首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Schlinig fault at the western border of theÖtztal nappe (Eastern Alps), previously interpreted as a west-directed thrust, actually represents a Late Cretaceous, top-SE to -ESE normal fault, as indicated by sense-of-shear criteria found within cataclasites and greenschist-facies mylonites. Normal faulting postdated and offset an earlier, Cretaceous-age, west-directed thrust at the base of theÖtztal nappe. Shape fabric and crystallographic preferred orientation in completely recrystallized quartz layers in a mylonite from the Schlinig fault record a combination of (1) top-east-southeast simple shear during Late Cretaceous normal faulting, and (2) later north-northeast-directed shortening during the Early Tertiary, also recorded by open folds on the outcrop and map scale. Offset of the basal thrust of theÖtztal nappe across the Schlinig fault indicates a normal displacement of 17 km. The fault was initiated with a dip angle of 10° to 15° (low-angle normal fault). Domino-style extension of the competent Late Triassic Hauptdolomit in the footwall was kinematically linked to normal faulting.

The Schlinig fault belongs to a system of east- to southeast-dipping normal faults which accommodated severe stretching of the Alpine orogen during the Late Cretaceous. The slip direction of extensional faults often parallels the direction of earlier thrusting (top-W to top-NW), only the slip sense is reversed and the normal faults are slightly steeper than the thrusts. In the western Austroalpine nappes, extension started at about 80 Ma and was coeval with subduction of Piemont-Ligurian oceanic lithosphere and continental fragments farther west. The extensional episode led to the formation of Austroalpine Gosau basins with fluviatile to deep-marine sediments. West-directed rollback of an east-dipping Piemont-Ligurian subduction zone is proposed to have caused this stretching in the upper plate.  相似文献   


2.
New petrologic and 40Ar/39Ar geochronologic data constrain conditions of Alpine metamorphism along the northwestern border of the Tauern Window. The P-T estimations based on phengite barometry were determined for samples from units of the Lower Austroalpine nappe complex exposed above the Southpenninic interior of the Tauern Window, and from upper parts of the Southpenninic “Bündner Schiefer” sequence. Results suggest that both Mesozoic metasedimentary nappe units (Reckner and Hippold Nappes) and an ophiolitic nappe (Reckner Complex) of the Lower Austroalpine nappe complex have been metamorphosed at pressures between 8 and 10.5 kbar and temperatures around 350 °C. The structurally highest Lower Austroalpine unit (Quartzphyllite Nappe) was not affected by high-pressure metamorphism and records maximum P-T conditions of approximately 4 kbar and 400 °C. Highest parts of the structurally underlying Southpenninic Bündner Schiefer sequence were metamorphosed at intermediate pressures (6–7 kbar). Temperatures increased in all structural units during decompression. Whole-rock 40Ar/39Ar plateau ages of silicic phyllites and cherts with abundant high-Si phengites record ages around 50 Ma in the Reckner Nappe, and 44–37 Ma in the Hippold Nappe and Southpenninic Bündner Schiefer sequence. These ages are interpreted to date closely the high-pressure metamorphism. The Lower Austroalpine-Southpenninic border area in the NW Tauern Window appears to have evolved along an indented, fragmented active continental margin where the Reckner Complex represents one of the oldest sections of the Southpenninic (Piemontais) Oceanic tract that was originally situated close to, or even within, the Lower Austroalpine continent. During closure of the Piemontais Ocean, the resultant subduction zone did not entrain components of the Reckner Complex or its cover sequences (Reckner and Hippold Nappes): therefore “Eoalpine” high-pressure metamorphism did not occur. Sequences exposed within the study area were subducted to relatively shallow depths during the last stage of consumption of oceanic crust and immediately prior to final continental collision. Received: 30 July 1996 / Accepted: 7 April 1997  相似文献   

