首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used geographic datasets and field measurements to examine the mechanisms that affect soil carbon (SC) storage for 65 grazed and non-grazed pastures in southern interior grasslands of British Columbia, Canada. Stepwise linear regression (SR) modeling was compared with random forest (RF) modeling. Models produced with SR performed better than those produced using RF models (r2 = 0.56–0.77 AIC = 0.16–0.30 for SR models; r2 = 0.38–0.53 and AIC = 0.18–0.30 for RF models). The factors most significant when predicting SC were elevation, precipitation, and the normalized difference vegetation index (NDVI). NDVI was evaluated at two scales using: (1) the MOD 13Q1 (250 m/16-day resolution) NDVI data product from the moderate resolution imaging spectro-radiometer (MODIS) (NDVIMODIS), and (2) a handheld multispectral radiometer (MSR, 1 m resolution) (NDVIMSR) in order to understand the potential for increasing model accuracy by increasing the spatial resolution of the gridded geographic datasets. When NDVIMSR data were used to predict SC, the percentage of the variance explained by the model was greater than for models that relied on NDVIMODIS data (r2 = 0.68 for SC for non-grazed systems, modeled with SR based on NDVIMODIS data; r2 = 0.77 for SC for non-grazed systems, modeled with SR based on NDVIMSR data). The outcomes of this study provide the groundwork for effective monitoring of SC using geographic datasets to enable a carbon offset program for the ranching industry.  相似文献   

2.
Winter wheat biomass was estimated using HJ CCD and MODIS data, combined with a radiation use efficiency model. Results were validated with ground measurement data. Winter wheat biomass estimated with HJ CCD data correlated well with observed biomass in different experiments (coefficients of determination R2 of 0.507, 0.556 and 0.499; n?=?48). In addition, R2 values between MODIS estimated and observed biomass are 0.420, 0.502 and 0.633. Even if we downscaled biomass estimated using HJ CCD data to MODIS pixel size (9?×?9 HJ CCD pixels to approximate that MODIS pixel), R2 values between estimated and observed biomass were still higher than those from MODIS. We conclude that estimation with remote sensing data, such as the HJ CCD data with high spatial resolution and shorter revisit cycle, can show more detail in spatial pattern and improve the application of remote sensing on a local scale. There is also potential for applying the approach to many other studies, including agricultural production estimation, crop growth monitoring and agricultural ecosystem carbon cycle studies.  相似文献   

3.
由美国国防气象卫星搭载的可见光成像线性扫描业务系统(DMSP/OLS)和国家极轨卫星搭载的可见光近红外成像辐射仪(NPP/VIIRS)获取的夜间灯光影像是监测人类社会经济活动和自然现象(如林火、油气燃烧等)的主要数据源。然而,现有的夜间灯光数据存在缺乏星上的辐射定标、像元饱和、时间尺度不连续、多源夜间灯光影像辐射不一致等问题。基于此,本文以中巴经济走廊区域为研究区,提出了一种基于线性拟合提取不变目标区域的方法,实现了DMSP/OLS影像间、DMSP/OLS与NPP/VIIRS两种数据间的相互校正。然后对中巴经济走廊的校正结果在不同空间尺度上选用区域灰度总量、标准化差异指数以及标准化差异指数和作为评价指标进行检验。结果表明:两种校正模型的拟合优度均在0.78以上,校正后的DMSP/OLS影像灰度总量与GDP和人口数据的相关性显著提高(GDP:R~2=0.7689;人口:R~2=0.9033),且标准化差异指数明显降低;NPP/VIIRS影像经过与DMSP/OLS互校正后在辐射亮度、时空分布上与DMSP/OLS更加一致,空间细节信息更加突出,从而增强了多源夜间灯光影像的一致性,更加适合用于长时间序列社会经济要素发展趋势的分析。  相似文献   

