首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accurate information on the extent of waterlogging is required for flood prediction, monitoring, relief and preventive measures. The rule-based classification algorithms were used for differentiating waterlogged areas from other ground features using Resourcesat-2 AWiFS satellite imagery (Indian Remote Sensing Satellite with spatial resolution of 56 m). Two spectral indices normalized difference water index (NDWI) and modified normalized difference water index (MNDWI) were used for extracting waterlogged areas in Sri Muktsar Sahib district of Punjab, India. These indices extracted the waterlogged areas (cropped areas inundated with water) but the water features were less enhanced in the NDWI-derived image (when compared with MNDWI-derived image) due to negative values of NDWI and, mixing of water with built up features. The water features were more enhanced with MNDWI and the values of MNDWI were positive for water features mixed with vegetation. The overall accuracy of waterlogged areas extracted from the MNDWI image was 96.9% with the Kappa coefficient of 0.89. The digital elevation model (DEM) was extracted from ASTER-GDEM. The relationships among depth to the water table recorded before the incessant rain in the region, DEM and classified MNDWI images explained the differences in the extent of waterlogging in various directions of the study area. These results suggest that MNDWI can be used to better delineate water features mixed with vegetation compared to NDWI.  相似文献   

2.
Glaciers have a high impact in the socio-economic sectors including water supply, energy production, flood and avalanches. A high precision digital elevation model (DEM) is required to monitor glaciers and to study various glacier processes. The present study deals with the qualitative and quantitative evaluation of the DEM generated from the bistatic TanDEM-X data by comparing it with GPS, Ice, Cloud, and land Elevation Satellite (ICESat) data and standard global DEMs such as Shuttle Radar Topography Mission (SRTM) and Advanced Space-borne Thermal Emission and Reflection Radiometer Global DEM (ASTER GDEM). The study area consists of highly undulating glaciated terrain in western Himalaya, India. The results reveal that TanDEM-X is slightly better than SRTM both qualitatively and quantitatively, whereas ASTER GDEM showing maximum discrepancy among the three DEMs. The Root Mean Square Error (RMSE) of the TanDEM-X DEM with respect to GPS is 3.5 m at lower relief and 11.9 m at glaciated terrain, against 6.7 and 12.5 m for SRTM and 9.3 and 19.8 m for ASTER GDEM, respectively, for the same sites. On an average, for the whole study area, the RMSE of TanDEM-X is 7.9 m, SRTM is 9.3 m and ASTER GDM is 14.2 m. The RMSE of TanDEM-X, SRTM and ASTER GDEM with respect to ICESat are 16.3, 19.9 and 101.1 m, respectively. It is evident from the analysis that though SRTM is closer to TanDEM-X in terms of accuracy in the mountainous terrain, however, TanDEM-X will be more useful for studying glacier dynamics and topography.  相似文献   

3.
This study reports results from evaluation of the quality of digital elevation model (DEM) from four sources viz. topographic map (1:50,000), Shuttle Radar Topographic Mission (SRTM) (90 m), optical stereo pair from ASTER (15 m) and CARTOSAT (2.5 m) and their use in derivation of hydrological response units (HRUs) in Sitla Rao watershed (North India). The HRUs were derived using water storage capacity and slope to produce surface runoff zones. The DEMs were evaluated on elevation accuracy and representation of morphometric features. The DEM derived from optical stereo pairs (ASTER and CARTOSAT) provided higher vertical accuracies than the SRTM and topographic map-based DEM. The SRTM with a coarse resolution of 90 m provided vertical accuracy but better morphometry compared to topographic map. The HRU maps derived from the fine resolution DEM (ASTER and CARTOSAT) were more detailed but did not provide much advantage for hydrological studies at the scale of Sitla Rao watershed (5800 ha).  相似文献   

4.
The study evaluates and compares Digital Elevation Model (DEM) data of various grid spacing derived using high resolution Cartosat 1 stereo data for hydrologic applications. DEM is essential in modeling different environmental processes which depend on surface elevation. The accuracy of derived DEM varies with grid spacing and source. The CartoDEM is the photogrammetric DEM derived from stereo pairs. Damanganga basin lying in the Western Ghats was analysed using 11 Carto stereo pairs. The process of triangulation resulted in RMSE of 0.42. DEM was extracted at 10 m, 20 m, 30 m, 40 m, 50 m and 90 m grid spacing and compared with ASTER GDEM (30 m) and SRTM DEM (90 m). DEM accuracy was checked with Root Mean Square Error (RMSE) statistic for random points generated in different elevation zones. Extracted stream networks were compared based on Correctness Index and Figure of Merit index, calculated for all the Digital Elevation Models at varying cell sizes. In order to further evaluate the DEM’s, a simple flood simulation with no water movement and no consideration of real time precipitation data was carried out and relationship between heights of flood stage and inundation area for each Digital Elevation Model was also established.  相似文献   