3.
The Tauern Window exposes a Paleogene nappe stack consisting of highly metamorphosed oceanic (Alpine Tethys) and continental (distal European margin) thrust sheets. In the eastern part of this window, this nappe stack (Eastern Tauern Subdome, ETD) is bounded by a Neogene system of shear (the Katschberg Shear Zone System, KSZS) that accommodated orogen-parallel stretching, orogen-normal shortening, and exhumation with respect to the structurally overlying Austroalpine units (Adriatic margin). The KSZS comprises a ≤5-km-thick belt of retrograde mylonite, the central segment of which is a southeast-dipping, low-angle extensional shear zone with a brittle overprint (Katschberg Normal Fault, KNF). At the northern and southern ends of this central segment, the KSZS loses its brittle overprint and swings around both corners of the ETD to become subvertical, dextral, and sinistral strike-slip faults. The latter represent stretching faults whose displacements decrease westward to near zero. The kinematic continuity of top-east to top-southeast ductile shearing along the central, low-angle extensional part of the KSZS with strike-slip shearing along its steep ends, combined with maximum tectonic omission of nappes of the ETD in the footwall of the KNF, indicates that north–south shortening, orogen-parallel stretching, and normal faulting were coeval. Stratigraphic and radiometric ages constrain exhumation of the folded nappe complex in the footwall of the KSZS to have begun at 23–21 Ma, leading to rapid cooling between 21 and 16 Ma. This exhumation involved a combination of tectonic unroofing by extensional shearing, upright folding, and erosional denudation. The contribution of tectonic unroofing is greatest along the central segment of the KSZS and decreases westward to the central part of the Tauern Window. The KSZS formed in response to the indentation of wedge-shaped blocks of semi-rigid Austroalpine basement located in front of the South-Alpine indenter that was part of the Adriatic microplate. Northward motion of this indenter along the sinistral Giudicarie Belt offsets the Periadriatic Fault and triggered rapid exhumation of orogenic crust within the entire Tauern Window. Exhumation involved strike-slip and normal faulting that accommodated about 100 km of orogen-parallel extension and was contemporaneous with about 30 km of orogen-perpendicular, north–south shortening of the ETD. Extension of the Pannonian Basin related to roll-back subduction in the Carpathians began at 20 Ma, but did not affect the Eastern Alps before about 17 Ma. The effect of this extension was to reduce the lateral resistance to eastward crustal flow away from the zone of greatest thickening in the Tauern Window area. Therefore, we propose that roll-back subduction temporarily enhanced rather than triggered exhumation and orogen-parallel motion in the Eastern Alps. Lateral extrusion and orogen-parallel extension in the Eastern Alps have continued from 12 to 10 Ma to the present and are driven by northward push of Adria.  相似文献   

4.
The Austroalpine Sesia-Lanzo inlier and upper Austroalpine Dent Blanche, Mt. Mary and Pillonet outliers occur on top of the western-Alpine orogenic wedge and, as a whole, override the structurally composite ophiolitic Piemonte zone. Instead, the Mt. Emilius, Glacier-Rafray, Etirol-Levaz and other lower Austroalpine eclogitic outliers are inserted within the Piemonte zone, between its upper (Combin) and lower (Zermatt-Saas) tectonic elements, or within the latter. Rb-Sr dating on phengitic micas show that the eclogitic imprint in the lower Austroalpine outliers, conventionally regarded as Late Cretaceous by comparison with the Sesia-Lanzo inlier, is of Eocene age (49-40 Ma), like the underlying Zermatt-Saas ophiolite (45-42 Ma) between the Aosta valley and Gran Paradiso massif. 40Ar-39Ar plateau ages on the same mica concentrates of the ophiolitic Zermatt-Saas nappe (46-43 Ma) are consistent with Rb-Sr dating, whereas that on the Austroalpine Glacier-Rafray klippe (92 Ma) is influenced by argon excess. The lower Austroalpine outliers underwent the subduction metamorphism concurrently with the Zermatt-Saas nappe, 20-25 Ma later than the eclogitic Sesia-Lanzo inlier and blueschist Pillonet klippe. The temporal gap and present intra-ophiolitic position mean that the lower Austroalpine outliers were probably derived from an intraoceanic extensional allochthon (Mt. Emilius domain) stranded inside the Piemonte-Ligurian ocean far from the Dent Blanche-Sesia domain and Adriatic margin.  相似文献   