4.
Data fused from distinct but complementary satellite sensors mitigate tradeoffs that researchers make when selecting between spatial and temporal resolutions of remotely sensed data. We integrated data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra satellite and the Operational Land Imager sensor aboard the Landsat 8 satellite into four regression-tree models and applied those data to a mapping application. This application produced downscaled maps that utilize the 30-m spatial resolution of Landsat in conjunction with daily acquisitions of MODIS normalized difference vegetation index (NDVI) that are composited and temporally smoothed. We produced four weekly, atmospherically corrected, and nearly cloud-free, downscaled 30-m synthetic MODIS NDVI predictions (maps) built from these models. Model results were strong with R2 values ranging from 0.74 to 0.85. The correlation coefficients (r ≥ 0.89) were strong for all predictions when compared to corresponding original MODIS NDVI data. Downscaled products incorporated into independently developed sagebrush ecosystem models yielded mixed results. The visual quality of the downscaled 30-m synthetic MODIS NDVI predictions were remarkable when compared to the original 250-m MODIS NDVI. These 30-m maps improve knowledge of dynamic rangeland seasonal processes in the central Great Basin, United States, and provide land managers improved resource maps.  相似文献   

5.
There is considerable interest in accurately estimating water quality parameters in turbid (Case 2) and eutrophic waters such as the Western Basin of Lake Erie (WBLE). Lake Erie is a large, open freshwater body that supports diverse ecosystem, and over 12 million people in the mid-western part of the United States depend on it for drinking water, fisheries, navigational, and recreational purposes. The increasing utilization of the freshwater has deteriorated the water severely and currently the lake is experiencing recurring harmful algal blooms (HABs). Improving the water quality of Lake Erie requires the use of robust monitoring tools that help water quality managers understand sources and pathways of influxes that trigger HABs. Satellite-based remote sensing sensor such as the moderate resolution imaging spectroradiometer (MODIS) may provide frequent and synoptic view of the water quality indices. In this study, data set from field measurements was used to evaluate the performance of 14 existing ocean color algorithms. Results indicated that MODIS data consistently underestimated the chlorophyll a concentrations in the WBLE, with the largest source of errors from dissolved organic matter and xanthophyll accessory pigments in this data set. Most of the global algorithms, including OC4v4 and the Baltic model, generated near-identical statistical parameters with an average R2 of ~0.57 and RMSE ~2.9 μg/l. MODIS performed poorly (R2 ~0.18) when its NIR/red bands were used. A slightly improved model was developed using similar band ratio approach generating R2 of ~0.62 and RMSE ~1.8 μg/l.  相似文献   

6.
Directly mapping impervious surface area (ISA) at national and global scales using nighttime light data is a challenge due to the complexity of land surface components and the impacts of unbalanced economic conditions. Previous research mainly used the coarse spatial resolution Defense Meteorological Satellite Program’s Operational Linescan System (DMSP OLS) and Moderate Resolution Imaging Spectroradiometer (MODIS), normalized difference vegetation index (NDVI) data for ISA mapping; the improved spatial resolution and data quality in the Suomi National Polar-orbiting Partnership, Visible Infrared Imaging Radiometer Suite’s Day/Night Band (VIIRS DNB) and in Proba-V data provide a new opportunity to accurately map ISA distribution at the national scale, which has not been explored yet. This research aimed to develop a new index – modified impervious surface index (MISI) – based on VIIRS DNB and Proba-V data to improve ISA estimation and to compare the results with those from the combination of VIIRS DNB and MODIS NDVI data. Landsat data were used to develop ISA data for the typical sites for use as reference data. Regression analysis was used to establish the ISA estimation model in which the dependent variable was from the Landsat data and the independent variable was from the MISI, as well as the previously used Large-scale Impervious Surface Index (LISI). The results indicate that the major error is from the very small or very large proportion of ISA in a unit; improvement of spatial resolution through use of higher spatial resolution nighttime light data (e.g., VIIRS DNB) or NDVI (e.g., Proba-V NDVI) data is an effective approach to improve ISA estimation. Although different indices for the combination of nighttime light and NDVI data have been used, the MISI is especially valuable for reducing the estimation errors for the regions with a small or large ISA proportion.  相似文献   