5.
In the present study, the Cartosat-I digital elevation model (DEM) was utilized to deduce the vertical characteristics of Ranchi urban area and its relation to long term built-up expansion (1927–2010). The DEM represents moderate variation in terrain relief ranging from 595 m to 754 m with majority of area exhibiting upto 3° of slope and 3° to 6° indicating flat to undulating nature of terrain in Ranchi township. The DEM was used to generate location of sinks within urban area, which are generally delineated along the drainage channels, adjacent to high-rise built-up land and along the elevated road network. The pattern of urban sprawl over the eight decades (1927–2010) were examined with reference to terrain relief zones, which indicated that the built-up growth was mainly taken place over the elevation range of moderate (620–660 m) (67.0%) and high relief (660–680 m) (19.8%) zones. Although earlier preference for built-up development was more in high elevation zones (660–680 m), the low elevation zones (<600–620 m) are now preferred for multistoried built-up land development where better groundwater availability occur. The spatial pattern of vertical growth of built-up land was assessed using contour density obtained from Cartosat-I DEM. The results show that the high density contours predominately correspond to hilly area and high-rise buildings at majority of locations. The urban sprawl pattern and population trend exhibited rapid increase in vertical built-up growth after 1996 indicating beginning of urban densification in Ranchi township.  相似文献   

6.
Digital elevation model (DEM) data of Shuttle Radar Topography Mission (SRTM) are distributed at a horizontal resolution of 90 m (30 m only for US) for the world, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM data provide 30 m horizontal resolution, while CARTOSAT-1 (IRS-P5) gives 2.6 m horizontal resolution for global coverage. SRTM and ASTER data are available freely but 2.6 m CARTOSAT-1 data are costly. Hence, through this study, we found out a horizontal accuracy for selected ground control points (GCPs) from SRTM and ASTER with respect to CARTOSAT-1 DEM to implement this result (observed from horizontal accuracy) for those areas where the 2.6-m horizontal resolution data are not available. In addition to this, the present study helps in providing a benchmark against which the future DEM products (with horizontal resolution less than CARTOSAT-1) with respect to CARTOSAT-1 DEM can be evaluated. The original SRTM image contained voids that were represented digitally as ?140; such voids were initially filled using the measured values of elevation for obtaining accurate DEM. Horizontal accuracy analysis between SRTM- and ASTER-derived DEMs with respect to CARTOSAT-1 (IRS-P5) DEM allowed a qualitative assessment of the horizontal component of the error, and the appropriable statistical measures were used to estimate their horizontal accuracies. The horizontal accuracy for ASTER and SRTM DEM with respect to CARTOSAT-1 were evaluated using the root mean square error (RMSE) and relative root mean square error (R-RMSE). The results from this study revealed that the average RMSE of 20 selected GCPs was 2.17 for SRTM and 2.817 for ASTER, which are also validated using R-RMSE test which proves that SRTM data have good horizontal accuracy than ASTER with respect to CARTOSAT-1 because the average R-RMSE of 20 GCPs was 3.7 × 10?4 and 5.3 × 10?4 for SRTM and ASTER, respectively.  相似文献   

7.
IKONOS image has been wildly used in city planning, precision agriculture and emergence response. However, the accuracy of IKONOS Geo product is limited due to distortion caused by terrain relief. Orthorectification was performed to remove the distortion and the impact of different DEM on orthorectification were evaluated. 38 ground control points (GCPs) and 25 independent check points (ICPs) were collected. DEMs were generated from 1 : 10 000 and 1 : 50 000 topographic maps. Results show that RMS error at the check points is 1. 554 0 m using DEM generated from 1 : 10 000 topographic map, which can meet the accuracy requirement of IKONOS Precision product (1.9 m RMSE). While RMS error is 2. 572 4 m using DEM generated from 1 : 50 000 topographic map.  相似文献   