5.
Raman microspectroscopy on carbonaceous material (RSCM) from the eastern Tauern Window indicates contrasting peak‐temperature patterns in three different fabric domains, each of which underwent a poly‐metamorphic orogenic evolution: Domain 1 in the northeastern Tauern Window preserves oceanic units (Glockner Nappe System, Matrei Zone) that attained peak temperatures (Tp) of 350–480 °C following Late Cretaceous to Palaeogene nappe stacking in an accretionary wedge. Domain 2 in the central Tauern Window experienced Tp of 500–535 °C that was attained either within an exhumed Palaeogene subduction channel or during Oligocene Barrovian‐type thermal overprinting within the Alpine collisional orogen. Domain 3 in the Eastern Tauern Subdome has a peak‐temperature pattern that resulted from Eo‐Oligocene nappe stacking of continental units derived from the distal European margin. This pattern acquired its presently concentric pattern in Miocene time due to post‐nappe doming and extensional shearing along the Katschberg Shear Zone System (KSZS). Tp values in the largest (Hochalm) dome range from 612 °C in its core to 440 °C at its rim. The maximum peak‐temperature gradient (≤70 °C km?1) occurs along the eastern margin of this dome where mylonitic shearing of the Katschberg Normal Fault (KNF) significantly thinned the Subpenninic‐ and Penninic nappe pile, including the pre‐existing peak‐temperature gradient.  相似文献   

6.
7.
In the Eastern Alps Alpine eclogites are generally associated with rocks of continental lithosphere, while eclogites that are associated with oceanic assemblages are restricted to minor exposures. Such eclogites are exposed both in the Penninic unit of the Tauern Window and in the Austroalpine nappe complex. (1) In the central southern part of the Tauern Window (Eclogite Zone) eclogites and associated high pressure metasediments of a distal continental margin are intercalated between Penninic basement units. A mylonitic eclogitic foliation and stretching lineation are contemporaneous to the high pressure metamorphism and are related to the subduction of distal Penninic continental margin sequences. Continuous subduction of cool lithosphere resulted in blueschist facies overprint of the whole Penninic nappe pile. (2) Within the Middle-AustroAlpine Koralm/Saualm region most eclogites are eclogitic mylonites documenting plastic deformation of omphacite and garnet. The meso- and macroscale structures indicate an overall extensional regime possibly related to a large-scale SE-directed ductile low-angle normal shear zone. The eclogites are associated with migmatite-like structures and are intruded by pegmatites. This indicates decreasing pressure, but isothermal or even increasing temperature conditions during exhumation.These relationships argue for the subduction of Penninic continental lithosphere in the foot-wall of the Austroalpine unit at the time of exhumation of the Koralm/Saualm eclogites. Formation of the Austroalpine eclogites is explained by subduction of continental lithosphere, and subsequent, rapid exhumation in an upper plate tectonic position within an extensional regime.  相似文献   

8.
In the area of Arosa?CDavos?CKlosters (Eastern Switzerland) the different tectonic elements of the Arosa zone mélange e.g. the Austroalpine fragments, the sedimentary cover of South Penninic ophiolite fragments, as well as the matrix (oceanic sediments and flysch rocks) show distinctively different metamorphic histories and also different climaxes (??peaks??) of Alpine metamorphism. This is shown by a wealth of Kübler-Index, vitrinite and bituminite reflectance measurements, and K-white mica b cell dimension data. At least six main metamorphic events can be recognized in the area of Arosa?CDavos?CKlosters: (1) A pre-orogenic event, typical for the Upper Austroalpine and for instance found in the sediments at the base of the Silvretta nappe but also in some tectonic fragments of the Arosa zone (Arosa zone mélange). (2) An epizonal oceanic metamorphism observed in the close vicinity of oceanic basement rocks units of the Arosa zone (South Penninic) is another pre-orogenic process. (3) A metamorphic overprint of the adjacent Lower Austroalpine nappes and structural fragments of the Lower Austroalpine in the Arosa zone. This metamorphic overprint is attributed to the orogenic metamorphic processes during the Late Cretaceous. (4) A thermal climax observed in the South Penninic sediments of the Arosa zone can be bracketed by the Austroalpine Late Cretaceous event (3) and the middle Tertiary event (5) in the Middle Penninic units and predates Oligocene extension of the ??Turba phase??. (6) North of Klosters, in the northern part of our study area, the entire tectonic pile from the North Penninic flysches to the Upper Austroalpine is strongly influenced by a late Tertiary high-grade diagenetic to low-anchizone event. In the Arosa zone mélange an individual orogenic metamorphic event is evidenced and gives a chance to resolve diagenetic?Cmetamorphic relations versus deformation. Six heating episodes in sedimentary rocks and seven deformation cycles can be distinguished. This is well explained by the propagation of the Alpine deformation front onto the foreland units. Flysches at the hanging wall of the mélange zone in the north of the study area (Walsertal zone) show data typical for low-grade diagenetic thermal conditions and are therefore sandwiched between higher metamorphic rock units and separated from theses units by a disconformity. The Arosa zone s.s., as defined in this paper, is characterised by metamorphic inversions in the hanging wall and at the footwall thrust, thus shows differences to the Walsertal zone in the north and to the Platta nappe in the south.  相似文献   