7.
Abstract

While data like HJ-1 CCD images have advantageous spatial characteristics for describing crop properties, the temporal resolution of the data is rather low, which can be easily made worse by cloud contamination. In contrast, although Moderate Resolution Imaging Spectroradiometer (MODIS) can only achieve a spatial resolution of 250 m in its normalised difference vegetation index (NDVI) product, it has a high temporal resolution, covering the Earth up to multiple times per day. To combine the high spatial resolution and high temporal resolution of different data sources, a new method (Spatial and Temporal Adaptive Vegetation index Fusion Model [STAVFM]) for blending NDVI of different spatial and temporal resolutions to produce high spatial–temporal resolution NDVI datasets was developed based on Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). STAVFM defines a time window according to the temporal variation of crops, takes crop phenophase into consideration and improves the temporal weighting algorithm. The result showed that the new method can combine the temporal information of MODIS NDVI and spatial difference information of HJ-1 CCD NDVI to generate an NDVI dataset with both high spatial and high temporal resolution. An application of the generated NDVI dataset in crop biomass estimation was provided. An average absolute error of 17.2% was achieved. The estimated winter wheat biomass correlated well with observed biomass (R 2 of 0.876). We conclude that the new dataset will improve the application of crop biomass estimation by describing the crop biomass accumulation in detail. There is potential to apply the approach in many other studies, including crop production estimation, crop growth monitoring and agricultural ecosystem carbon cycle research, which will contribute to the implementation of Digital Earth by describing land surface processes in detail.  相似文献   

8.
张猛  曾永年 《遥感学报》2018,22(1):143-152
植被净初级生产力NPP(Net Primary Production)遥感估算与分析,有赖于高时空分辨率的遥感数据,但目前中高分辨率的遥感数据受卫星回访周期及天气的影响,在中国南方地区难以获取连续时间序列的数据,从而影响了高精度的区域植被净初级生产力的遥感估算。为此,提出一种基于多源遥感数据时空融合技术与CASA模型估算高时空分辨率NPP的方法。首先,利用多源遥感数据,即Landsat8 OLI数据与MODIS13Q1数据,采用遥感数据时空融合方法,获得了时间序列的Landsat8 OLI融合数据;然后,基于Landsat8 OLI时空融合数据,并采用CASA模型,以长株潭城市群核心区为例,进行区域植被NPP的遥感估算。研究结果表明,基于时间序列Landsat融合数据估算的30m分辨率的NPP具有良好的空间细节信息,且估算值与实测值的相关系数达0.825,与实测NPP数据保持了较好的一致性。  相似文献   

9.
ABSTRACT

A fractional vegetation cover (FVC) estimation method incorporating a vegetation growth model and a radiative transfer model was previously developed, which was suitable for FVC estimation in homogeneous areas because the finer-resolution pixels corresponding to one coarse-resolution FVC pixel were all assumed to have the same vegetation growth model. However, this assumption does not hold over heterogeneous areas, meaning that the method cannot be applied to large regions. Therefore, this study proposes a finer spatial resolution FVC estimation method applicable to heterogeneous areas using Landsat 8 Operational Land Imager reflectance data and Global LAnd Surface Satellite (GLASS) FVC product. The FVC product was first decomposed according to the normalized difference vegetation index from the Landsat 8 OLI data. Then, independent dynamic vegetation models were built for each finer-resolution pixel. Finally, the dynamic vegetation model and a radiative transfer model were combined to estimate FVC at the Landsat 8 scale. Validation results indicated that the proposed method (R2?=?0.7757, RMSE?=?0.0881) performed better than either the previous method (R2?=?0.7038, RMSE?=?0.1125) or a commonly used method involving look-up table inversions of the PROSAIL model (R2?=?0.7457, RMSE?=?0.1249).  相似文献   

