首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The purpose of this paper is to develop Advanced Very High Resolution Radiometer (AVHRR) Global Inventory Modelling and Mapping Studies (GIMMS) Normalised Difference Vegetation Index (NDVI; AVHRR GIMMS NDVI for short) based fraction of absorbed photosynthetically active radiation (FPAR) from 1982 to 2006 and focus on their seasonal and spatial patterns analysis. The available relationship between FPAR and NDVI was used to calculate FPAR values from 1982 to 2006 and validated by Moderate-resolution Imaging Spectroradiometer (MODIS) FPAR product. Then, the seasonal dynamic patterns were analysed, as well as the driving force of climatic factors. Results showed that there was an agreement between FPAR values from this study and those of the MODIS product in seasonal dynamic, and the spatial patterns of FPAR vary with vegetation type distribution and seasonal cycles. The time series of average FPAR revealed a strong seasonal variation, regular periodic variations from January 1982 to December 2006, and opposite patterns between the Northern and Southern Hemispheres. Evergreen vegetation FPAR values were close to 0.7. A clear single-peak curve was observed between 30°N and 80°N – an area covered by deciduous vegetation. In the Southern Hemisphere, the time series fluctuations of FPAR averaged by 0.7° latitude zones were not clear compared to those in the Northern Hemisphere. A significant positive correlation (P<0.01) was observed between the seasonal variation of temperature and precipitation and FPAR over most other global meteorological sites.  相似文献   

2.
The Asia-Pacific (AP) region has experienced faster warming than the global average in recent decades and has experienced more climate extremes, however little is known about the response of vegetation growth to these changes. The updated Global Inventory Modeling and Mapping Studies third-generation global satellite Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index dataset and gridded reanalysis climate data were used to investigate the spatiotemporal changes in both trends of vegetation dynamic indicators and climatic variables. We then further analyzed their relations associated with land cover across the AP region. The main findings are threefold: (1) at continental scales the AP region overall experienced a gradual and significant increasing trend in vegetation growth during the last three decades, and this NDVI trend corresponded with an insignificant increasing trend in temperature; (2) vegetation growth was negatively and significantly correlated with the Pacific Decadal Oscillation index and the El Niño/Southern Oscillation (ENSO) in AP; and (3) at pixel scales, except for Australia, both vegetation growth and air temperature significantly increased in the majority of study regions and vegetation growth spatially correlated with temperature; In Australia and other water-limited regions vegetation growth positively correlated with precipitation.  相似文献   

3.
This research focuses on the recent variations in the annual snowline and the total glaciated area of the Nevado Coropuna in the Cordillera Ampato, Peru. Maximum snowline altitude towards the end of dry season is taken as a representative of the equilibrium line altitude of the year, which is an indirect measurement of the annual mass balance. We used Landsat and IRS LISS3 images during the last 30 years due to its better temporal coverage of the study site. It is found that there was a decrease of 26.92% of the glaciated area during 1986–2014. We calculated the anomalies in precipitation and temperature in this region and also tried to correlate the changes in glacier parameters with the combined influence of El Niño – Southern Oscillation (ENSO) and pacific decadal oscillation (PDO). It is concluded that the snowline of Nevado Coropuna has been fluctuated during ENSO, and maximum fluctuations were observed when ENSO and PDO were in phase.  相似文献   

4.
Detecting soil salinity changes and its impact on vegetation cover are necessary to understand the relationships between these changes in vegetation cover. This study aims to determine the changes in soil salinity and vegetation cover in Al Hassa Oasis over the past 28 years and investigates whether the salinity change causing the change in vegetation cover. Landsat time series data of years 1985, 2000 and 2013 were used to generate Normalized Difference Vegetation Index (NDVI) and Soil Salinity Index (SI) images, which were then used in image differencing to identify vegetation and salinity change/no-change for two periods. Soil salinity during 2000–2013 exhibits much higher increase compared to 1985–2000, while the vegetation cover declined to 6.31% for the same period. Additionally, highly significant (p < 0.0001) negative relationships found between the NDVI and SI differencing images, confirmed the potential long-term linkage between the changes in soil salinity and vegetation cover.  相似文献   