9.
Late Mesozoic subduction of Penninic oceanic lithosphere finds its response in the sedimentary record. The corresponding sediments are deposited in a deep-sea trench environment and are developed as distal, partly proximal flysches, containing breccias and olistolites, which are up to kilometer-sized (wildflysch). In the Tauern window this facies is represented by the Nordrahmen zone, which is the equivalent to the Matrei zone. It is proposed to apply the term “Matrei zone” to the entire zone. It forms the high parts of the Bündner Schiefer and Tauernflysch formation. The olistolites derive from the unstable Austroalpine continental margin (Lower Austroalpine). In the Unterengadin window the wildflysch faciès is found in North, Middle and South Penninic position. In that there are kilometer-sized blocks of clearly Lower Austroalpine provenance in a North Penninic position, the Middle Penninic Tasna zone must already have been subducted at the time of emplacement of these olistolites. The Tasna zone itself contains a number of olistolites and disintegrates towards the northeast into a wildflysch zone. Its nappe character is discussed. After earlier fossil findings it is likely that the lower flysch zones of the Unterengadin window contain younger members than the higher ones. Thus, a mechanism of offscraping of the trench sediments and piling up in an accreting wedge above a subduction zone is proposed.  相似文献   

10.
The Austroalpine nappe systems in SE-Switzerland and N-Italy preserve remnants of the Adriatic rifted margin. Based on new maps and cross-sections, we suggest that the complex structure of the Campo, Grosina/Languard, and Bernina nappes is inherited largely from Jurassic rifting. We propose a classification of the Austroalpine domain into Upper, Middle and Lower Austroalpine nappes that is new because it is based primarily on the rift-related Jurassic structure and paleogeography of these nappes. Based on the Alpine structures and pre-Alpine, rift-related geometry of the Lower (Bernina) and Middle (Campo, Grosina/Languard) Austroalpine nappes, we restore these nappes to their original positions along the former margin, as a means of understanding the formation and emplacement of the nappes during initial reactivation of the Alpine Tethyan margin. The Campo and Grosina/Languard nappes can be interpreted as remnants of a former necking zone that comprised pre-rift upper and middle crust. These nappes were juxtaposed with the Mesozoic cover of the Bernina nappe during Jurassic rifting. We find evidence for low-angle detachment faults and extensional allochthons in the Bernina nappe similar to those previously described in the Err nappe and explain their role during subsequent reactivation. Our observations reveal a strong control of rift-related structures during the subsequent Alpine reactivation on all scales of the former distal margin. Two zones of intense deformation, referred to as the Albula-Zebru and Lunghin-Mortirolo movement zones, have been reactivated during Alpine deformation and cannot be described as simple monophase faults or shear zones. We propose a tectonic model for the Austroalpine nappe systems that link inherited, rift-related structures with present-day Alpine structures. In conclusion, we believe that apart from the direct regional implications, the results of this paper are of general interest in understanding the control of rift structures during reactivation of distal-rifted margins.  相似文献   