10.
陆地总初级生产力遥感估算精度分析   总被引:1,自引:0,他引:1  
林尚荣  李静  柳钦火 《遥感学报》2018,22(2):234-252
准确估算陆地总初级生产力GPP(Gross Primary Productivity)数值对碳循环过程模拟有重要影响。本文介绍了多种基于植被指数以及基于光能利用率的遥感GPP算法,综述了不同算法在其研究区域的估算精度;并分析了MODIS/GPP以及BESS/GPP两种遥感GPP产品在不同植被类型的估算精度。通过对比全球碳通量站网络GPP数据表明,MODIS/GPP产品在全球估算结果具显著相关性(R2=0.59)及中等标准误差(RMSE=2.86 g C/m2/day),估算精度较高的植被类型有落叶阔叶林,草地等;估算精度较低类型包括常绿阔叶林,稀树草原等。本文对GPP产品中存在的不确定性进行分析,通过综述前人研究中发现的遥感估算GPP方法中存在的问题,指出可能的提高卫星遥感GPP产品估算精度的方法及发展趋势。  相似文献   

11.
ABSTRACT

Impervious surface area (ISA) data are required for such studies as urban environmental modeling, hydrological modeling, and socioeconomic analysis, but updating these datasets in a large area remains a challenge due to the complex urban landscapes consisting of different materials and colors with various spatial patterns. This research explores the integration of multi-source remotely sensed data for mapping China’s ISA distribution at 30-m spatial resolution. The integration of Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS DNB) and Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data were used to extract initial ISA with spatial resolution of 250 m using a thresholding approach. The Landsat-derived NDVI and Modified Normalized Difference Water Index (MNDWI) were used to remove vegetation and water areas from the mixed pixels that existed in the initial ISA data. The spectral signatures of these ISA data were further extracted from Landsat multispectral images and used to refine the ISA data using expert knowledge. The results indicate that the integration of multi-source data can successfully map ISA distribution with 30-m spatial resolution in China with producer’s and user’s accuracies of 83.1 and 91.9%, respectively. These ISA data are valuable for better management of urban landscapes and for use as an input in other studies such as socioeconomic and environmental modeling.  相似文献   

12.

Background

A simulation model that relies on satellite observations of vegetation cover from the Landsat 7 sensor and from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate net primary productivity (NPP) of forest stands at the Bartlett Experiment Forest (BEF) in the White Mountains of New Hampshire.

Results

Net primary production (NPP) predicted from the NASA-CASA model using 30-meter resolution Landsat inputs showed variations related to both vegetation cover type and elevational effects on mean air temperatures. Overall, the highest predicted NPP from the NASA-CASA model was for deciduous forest cover at low to mid-elevation locations over the landscape. Comparison of the model-predicted annual NPP to the plot-estimated values showed a significant correlation of R2 = 0.5. Stepwise addition of 30-meter resolution elevation data values explained no more than 20% of the residual variation in measured NPP patterns at BEF. Both the Landsat 7 and the 250-meter resolution MODIS derived mean annual NPP predictions for the BEF plot locations were within ± 2.5% of the mean of plot estimates for annual NPP.