5.
Studies of the impact of human activity on vegetation dynamics of the Sahelian belt of Africa have been recently re-invigorated by new scientific findings that highlighted the primary role of climate in the drought crises of the 1970s–1980s. Time series of satellite observations revealed a re-greening of the Sahelian belt that indicates no noteworthy human effect on vegetation dynamics at sub continental scale from the 1980s to late 1990s. However, several regional/local crises related to natural resources occurred in the last decades despite the re-greening thus underlying that more detailed studies are needed. In this study we used time-series (1998–2010) of SPOT–VGT NDVI and FEWS–RFE rainfall estimates to analyse vegetation – rainfall correlation and to map areas of local environmental anomalies where significant vegetation variations (increase/decrease) are not fully explained by seasonal changes of rainfall. Some of these anomalous zones (hot spots) were further analysed with higher resolution images Landsat TM/ETM+ to evaluate the reliability of the identified anomalous behaviour and to provide an interpretation of some example hot spots. The frequency distribution of the hot spots among the land cover classes of the GlobCover map shows that increase in vegetation greenness is mainly located in the more humid southern part and close to inland water bodies where it is likely to be related to the expansion/intensification of irrigated agricultural activities. On the contrary, a decrease in vegetation greenness occurs mainly in the northern part (12°–15°N) in correspondence with herbaceous vegetation covers where pastoral and cropping practices are often critical due to low and very unpredictable rainfall. The results of this study show that even if a general positive re-greening due to increased rainfall is evident for the entire Sahel, some local anomalous hot spots exist and can be explained by human factors such as population growth whose level reaches the ecosystem carrying capacity as well as population displacement leading to vegetation recovery.  相似文献   

6.
The untimely onset and uneven distribution of south-west monsoon rainfall lead to agricultural drought causing reduction in food-grain production with high vulnerability over semi-arid tract (SAT) of India. A combined deficit index (CDI) has been developed from tri-monthly sum of deficit in antecedent rainfall and deficit in monthly vegetation vigor with a lag period of one month between the two. The formulation of CDI used a core biophysical (e.g., NDVI) and a hydro-meteorological (e.g., rainfall) variables derived using observation from Indian geostationary satellites. The CDI was tested and evaluated in two drought years (2009 and 2012) within a span of five years (2009–2013) over SAT. The index was found to have good correlation (0.49–0.68) with standardized precipitation index (SPI) computed from rain-gauge measurements but showed lower correlation with anomaly in monthly land surface temperature (LST). Significant correlations were found between CDI and reduction in agricultural carbon productivity (0.67–0.83), evapotranspiration (0.64–0.73), agricultural grain yield (0.70–0.85). Inconsistent correlation between CDI and ET reduction was noticed in 2012 in contrast to consistent correlation between CDI and reduction in carbon productivity both in 2009 and 2012. The comparison of CDI-based drought-affected area with those from existing operational approach showed 75% overlapping regions though class-to-class matching was only 40–45%. The results demonstrated that CDI is a potential indicator for assessment of late-season regional agricultural drought based on lag-response between water supply and crop vigor.  相似文献   