11.
Mylonitic structures related to two orogenic events are described from the upper and lower contacts of the Combin zone and the immediately overlying upper Austroalpine Dent Blanche nappe/Mont Mary klippe and the directly underlying lower Austroalpine Etirol-Levaz slice. The first event, Late Eocene in age, commenced during blueschist facies P-T conditions, but pre-dated the peak of subsequent greenschist facies overprint. The second event, Early Oligocene in age, took place during retrograde greenschist facies conditions. Most sense of shear indicators associated with the retrograde mylonites indicate top SE shearing, but subordinate top NW displacing shear sense indicators have also been mapped. Mylonitic top SE shearing appears to be restricted to the Combin zone and its upper and lower contacts. Within the Dent Blanche nappe and Mont Mary klippe and at the base of the Etirol-Levaz slice, structures were observed which developed during blueschist/greenschist facies conditions and are, in conjunction with the P-T-t history of these rocks, inferred to be older. Associated kinematic data indicate a top NW shear sense. Comparable blueschist/greenschist facies shear sense indicators have not been observed in the Combin zone. Nonetheless, the foliation in the Combin zone shows a progressive evolution from blueschist facies to greenschist facies to retrograde greenschist facies conditions. This indicates that the Combin zone and the immediately over- and underlying Austroalpine units shared a common tectono-metamorphic evolution since the Late Eocene. Finite strain data reveal oblate strain fabrics, which are thought to result from a true flattening strain geometry. Flow path modelling reveals a general non-coaxial deformation régime and corroborates significant departures from a simple shear deformation. In the study area, mylonitic top SE shearing in the Combin zone is attributed to Early Oligocene backfolding and backthrusting of the Mischabel phase. Temperature-time curves suggest slight reheating in the Monte Rosa nappe underneath and cooling in the Dent Blanche nappe above the Combin zone, hence confirming a thrust interpretation for this event. The top NW displacing structures are thought to result from Late Eocene emplacement of the Dent Blanche nappe and the Combin zone onto the Middle Pennine Barrhorn series along the Combin fault. As related structures initiated during mildly blueschist facies conditions in the Dent Blanche nappe and the underlying Combin zone and both were emplaced together onto the greenschist facial Barrhorn series, it is concluded that the structures developed as the nappes moved upward relative to the earth's surface. Thus the Combin fault is regarded as a thrust. The geometry of this structure indicates that the Combin fault is an out of sequence thrust that locally cut down section. Hence, top NW out of sequence thrusting caused local thinning of the metamorphic/structural section in association with horizontal shortening. Out of sequence thrusts cutting down section, and back-thrusts, offer the possibility of explaining the pronounced break in the grade of metamorphism across the Combin fault, i.e. the contact between the eclogite facial Zermatt-Saas zone and the overlying lower grade Combin zone, by contractional deformation.  相似文献   