Conclusion

Although MODIS imagery cannot capture the spatial details of NPP across the network of closely spaced plot locations as well as Landsat, the MODIS satellite data as inputs to the NASA-CASA model does accurately predict the average annual productivity of a site like the BEF.  相似文献   

13.
The potential of the short-wave infrared (SWIR) bands to detect dry-season vegetation mass and cover fraction is investigated with ground radiometry and MODIS data, confronted to vegetation data collected in rangeland and cropland sites in the Sahel (Senegal, Niger, Mali). The ratio of the 1.6 and 2.1 μm bands (called STI) acquired with a ground radiometer proved well suited for grassland mass estimation up to 2500 kg/ha with a linear relation (r2 = 0.89). A curvilinear regression is accurate for masses ranging up to 3500 kg/ha. STI proved also well suited to retrieve vegetation cover fraction in crop fields, fallows and rangelands. Such dry-season monitoring, with either ground or satellite data, has important applications for forage, erosion risk and fire risk assessment in semi-arid areas.  相似文献   

14.
Burn severity is an important parameter in post-fire management. It incorporates both the direct fire impact (vegetation depletion) and ecosystem responses (vegetation regeneration). From a remote sensing perspective, burn severity is traditionally estimated using Landsat's differenced normalized burn ratio (dNBR). In this case study of the large 2007 Peloponnese (Greece) wildfires, Landsat dNBR estimates correlated reasonably well with Geo composite burn index (GeoCBI) field data of severity (R2 = 0.56). The usage of Landsat imagery is, however, restricted by cloud cover and image-to-image normalization constraints. Therefore a multi-temporal burn severity approach based on coarse spatial, high temporal resolution moderate resolution imaging spectroradiometer (MODIS) imagery is presented in this study. The multi-temporal dNBR (dNBRMT) is defined as the 1-year integrated difference between burned pixels and their unique control pixels. These control pixels were selected based on time series similarity and spatial context and reflect how burned pixels would have behaved in the case no fire had occurred. Linear regression between downsampled Landsat dNBR and dNBRMT estimates resulted in a moderate-high coefficient of determination R2 = 0.54. dNBRMT estimates are indicative for the change in vegetation productivity due to the fire. This change is considerably higher for forests than for more sparsely vegetated areas like shrub lands. Although Landsat dNBR is superior for spatial detail, MODIS-derived dNBRMT estimates present a valuable alternative for burn severity mapping at continental to global scale without image availability constraints. This is beneficial to compare trends in burn severity across regions and time. Moreover, thanks to MODIS's repeated temporal sampling, the dNBRMT accounts for both first- and second-order fire effects.  相似文献   

15.
利用AMSR2和MODIS数据的土壤冻融相变水量降尺度方法   总被引:1,自引:0,他引:1  
本文基于站点实测土壤温度和土壤湿度数据分析,发现温度指数TI(Temperature Index)和土壤冻融相变水量呈现幂函数关系,温度指数能够反映相变水量的变化。使用MODIS地表温度产品计算温度指数,在AMSR2卫星观测尺度上与相变水量建立了关系,从而对土壤冻融相变水量进行了降尺度研究。采用CTP-SMTMN数据采集仪观测网络上的站点观测到土壤水分对土壤冻融相变水量降尺度结果进行了验证。结果表明,土壤冻融相变水量降尺度结果与实测值较为接近,在土壤相变水量大于0.01(m3/m3)时,RMSE为0.0085(m3/m3),MAE为0.0059(m3/m3)。这种通过温度指数对土壤相变水量进行降尺度的方法具有简便,可行,可靠的优势,适合在冻融交替期计算较湿润土壤在冻融过程中产生的相变水量。同时,这种降尺度方法能够生成小尺度上的相变水量产品,实现了热红外遥感和被动微波遥感的优势整合,对研究地气水热平衡,气候变化,土壤冻结强度以及冻融侵蚀强度等具有重要意义。  相似文献   

16.
利用NPP卫星的VIIRS传感器数据,基于暗像元法反演陆地气溶胶光学厚度AOD。首先,根据红外波段的归一化植被指数NDVI来对暗像元进行识别;然后,利用6S软件进行辐射传输计算构建查找表;最后,根据VIIRS数据从查找表插值得到AOD,并对其进行海拔校正。选取华北地区作为反演实验区,获得了2013年9月1日的气溶胶分布。利用AERONET北京站太阳光度计地基观测结果对反演结果对比验证,发现二者具有显著的相关性,相关系数达到0.7920。将2013年9月1日的MODIS AOD产品与本研究反演的AOD进行比对,发现二者分布趋势一致,相关系数为0.7059,相关性显著。反演结果表明,本文算法反演陆地AOD效果较好,为大气颗粒物环境监测提供了良好方法手段和数据源。  相似文献   