7.
Expansion and heterogeneous clustering of commercial horticulture within the central highlands of Kenya after the mid-1990s impact watersheds and the sustainable resource management. This is distressing since climate conditions for world horticultural regions are projected to change, making such farming extremely difficult and costly to the environment. To understand the scope of impact on vegetation, the study evaluated (1) interannual variability in averaged normalized difference vegetation index (NDVI); (2) trends in average annual NDVI before and after 1990 – the presumed onset of rapid horticulture; and (3) relationship between the average annual NDVI and large-scale commercial farms, population density, and mean annual rainfall in subwatersheds. Time-series analysis of long-term Global Inventory Modeling and Mapping Studies NDVI data were analyzed as indicator of vegetation condition. NDVI trends before 1990s (1982–1989) and after 1990s (1990–2006) were evaluated to determine the slope (sign), and the Spearman’s correlation coefficient (strength). Overall, results show considerable variations in vegetation condition due largely to mixed factors including intensive farming activities, drought, and rainfall variation. Statistical analysis shows significant differences in slopes before 1990 and after 1990 (p < 0.05 and p < 0.1 respectively). Negative (decline) trends were common after 1990, linked to increased commercial horticulture and related anthropogenic disturbances on land cover. There was decline in vegetation over densely populated subwatersheds, though low NDVI values in 1984 and 2000 were the effect of severe droughts. Understanding the linkage between vegetation responses to the effects of human-induced pressure at the subwatershed scale can help natural resource managers approach conservation measures more effectively.  相似文献   

8.
The vegetation outlook (VegOut) is a geospatial tool for predicting general vegetation condition patterns across large areas. VegOut predicts a standardized seasonal greenness (SSG) measure, which represents a general indicator of relative vegetation health. VegOut predicts SSG values at multiple time steps (two to six weeks into the future) based on the analysis of "historical patterns" (i.e., patterns at each 1 km grid cell and time of the year) of satellite, climate, and oceanic data over an 18-year period (1989 to 2006). The model underlying VegOut capitalizes on historical climate-vegetation interactions and ocean-climate teleconnections (such as El Niño and the Southern Oscillation, ENSO) expressed over the 18-year data record and also considers several environmental characteristics (e.g., land use/cover type and soils) that influence vegetation's response to weather conditions to produce 1 km maps that depict future general vegetation conditions. VegOut provides regionallevel vegetation monitoring capabilities with local-scale information (e.g., county to sub-county level) that can complement more traditional remote sensing-based approaches that monitor "current" vegetation conditions. In this paper, the VegOut approach is discussed and a case study over the central United States for selected periods of the 2008 growing season is presented to demonstrate the potential of this new tool for assessing and predicting vegetation conditions.  相似文献   

9.
Spatial differences in drought proneness and intensity of drought caused by differences in cropping patterns and crop growing environments within a district indicate the need for agricultural drought assessment at disaggregated level. The objective of this study is to use moderate resolution satellite images for detailed assessment of the agricultural drought situation at different administrative units (blocks) within a district. Monthly time composite NDVI images derived from moderate resolution AWiFS (60 m) and WiFS (180 m) images from Indian Remote Sensing satellites were analysed along with ground data on rainfall and crop sown areas for the kharif seasons (June – November) of 2002 (drought year), 2004 (early season drought) and 2005 (good monsoon year). The impact of the 2002 meteorological drought on crop area in different blocks of the district was assessed. The amplitude of crop condition variability in a severe drought year (2002) and a good year (2005) was used to map the degree of vulnerability of different blocks in the district to agricultural drought. The impact of early season deficit rainfall in 2004 on the agricultural situation and subsequent recovery of the agricultural situation was clearly shown. Agricultural drought assessment at disaggregated level using moderate resolution images is useful for prioritizing the problem areas within a district to undertake, in season drought management plans, such as alternate cropping strategies, as well as for end of the season drought relief management actions. The availability of ground data on rainfall, cropping pattern, crop calendar, irrigation, soil type etc., is very crucial in order to interpret the seasonal NDVI patterns at disaggregated level for drought assessment. The SWIR band of AWiFS sensor is a potential data source for assessing surface drought at the beginning of the season.  相似文献   

10.
 On the basis of the data series of the length of day (LOD), the atmospheric angular momentum (AAM) and the Southern Oscillation Index (SOI) for January 1970–June 1999, the relationship among Interannual LOD, AAM, and the EL Ni?o/Southern Oscillation (ENSO) is analyzed by the wavelet transform method. The results suggest that they have similar time-varying spectral structures. The signals of 1997–98 El Ni?o and 1998–99 La Ni?a events can be detected from the LOD or AAM data. Received: 25 January 2000 / Accepted: 9 January 2001  相似文献   