12.
Abstract The Pennine rocks exposed in the south-east Tauern Window, Austria, contain mineral assemblages which crystallized in the mid-Tertiary ‘late Alpine’regional metamorphism. The pressure and temperature conditions at the thermal peak of this event have been estimated for rocks at four different structural levels using a variety of published and thermochemically derived geobarometers and geothermometers. The results are: (a) In the garnet+chlorite zone, 2–5 km structurally above the staurolite+biotite isograd: T= 490.50°C, P= 7° 1 kbar; (b) Within 0.5 km of the staurolite+biotite isograd: T= 560±300C, P=7.1 kbar; (c) In the staurolite+biotite zone, c. 2.5 km structurally below the staurolite+biotite isograd: T= 610±30°C, P=7.6±1.2 kbar; (d) In the staurolite+biotite zone, 3–4 km structurally below the staurolite+biotite isograd: T= 630±40°C, P= 6.6±1.2 kbar. The pressure estimates imply that the total thickness of overburden above the basement-cover interface in the mid-Tertiary was c. 26.4 km. This overburden can only be accounted for by the Austro-Alpine units currently exposed in the vicinity of the Tauern Window, if the Altkristallin (the ‘Middle Austro-Alpine’nappe) was itself buried beneath an ‘Upper Austro-Alpine’nappe or nappe-pile which was 7.4 km thick at that time. The occurrence of epidote + margarite + quartz pseudomorphs after lawsonite in garnet, indicates that part of the Mesozoic Pennine cover sequence in the south-east Tauern experienced blueschist-facies conditions (T<450°C, P<12 kbar) in early Alpine times. Evidence from the central Tauern is used to argue that the blueschist-facies imprint post-dated the main phase of tectonic thickening (D1A) and was thus a direct consequence of continental collision. Combined oxygen-isotope and fluid-inclusion studies on late-stage veins, thought to have been at lithostatic pressure and in thermal equilibrium with their host rocks during formation, suggest that they crystallized from aqueous fluids at 1.1±0.4 kbar and 420.20°C. Early Alpine, late Alpine and vein-formation P–T constraints have been used to construct a P–T path for the base of the Mesozoic cover sequence in the south-east Tauern Window. The prograde part of the P–T path, between early and late Alpine metamorphic imprints, is unlikely to have been a smooth curve and may well have had a low dP/dT overall; the decompression (presumably due to erosion) which occurred immediately before the thermal peak and possibly also earlier in the Tertiary, was probably partly or completely cancelled by the effects of early- to mid-Tertiary (D2A) tectonic thickening. The thermal peak of metamorphism was followed by a phase of almost isothermal decompression, which implies a period of rapid uplift in the middle Tertiary. The peak metamorphic P–T estimates are compared with the solutions of England's (1978) one-dimensional conductive thermal model of the Eastern Alps, and are shown to be consistent with the idea that the late Alpine metamorphism was caused by tectonic burial of the Pennine Zone beneath the Austro-Alpine nappes in the absence of extraneous heat sources, such as large intrusions, at depth.  相似文献   

13.
A comparison is made between the Gavarnie thrust and the Mérens Fault in the Axial zone of the Pyrenees. The former has a gentle dip and quite a large displacement (at least 12 km) but does not cut through either Hercynian or Alpine isograds. The latter has a smaller displacement (~ 5 km) but dips steeply and cuts through both Hercynian and Alpine isograds at a high angle. On this basis and on the basis of shear zone geometries immediately north of it, it is proposed that the Mérens Fault nucleated as a steeply (65°–80°) dipping structure, while the Gavarnie thrust nucleated with a shallow attitude. The Mérens Fault is not a backward-rotated thrust fault, nor is it the root zone for any major nappe structure. Similar steep ductile structures occur within the Gavarnie nappe and may reflect considerable internal strain in basement lithologies.The relationship between steep and shallow structures is not yet clear; the shear zones may pre-date the thrusting in which case they may be thick-skinned structures affecting the whole lithosphere, or they may be contemporary with thrusting reflecting only local thickening above a décollement.Rheological models can be used to test proposed geometrical and kinematic models for the lithosphere-scale evolution of the Pyrenees. Suggested models are dominated by a cool, rigid, high-level mantle wedge beneath the North Pyrenean zone which probably controlled the location of north-dipping thrust faults. Thick-skinned shortening is possible in thick crust in the Axial zone but is very unlikely in the North Pyrenean zone where steeply rooted structures would have to cut through the strongest part of the lithosphere.  相似文献   

14.
云南临沧花岗岩的冲断叠瓦构造与推覆构造   总被引:8,自引:1,他引:8       下载免费PDF全文
 云南省西部沿澜沧江分布的临沧花岗岩,呈SN向延伸,长达500km,但平均宽度只有25km,系逆冲与推覆叠置变形缩短的结果。岩片冲断和推覆的方向普遍为自西向东,临沧花岗岩带向东推覆的距离为30-80km,最大距离120km,冲断叠瓦构造和推覆构造形成的时代主要为中、新生代。糜棱岩的同位素年龄为15.43Ma、25.55Ma和179Ma.新生代沿冲断层发生了近SN向水平走滑运动和沿NE、NW向断层的剪切运动。  相似文献   

15.
Abstract

In New Zealand, the Marlborough strike-slip faults link the Hikurangi subduction zone to the Alpine fault collision zone. Stratigraphic and structural analysis in the Marlborough region constrain the inception of the current strike-slip tectonics.

