遥感地貌智能解译的向前发展,提供数据集支撑。  相似文献   

6.
谭耀华  王长委 《测绘通报》2019,(5):113-115,154
为了满足城市森林资源精细化管理的需求,需要不断拓展国产高分辨率遥感卫星数据的应用范围。本文对国产高分辨率遥感卫星数据进行真实性检验并分析其数据特性,在此基础上开展基于国产高分辨率遥感卫星数据的城市森林资源监测的应用研究,并开发了相应的软件系统,对实现城市森林资源的自动化监测具有较高的实用价值和研究意义。  相似文献   

7.
基于频域滤波的高分辨率遥感图像城市河道信息提取   总被引:2,自引:0,他引:2  
提出一种基于频域滤波的城市河道信息提取方法。首先对高分辨率遥感图像进行傅里叶变换得到频谱图, 并利用径向和角向分布图分析城市河道的频谱特征。其次, 基于城市河道的双线型特点, 将其分为边缘特征和低频信息两个部分, 并根据周期性纹理的频谱模型和地物频谱能量分布规律确定两个部分的频域识别标志。然后设计相应的扇环形带通log Butterworth滤波器和低通Butterworth滤波器分别对城市河道的边缘特征和低频信息进行提取, 并根据该两部分信息实现城市河道信息提取。最后对城市河道信息提取结果进行定量评价, 结果表明, 本文方法可以有效地实现城市河道的信息提取。  相似文献   

8.
基于DEM的平缓地区水系提取和流域分割的流向算法分析   总被引:3,自引:0,他引:3  
本文以地势较为平坦的秦淮河流域为实验样区,以高精度DEM(5m分辨率)和地形图水系为基础数据,对比分析了单流向算法(D8算法)、多流向算法(Dinf法)以及添加数字化河道信息后的单流向算法(Agree&D8算法)3种算法下水系提取和流域分割的结果.实验结果表明,提取得到的水系更逼近于实际河网,该算法既有效提高了水系提取和流域分割的精度,又保留了D8算法模型简单、稳定性强、运行效率高等优点.  相似文献   

9.
杨俊  刘灵辉 《测绘通报》2022,(7):138-142+153
为准确分析功能区土地时空演变情况,需准确区分土地时空变化的相关特征,本文设计了功能区土地时空变化特征提取模型。首先采用全极化分解和灰度共生矩阵,对SAR图像中反映功能区土地时空变化的、不同地物的各类散射特征和纹理特征进行分类。然后确定最佳加权全极化特征组合,将该组合输入随机森林模型,完成最终图像中地物分类。最后以湖南省某市生态功能区土地时空变化特征为例,实现功能区土地时空变化特征分类提取。测试结果表明,该模型采用加权全极化特征组合,可准确描述地物分布情况,保证地物的可靠分类,能实现较好的提取效果。  相似文献   

10.
碳排放时空分布监测与评估是城市可持续发展的重点研究课题之一。面向长株潭城市群碳排放的时空分布和差异分析,本文基于NPP-VIIRS夜间灯光影像和不透水面数据,结合县级碳排放数据,构建长株潭城市群碳排放估算模型,并定量分析了长株潭城市群碳排放时空分布特征及变化趋势。结果表明:①不透水面、夜间灯光均值和总值数据能够反映长株潭城市群区域碳排放水平;②2013—2017年长株潭城市群碳排放具有聚集性,主要分布在长株潭城市群北部的中间区域,碳排放区域逐年扩大但强度减弱;③2013—2017年长株潭城市群碳排放变化趋势为中心区域呈现负增长,城市扩张的边缘区域承接了部分碳排放量。本文融合多源遥感数据对2013—2017年长株潭城市群县级碳排放进行估算与监测分析,揭示了长株潭城市群碳排放时空分布变化规律,可为该区域碳减排和区域可持续发展提供科学参考。  相似文献   

11.
Defense Meteorological Satellite Program (DMSP)/Operational Linescan System (OLS) nighttime imagery provides a valuable data source for mapping urban areas. However, the spatial extents of large cities are often overestimated because of the effect of over-glow from nighttime light if a fixed thresholding technique is used. In the work reported here, an inside buffer method was developed to solve this issue. The method is based on the fact that the area overestimated is proportional to the extent of the lit area if a fixed threshold is used to extract urban areas in a region/county. Using this method, the extents of urban areas in North China were extracted and validated by interpretations from Landsat Thematic Mapper images. The results showed that the lit areas had a significant linear relationship with the urban areas for 120 representative cities in North China in 2000, with an R2 value of over 0.95. This demonstrates that the inside buffer method can be used to extract urban areas. The validation results showed that the inside buffer model developed in 2000 can be directly used to extract the extent of urban areas using more recent nighttime light imagery. This is of great value for the timely updating of urban area databases in large regions or countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号