8.
The Digital Elevation Model (DEM) is one of the important parameters of soil erosion assessment and notable uncertainties are found in using different resolutions of the DEM. Revised Universal Soil Loss Equation model has been applied to analyze the effect of open-source DEMs with different resolution and accuracy on the uncertainties of soil erosion modelling in a part of the Narmada river basin in Madhya Pradesh in central India. Selected open-source DEMs are GTOPO30 (1 km), SRTM (30 and 90 m), CARTOSAT (30 m) and ASTER (30 m), used for estimating erosion rate. Results with better accuracy are achieved with the high-resolution DEMs (30 m) with higher vertical accuracy than the coarse resolution DEMs with lower accuracy. This study has presented potential uncertainties introduced by the open-source DEMs in soil erosion modelling for better understanding of appropriate selection and acceptable errors for researchers.  相似文献   

9.
The study of advancement and recession of the glaciers in the Himalayas is essential due to their contrasting response towards climatic change. In the present study, Survey of India (SOI) topographical maps of 1962, IRS: LISS-III image of 2001 and LANDSAT-5: TM (Thematic Mapper) image of 2009 were used to analyze the glacier fluctuations in a part of Zanskar valley. The analysis carried out on 212 glaciers indicated decrease of 57 km2 (8 %) of glacier area over many glacier which was partly compensated with area increase by 42 km2 (6 %) in other glaciers, resulting an overall glacier area decrease by only 15 km2 (2 %) from 1962–2001. Due to glacier fragmentation the number of glaciers increased from 212 in 1962 to 238 by 2001. Although majority of glaciers (88 %) exhibited retreat (up to 13 my?1), minor advancement (<15 my?1) also took place in few glaciers during this period. Advancement took place mainly in larger glaciers (2–5 km2 and >5 km2) located over wider altitudinal range (700 m–1,000 m) whereas smaller glaciers (<2 km2) with narrow altitudinal range (100 m–500 m) exhibited retreat. The supraglacial debris analysis indicated that percentage of debris cover over glaciers ranges from 1.43 % to 18.15 %. Smaller glaciers (<2 km2) were debris free in comparison to the larger glaciers (>5 km2). During 2001–2009 majority of the glaciers were apparently stable in terms of their area and snout position indicating less impact of climate forcing in parts of Zanskar valley as compared to other parts of the Himalaya.  相似文献   

10.
Digital Elevation Model (DEM) is a quantitative representation of terrain and is important for Earth science and hydrological applications. DEM can be generated using photogrammetry, interferometry, ground and laser surveying and other techniques. Some of the DEMs such as ASTER, SRTM, and GTOPO 30 are freely available open source products. Each DEM contains intrinsic errors due to primary data acquisition technology and processing methodology in relation with a particular terrain and land cover type. The accuracy of these datasets is often unknown and is non-uniform within each dataset. In this study we evaluate open source DEMs (ASTER and SRTM) and their derived attributes using high postings Cartosat DEM and Survey of India (SOI) height information. It was found that representation of terrain characteristics is affected in the coarse postings DEM. The overall vertical accuracy shows RMS error of 12.62 m and 17.76 m for ASTER and SRTM DEM respectively, when compared with Cartosat DEM. The slope and drainage network delineation are also violated. The terrain morphology strongly influences the DEM accuracy. These results can be highly useful for researchers using such products in various modeling exercises.  相似文献   

11.
An attempt has been made to study variations in the glacier extent over a period of time using digital elevation model (DEM) and orthoimages derived from IRS-1C PAN stereo pairs of 1997–98 and topographical map surveyed during 1962–63. DEM and orthoimages have been generated using integrated software developed for processing of IRSIC/ID panchromatic stereo data using the softcopy photogrammetric workstation. Case studies of two glaciers, i.e. the Janapa garang and Shaune garang glaciers of the Basapa basin, a sub-basin of Satluj River in India, have been presented here. Generation of DEM has been followed by the estimation of its accuracy. PAN images were interpreted for identification of the snout of the glaciers. The geographical locations of the snouts on the images were compared with the location as mapped on the topographical map of the study area. To verify satellite observations, field investigations were carried out at Shaune garang glacier area. The Janapa garang and the Shaune garang are observed to have retreat of 596m and 923 m respectively. Reduction in the thickness of ice in the deglaciated part of the Shaune garang glacier was estimated on the basis of change in the elevations of the glacial surface from 1963 to 1998.  相似文献   