Six major Neogene basins are investigated. Their infill is composed of marine and freshwater sediments up to 3 km thick; they are characterised by coarse facies derived from the basins bounding relief, high sedimentation rates and asymmetric geometries. Proposed factors that controlled the basins generation are the initial geometry of the strike-slip faults and the progressive strike-slip motion. Two groups of basins are presented: the early Miocene (23 My) basins were generated under wrench tectonics above releasing-jogs between basement faults. The late Miocene (11 My) basins were initiated by halfgrabens tilted along straighter faults during a transtensive stage. Development of faults during Cretaceous to Oligocene times facilitated the following propagation of wrench tectonics. The Pliocene (5 My) to current increasing convergence has shortened the basins and distorted the Miocene array of faults. This study indicates that the Marlborough Fault System is an old feature that connected part of the Hikurangi margin to the Alpine fault since the subduction and collision initiation. © Elsevier, Paris  相似文献   

16.
New 40Ar/39Ar geochronology places time constraints on several stages of the evolution of the Penninic realm in the Eastern Alps. A 186±2 Ma age for seafloor hydrothermal metamorphic biotite from the Reckner Ophiolite Complex of the Pennine–Austroalpine transition suggests that Penninic ocean spreading occurred in the Eastern Alps as early as the Toarcian (late Early Jurassic). A 57±3 Ma amphibole from the Penninic subduction–accretion Rechnitz Complex dates high-pressure metamorphism and records a snapshot in the evolution of the Penninic accretionary wedge. High-pressure amphibole, phengite, and phengite+paragonite mixtures from the Penninic Eclogite Zone of the Tauern Window document exhumation through ≤15 kbar and >500 °C at 42 Ma to 10 kbar and 400 °C at 39 Ma. The Tauern Eclogite Zone pressure–temperature path shows isothermal decompression at mantle depths and rapid cooling in the crust, suggesting rapid exhumation. Assuming exhumation rates slower or equal to high-pressure–ultrahigh-pressure terrains in the Western Alps, Tauern Eclogite Zone peak pressures were reached not long before our high-pressure amphibole age, probably at ≤45 Ma, in accordance with dates from the Western Alps. A late-stage thermal overprint, common to the entire Penninic thrust system, occurred within the Tauern Eclogite Zone rocks at 35 Ma. The high-pressure peak and switch from burial to exhumation of the Tauern Eclogite Zone is likely to date slab breakoff in the Alpine orogen. This is in contrast to the long-lasting and foreland-propagating Franciscan-style subduction–accretion processes that are recorded in the Rechnitz Complex.  相似文献   

17.
云南临沧花岗岩的冲断叠瓦构造与推覆构造   总被引:2,自引:0,他引:2       下载免费PDF全文
杨振德 《地质科学》1996,31(2):130-139
云南省西部沿澜沧江分布的临沧花岗岩,呈SN向延伸,长达500km,但平均宽度只有25km,系逆冲与推覆叠置变形缩短的结果。岩片冲断和推覆的方向普遍为自西向东,临沧花岗岩带向东推覆的距离为30-80km,最大距离120km,冲断叠瓦构造和推覆构造形成的时代主要为中、新生代。糜棱岩的同位素年龄为15.43Ma、25.55Ma和179Ma.新生代沿冲断层发生了近SN向水平走滑运动和沿NE、NW向断层的剪切运动。  相似文献   

18.
Structural and metamorphic analyses show that Alpine deformation in the Austroalpine-Pennine contact zone around the margin of the SE Tauern Window can be divided into two main stages: (i) early crustal thickening associated with prograde metamorphism; and (ii) a younger history of ductile flow that added to cumulative displacement of the upper units to the NW quadrant but was associated with substantial subvertical attenuation of the contact zone, and most probably of the overriding Austroalpine plate as well. During the history of this region strain localization progressively shifted down section. Radiometric ages constrain the early deformation to be older than 75 Ma. The onset of contact-zone attenuation and upper-plate extension was after this date but before 35 Ma (before major involvement of European basement in the collisional orogen), and associated with both retrograde metamorphism and a degree of non-coaxiality less than simple shear. Estimates of thinning in the contact zone and on a regional scale are in good agreement and indicate vertical attenuation of approximately 40%. These results suggest that pre-collisional tectonic thinning of the Austroalpine domain may be more widespread and significant than generally recognized.  相似文献   