11.
利用2005-01-2016-12的GRACE卫星数据,结合测高、ARGO(array for real-time geostrophic oceanography)、TRMM(tropical rainfall measurement mission)降水数据和MEI(multivariate ENSO index),从海平面、海水质量、海水比容和陆地水储量的非季节性变化分析了厄尔尼诺-南方涛动(El Ni?o/Southern Oscillation,ENSO)对西太平洋及其沿岸地区的影响。在GRACE数据处理过程中考虑了地震构造信号的影响,并采用正演模型法来恢复时变信号。结果表明,西太平洋地区平均海平面(western Pacific mean sea level,WPMSL)变化对ENSO的响应表现为:厄尔尼诺期间海平面下降,拉尼娜期间海平面上升;尤其在2014-2016年厄尔尼诺期间,WPMSL下降了近26.2 mm。比容变化为影响WPMSL非季节性变化的主导因素。澳大利亚和中南半岛水储量异常在年际变化上也较好响应了ENSO,与MEI的相关系数分别为-0.61(滞后3个月)和-0.65(滞后8个月)。长江流域对ENSO的响应主要在中下游区域,2014-2016年厄尔尼诺造成了该时期长江流域水储量达到近几年的极大值。  相似文献   

12.
温刚 《遥感学报》1998,2(4):270-275
利用NOAA/NASAPathfinderAVHRR陆地数据集,建立了中国东部季风区(108°-123°E,21°-45°N)的1986年归一化植被指数(NDVI)距平图像序列。对此数据集进行主成分分析(PCA),前2个主成分的时间序列和空间场展示了中国东部季风区植被物候季节性特征和地域差异。南岭一五夷山以南的华南地区,植被生长季的物候季节性变化不明显。在南岭-五夷山以北地区,植被生长季的物候季节性特征明显,可以比较清晰地确定生长季的变化过程。以淮河流域为界,植被生长季的物候季节性特征又存在明显差异。华北平原表现出强烈的双峰植被物候过程。淮河以南地区,虽然也存在这种双峰物候过程,但比较华北平原的植被,还具有持续性的植被生长特征。淮河流域构成一条区分南北物候季节特征差异的过渡带。  相似文献   

13.
Monthly time series, from 2001 to 2016, of the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) from MOD13Q1 products were analyzed with Seasonal Trend Analysis (STA), assessing seasonal and long-term changes in the mangrove canopy of the Teacapan-Agua Brava lagoon system, the largest mangrove ecosystem in the Mexican Pacific coast. Profiles from both vegetation indices described similar phenological trends, but the EVI was more sensitive in detecting intra-annual changes. We identified a seasonal cycle dominated by Laguncularia racemosa and Rhizophora mangle mixed patches, with the more closed canopy occurring in the early autumn, and the maximum opening in the dry season. Mangrove patches dominated by Avicennia germinans displayed seasonal peaks in the winter. Curves fitted for the seasonal vegetation indices were better correlated with accumulated precipitation and solar radiation among the assessed climate variables (Pearson’s correlation coefficients, estimated for most of the variables, were r ≥ 0.58 p < 0.0001), driving seasonality for tidal basins with mangroves dominated by L. racemosa and R. mangle. For tidal basins dominated by A. germinans, the maximum and minimum temperatures and monthly precipitation fit better seasonally with the vegetation indices (r ≥ 0.58, p < 0.0001). Significant mangrove canopy reductions were identified in all the analyzed tidal basins (z values for the Mann-Kendall test ≤ ?1.96), but positive change trends were recorded in four of the basins, while most of the mangrove canopy (approximately 87%) displayed only seasonal canopy changes or canopy recovery (z > ?1.96). The most resilient mangrove forests were distributed in tidal basins dominated by L. racemosa and R. mangle (Mann-Kendal Tau t ≥ 0.4, p ≤ 0.03), while basins dominated by A. germinans showed the most evidence of disturbance.  相似文献   