12.
The drainage network of a sixth-order tropical river basin, viz. Ithikkara river basin, was extracted from different sources such as Survey of India topographic maps (1: 50,000; TOPO) and digital elevation data of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (30 m) and Shuttle Radar Topography Mapping Mission (SRTM) (90 m). Basin morphometric attributes were estimated to evaluate the accuracy of the digital elevation model (DEM)-derived drainage networks for hydrologic applications as well as terrain characterization. The stream networks derived from ASTER and SRTM DEMs show significant agreement (with slight overestimation of lower order streams) with that of TOPO. The study suggests that SRTM (despite the coarser spatial resolution) provides better results, in drainage delineation and basin morphometry, compared to ASTER. Further, the variability of basin morphometry among the data sources might be attributed to spatial variation of elevation, raster grid size and vertical accuracy of the DEMs as well as incapability of the surface hydrologic analysis functions in the GIS platform.  相似文献   

13.
Accurate representations of the Earth’s surface in the form of digital elevation models (DEMs) are essential for a variety of applications in glaciological and remote-sensing research. In the present study area change and thickness variation over Pensilungpa glacier was attempted using remote sensing approach. It can be remarked that a net loss of 9.23 sq. km. which is 38% of the glacier area mapped in 1962 indicate a drastic change over the glacier area during 1962–2007. Estimation of glacier thickness change on Pensilungpa glacier based on ASTER DEM (2003) and Survey of India (SOI) contour based DEM (1962) indicated increase in the glacier elevation in the accumulation zone mainly by 30 to 90 m and similar reduction by 30 to 90 m in the ablation zone.  相似文献   

14.
利用ASTER立体像对提取相对DEM及正射影像地图制作   总被引:2,自引:0,他引:2  
本文探讨在PCIGeomatica软件支持下,应用四川省泸州地区ASTER立体像对数据自动提取DEM及其正射影像地图制作。通过与当地实测地形图(1∶50000)比较,表明在平坦地区ASTER DEM与实测地形图吻合很好;在高程变化较大的区域由于太阳高度、方位影响和ASTER后视成像存在着较大的叠掩和阴影效应,ASTER DEM和实测DEM存在一些差异,但总体上可以满足中小比例尺(1∶500,000到1∶1000,000)地图应用。ASTER的应用为DEM的快速提取和正射影像地图制作提供了一种新的途径。  相似文献   

15.
The Lonar crater in India provides an ample opportunity to in-depth analysis of crater morphology. This paper focuses on the topographical mapping of Lonar crater with detailed study on slope, regional analysis and its rim signature. The slope of the crater (inner wall region) reveals that the northern part is steep and southern part is gentle, while, on the outer region, the northern part is flat and the later shows abrupt variations. On regional topographical mapping (~4 crater radii) around the Lonar crater, it was observed that the terrain descends from NE to SW. An elevation difference of ~20 m was observed between the N and S part, infers that the pre-impact terrain is a descending one. The crater northern rim was elevated ~10 m to ~15 m, whereas southern rim was elevated ~50 m above the average regional surface. We found that the topographically lower southern region was abruptly changed and the rim has been uplifted to an elevation of ~604 m above the average regional elevation (~555 m). This result infers that the post-impact topography was abruptly altered along the S side. The crater rim signature extracted from highest point all along the rim shows a near flat surface on north, whereas the V-shaped protrusion shows active erosion and degradation on the west. Thus, DEM based topographic study has opened a new insight about the Lonar crater, from differential rim uplift, alteration along the rim and finally revealed that the impact crater formed on a descending terrain.  相似文献   