19.
The traverse of the Central Alps between Lake Constance and Lake Como (eastern Switzerland, northern Italy) allows the reconstruction of a cross-section through a collision belt some 140 km wide and 40 km deep. It can be described in terms of a series of structural zones (A–F), defined by the age and character of the latest phase of penetrative deformation affecting both basement and cover rocks, each zone showing a characteristic structural history. These zones do not coincide with the well-known tectono-stratigraphic Alpine subdivisions (Helvetic, Pennine, Austroalpine) which are based on gross geometry, facies and petrography. Zones A and B, in the north, developed during late Oligocene and Miocene times, affecting the Helvetic realm and the already overlying Pennine and Austroalpine units. Zone A is characterized by a steeply dipping penetrative cleavage SA, zone B by the same cleavage later modified by nappe-forming movements. Zone F, in the south, also developed during the late Oligocene and Miocene, first as a monoclinal flexure, later as a steeply dipping zone of mylonitization and cataclasis (foliation Sf), affecting Pennine and Austroalpine units. The final manifestation of these movements was the Tonale line and their net result was the uplift of the region to the north by about 20 km. Between these two belts lay an area in which late Oligocene-Miocene movements had little effect — structural zones C (Pennine), D (Pennine-Austroalpine transition) and E (Austroalpine). In zones C and D, the latest phase of penetrative deformation, resulting in large recumbent fold structures and a penetrative foliation Sc zone C, can be dated as late Eocene-early Oligocene. This seems to be related to the overriding of the Austroalpine nappe complex (zone E), which already showed the effects of a late Cretaceous orogeny.Unravelling these events backwards, reveals, at the Eocene—Oligocene boundary, a southward dipping subduction zone in the process of locking. Its mouth is full of upper Cretaceous-Eocene flysch; its throat is choked by the Pennine nappe complex, undergoing the sc ductile deformation. Before subduction, the Pennine nappe complex can best be described as a mega-mélange-a tectonic mixture of large fragments of continental basement, oceanic basement, trough-facies cover and platform-facies cover, already showing a complicated structural history. It is supposed that collision started in mid-Cretaceous times, not at a single subduction suture (trench), but by complicated surficial processes across a wide zone, as non-matching, rifted and thinned continental margins approached and small oceanic remnants were obducted. Post-mid-Oligocene events are essentially intra-plate compressional effects, combined with isostatic response.  相似文献   

20.
The TRANSALP consortium, comprising institutions from Italy, Austria and Germany, carried out deep seismic reflection measurements in the Eastern Alps between Munich and Venice in 1998, 1999 and 2001. In order to complement each other in resolution and depth range, the Vibroseis technique was combined with simultaneous explosive source measurements. Additionally, passive cross-line recording provided three-dimensional control and alternative north–south sections. Profits were obtained by the combination of the three methods in sectors or depths where one method alone was less successful.The TRANSALP sections clearly image a thin-skinned wedge of tectonic nappes at the northern Alpine front zone, unexpected graben or half-graben structures within the European basement, and, thick-skinned back-thrusting in the southern frontal zone beneath the Dolomite Mountains. A bi-vergent structure at crustal scale is directed from the Alpine axis to the external parts. The Tauern Window obviously forms the hanging wall ramp anticline above a southward dipping, deep reaching reflection pattern interpreted as a tectonic ramp along which the Penninic units of the Tauern Window have been up-thrusted.The upper crystalline crust appears generally transparent. The lower crust in the European domain is characterized by a 6–7 km thick laminated structure. On the Adriatic side the lower crust displays a much thicker or twofold reflective pattern. The crustal root at about 55 km depth is shifted around 50 km to the south with respect to the main Alpine crest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号