14.
The authors derived the normalized difference vegetation index (NDVI) from the NOAA/AVHRR Land dataset, at a spatial resolution of 8km and 15-day intervals, to investigate the vegetation variations in China during the period from 1982 to 2001. Then, GIS is used to examine the relationship between precipitation and the Normalized Difference Vegetation Index (NDVI) in China, and the value of NDVI is taken as a tool for drought monitoring. The results showed that in the study period, China’s vegetation cover had tended to increase, compared to the early 1980s; mean annual NDVI increased 3.8%. The agricultural regions (Henan, Hebei, Anhui and Shandong) and the west of China are marked by an increase, while the eastern coastal regions are marked by a decrease. The correlation between monthly NDVI and monthly precipitation/temperature in the period 1982 to 2001 is significantly positive (R2=0.80, R2=0.84); indicating the close coupling between climate conditions (precipitation and temperature) and land surface response patterns over China. Examination of NDVI time series reveals two periods: (1) 1982–1989, marked by low values below average NDVI and persistence of drought with a signature large-scale drought during the 1982 and 1989; and (2) 1990–2001, marked by a wetter trend with region-wide high values above average NDVI and a maximum level occurring in 1994 and 1998.  相似文献   

15.
The forests in the Aysén region (ca. 43–49 °S, Chile) have a high degree of wilderness and cover more than 4.8 million hectares, making it one of the largest areas of subantarctic forest in the Southern Hemisphere. The impact of global warming on this region is poorly documented. The main objective of this work was to analyze the normalized difference vegetation index (NDVI), land surface temperature (LST) and precipitation over Aysen forests in the context of ongoing global warming. We used average monthly images of LST and NDVI derived from the MODIS sensor covering the period 2001–2016 and precipitation from gridded datasets. The Aysén region was divided into three nested spatial scales: i) regional, ii) regional considering only forests, iii) local scale considering an evergreen subantarctic forest area covering around 5 × 5 km and a local deciduous forest area (dominated by Nothofagus pumilio). Trend analysis showed a warming rate of +0.78 K/decade (p ≤ 0.05) over the subantarctic forest zone, greening of +0.01/decade for NDVI (p ≤ 0.05) over the western zone, and a drying trend (p ≤ 0.05) over the eastern zone. The minimum temperature anomalies showed an increase of about 4.5 K during the period under analysis. LST, NDVI and precipitation were also analyzed here. The recent trends in temperature, greening and precipitation over the forests of Aysén detected in this research contribute to a better understanding of global warming impacts on subantarctic forests in the southern tip of South America. Nevertheless, to get a better estimation of the impact of global warming at multiple scales is needed to have better quality and quantity of data in situ.  相似文献   

16.
Satellite-derived evapotranspiration anomalies and normalized difference vegetation index (NDVI) products from Moderate Resolution Imaging Spectroradiometer (MODIS) data are currently used for African agricultural drought monitoring and food security status assessment. In this study, a process to evaluate satellite-derived evapotranspiration (ETa) products with a geospatial statistical exploratory technique that uses NDVI, satellite-derived rainfall estimate (RFE), and crop yield data has been developed. The main goal of this study was to evaluate the ETa using the NDVI and RFE, and identify a relationship between the ETa and Ethiopia’s cereal crop (i.e., teff, sorghum, corn/maize, barley, and wheat) yields during the main rainy season. Since crop production is one of the main factors affecting food security, the evaluation of remote sensing-based seasonal ETa was done to identify the appropriateness of this tool as a proxy for monitoring vegetation condition in drought vulnerable and food insecure areas to support decision makers. The results of this study showed that the comparison between seasonal ETa and RFE produced strong correlation (R2 > 0.99) for all 41 crop growing zones in Ethiopia. The results of the spatial regression analyses of seasonal ETa and NDVI using Ordinary Least Squares and Geographically Weighted Regression showed relatively weak yearly spatial relationships (R2 < 0.7) for all cropping zones. However, for each individual crop zones, the correlation between NDVI and ETa ranged between 0.3 and 0.84 for about 44% of the cropping zones. Similarly, for each individual crop zones, the correlation (R2) between the seasonal ETa anomaly and de-trended cereal crop yield was between 0.4 and 0.82 for 76% (31 out of 41) of the crop growing zones. The preliminary results indicated that the ETa products have a good predictive potential for these 31 identified zones in Ethiopia. Decision makers may potentially use ETa products for monitoring cereal crop yields and early warning of food insecurity during drought years for these identified zones.  相似文献   