16.
Validation of Indian National DEM from Cartosat-1 Data   总被引:1,自引:0,他引:1  
CartoDEM is an Indian National DEM generated from Cartosat-1 stereo data. Cartosat-1, launched in May, 2005, is an along track (aft ?5°, Fore +26°) stereo with 2.5 m GSD, give base-height ratio of 0.63 with 27 km swath. The operational procedure of DEM generation comprises stereo strip triangulation of 500?×?27 km segment with 10 m posting along with 2.5 m resolution ortho image and free—access posting of 30 m has been made available (bhuvan.nrsc.gov.in). A multi approach evaluation of CartoDEM comprising (a) absolute accuracy with respect to ground control points for two sites namely Jagatsinghpur -flat and Dharamshala- hilly; second site i.e. Alwar-plain and hilly with high resolution aerial DEM, (b) relative difference between SRTM and ASTERDEM (c) absolute accuracy with ICESat GLAS for two sites namely Jagatsinghpur-plain and Netravathi river, Western Ghats-hilly (d) relative comparison of drainage delineation with respect to ASTERDEM is reported here. The absolute height accuracy in flat terrain was 4.7 m with horizontal accuracy of 7.3 m, while in hilly terrain it was 7 m height with a horizontal accuracy of 14 m. While comparison with ICESat GLAS data absolute height difference of plain and hilly was 5.2 m and 7.9 m respectively. When compared to SRTM over Indian landmass, 90 % of pixels reported were within ±8 m difference. The drainage delineation shows better accuracy and clear demarcation of catchment ridgeline and more reliable flow-path prediction in comparison with ASTER. The results qualify Indian DEM for using it operationally which is equivalent and better than the other publicly available DEMs like SRTM and ASTERDEM.  相似文献   

17.
鉴于地形正负开度对地貌的良好表达且具有分析尺度灵活性这一重要特性,本文提出一种借助地形正负开度及其差值图像阈值分割的黄土地貌沟沿线提取方法。首先,计算DEM的地形正负开度,对正负开度进行差值运算以得到开度差值图;然后,对开度差值图进行阈值处理以得到研究区正负地形空间分布特征;最后,借助数学形态学原理完成对二值化开度差值图正负地形边界——沟沿线的自动提取。试验采用高分辨率DEM数据对陕西洛川塬部分地区进行沟沿线信息提取。结果表明,与其他提取技术方法相比,该方法不仅增强了地貌基本形态特征在沟沿线提取过程中的作用与影响,同时也在一定程度上实现了沟沿线提取的精确化和自动化。  相似文献   

18.
This study presents a method of automatic drainage skeletonization from flow-accumulated area without the use of threshold which conserves drainage geometry at chosen digital elevation model (DEM) scale. To get all possible drainage at the chosen scale, stream order raster is generated by incorporating flow accumulation and flow direction raster derived from corresponding DEM. This allows generation of drainage network without the use of threshold. Resultant stream order raster, termed as raw stream order raster (RSOR), is tested against threshold defined stream order raster to evaluate its efficiency. Use of RSOR allows extraction of stream heads to greater stream head extent. Again, DEM downscaling takes care of overestimation in number of streams. So, the proposed technique is effective in controlling two basic aspects of drainage characteristics – stream number and extent. In our case, drainage estimated from re-sampled medium-scale DEM has the closest matching with that of the reference topographical map.  相似文献   

19.
晕渲图的设计与制作一直是地学工作者研究的热点问题,使用晕渲图展示地形直观、形象、立体感强.目前有多种思路被提出用于改善晕渲图的显示效果,但是在制作小比例尺晕渲图时,仍然存在一些问题,如地形破碎导致难以把握地形宏观骨架,缺少海洋地形或海洋地形过于具体干扰到陆地要素表达,传统的DEM与山影数据叠加的模式使得美观与地形清晰无法兼得,这就需要重新对这些问题进行思考.本文以晕渲图的基本理论为出发点,采用地貌晕渲与分层设色相结合的方法,讨论全球范围的晕渲图制作过程中,不同显示比例尺下DEM分辨率配置技巧、海洋地形展示方法与地形可视化新思路.实验证明,该方法可以保证晕渲图在每级显示比例尺下都能展示出良好的地形效果,为中小比例尺晕渲图增强表现力提供了参考.  相似文献   

20.
The accuracy of DEMs shows wide variations from one terrain to another and it needs to be determined. This study evaluates NRSC (National Remote Sensing Centre, Hyderabad, India) CartoDEM V1 and V1.1R1 with respect to resampled ADS80 DEM for parts of the Himalayas. Both the test DEMs were properly registered with reference to resampled ADS80 DEM and then individually subtracted to get the difference DEMs. Visual and statistical analyses were performed to assess the quality of the tested DEMs in terms of visible terrain and vertical accuracy. For calculating the accuracies in different terrain classes, slope and aspect maps were generated from the ADS80 DEM. Properly registered Landsat5 TM data were used for the development of the land cover map with four classes. The overall vertical accuracy measured for CartoDEM V1 was 269.9 m (LE90), while CartoDEM V1.1R1 showed huge improvement in the accuracy with 68.5 m (LE90).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号