17.
距平植被指数在1992年特大干旱监测中的应用   总被引:6,自引:0,他引:6  
本文重点阐述NOAA极轨气象卫星距平植被指数的处理技术及算法,以及在1992年干旱监测中的应用。距平植被指数是以归一化植被指数(NDVI)多年旬、月平均值作为背景,然后用当年旬、月的NDVI值减去背景值。植被指数的距平值不仅反映了植被年际间的变化,而且也指示了天气对植被的影响。用这个量监测农作物是否遭到旱灾威胁比只用NDVI的瞬时值优越。研究结果表明当月的距平植被指数与当月降水量距平百分率相一致。  相似文献   

18.
ABSTRACT

Detecting changes in vegetation, distinguishing the persistence of changes, and seeking their causes during multiple periods are important to gaining a deeper understanding of vegetation dynamics. Using the Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index (NDVI) version NDVI3g dataset in the Tibetan Plateau, the trends in the seasonal components of NDVI and their linkage with climatic factors were analyzed over 14 asymptotic periods of 18–31 years since 1982. Dynamic trends in vegetation experienced an obvious increase at regional scale, but the increases of vegetation activity mostly tended to stall or slow down as the studied time period was extended. At pixel scale, areas with significant browning significantly expanded over 14 periods for all seasons, but for significant greening significantly increased only in autumn. The changes of vegetation activity in spring were the most drastic among three seasons. Increased increments of NDVI in summer, spring, and autumn took turns being the main reason for the enhanced vegetation activity in the growing season in the nested 14 periods. Vegetation activity was mainly regulated by a thermal factor, and the dominant climatic drivers of vegetation growth varied across different seasons and regions. We speculate that the increase of NDVI will continue but the increments will decline in all seasons except autumn.  相似文献   

19.
The authors derived the normalized difference vegetation index (NDVI) from the NOAA/AVHRR Land dataset, at a spatial resolution of 8km and 15-day intervals, to investigate the vegetation variations in China during the period from 1982 to 2001. Then, GIS is used to examine the relationship between precipitation and the Normalized Difference Vegetation Index (NDVI) in China, and the value of NDVI is taken as a tool for drought monitoring. The results showed that in the study period, China’s vegetation cover h...  相似文献   

20.
针对鄂尔多斯高原植被覆盖变化受干旱胁迫的状况,该文结合降水和气温的协同变化,以2000-2012年生长季的MODIS-NDVI数据和同期降水、温度和帕尔默干旱指数为依据,采用线性趋势分析、标准偏差分析和相关性分析等方法,对鄂尔多斯高原植被与气候变化的相关关系和干旱异常变化对植被动态的影响进行了研究.结果表明:鄂尔多斯高原生长季及季节(春季、夏季和秋季)植被归一化植被指数主要受降水的控制和干旱的制约,秋季归一化植被指数更多地受到夏季干旱的影响.与气象因子的空间相关分析表明,春季温度上升有利于研究区北部归一化植被指数像元的增加.在荒漠草原和沙漠地区,夏季干旱与归一化植被指数的相关关系最强.秋季降水对典型草原归一化植被指数的提升显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号