17.
This paper compared two soil moisture downscaling methods using three scaling factors. Level 3 soil moisture product of advanced microwave scanning radiometer for EOS (AMSR-E) is downscaled from 25 to 1?km. The downscaled results are compared with the soil moisture observations from polarimetric scanning radiometer (PSR) microwave radiometer and field sampling. The results show that (1) the scaling factor of normalized soil thermal inertia (NSTIs) and vegetation temperature condition index (VTCI) are better than soil evaporative efficiency in reflecting soil moisture; (2) for method 1, NSTIS is the best in the downscaling of soil moisture. For method 2, VTCI is the best; (3) no significant differences of the correlation coefficients (R2) and the biases were found between the two methods for the same scaling factors. However, method 2 shows a better potential than method 1 in the time-series applications of the downscaling of soil moisture; (4) compared with the relationship between the area-averaged soil moisture of AMSR-E and that of PSR, R2 of the 6 sets of the downscaled soil moisture almost do not decrease, which suggests the validity of the downscaling of soil moisture with the two downscaling methods using the three scaling factors.  相似文献   

18.
准确量测高海拔山区的植物物候对理解全球变化下的敏感生态系统的响应具有重要意义。利用物候相机和遥感技术开展物候信息的提取和对比,既能准确评估物候相机在山区植物物候提取的性能,又可为山区遥感物候数据反演提供重要参考。利用中国新疆维吾尔自治区天山山区人工观测、物候相机和遥感数据,测试了5种曲线拟合方式与4种物候参数提取方法的20种组合的物候参数提取结果,对比了3种数据在物候信息提取结果的异同。结果表明:(1)植物物候相机能在天山山区草地物候观测中提供高时间分辨率的绿度变化信息,是山区开展物候观测并验证遥感物候数据的有效手段。(2)山区雨雪天气等对相对绿度指数产生较强噪声影响,需要选择合适的滤波器进行去噪。(3)曲线拟合方式和物候提取方法均对物候参数数值产生影响。而提取方法可产生更明显的差异性,其中,阈值法和导数法提取的物候数值相近,开始期与人工观测的返青期一致性较好,停止期与枯黄期一致性较好;而Klosterman方法和Gu方法提取物候数值相近,提取的开始期与人工观测的返青末期一致性较好,停止期与人工观测的枯黄末期一致性较好。(4)20种不同滤波+提取方法的组合形式在山区遥感数据物候信息提取...  相似文献   

19.
暗目标法的Himawari-8静止卫星数据气溶胶反演   总被引:1,自引:0,他引:1  
Himawari-8(H8)是由日本气象厅发射的新一代静止气象卫星,可实现10 min/次的高频次对地观测,搭载的AHI(Advanced Himawari Imager)传感器设置有与MODIS暗目标气溶胶反演算法所需的类似波段。本文参考暗目标算法构建了针对该卫星传感器的陆地气溶胶反演算法:首先,通过基于地基站点观测数据的精确大气校正,统计得到短波红外与可见光波段的地表反射率比值关系,将此作为先验知识用于地—气解耦时的反射率估计;然后,初步假设大陆型气溶胶类型,利用辐射传输模型建立查找表;最后,通过模拟与卫星观测的表观反射率误差最小实现气溶胶光学厚度反演解算。选取2016年5月覆盖京津冀地区的观测数据进行测试,将反演结果与对应时间的MODIS气溶胶光学厚度产品进行对比验证,空间分布趋势一致、相关性较高,相关系数R达到0.852;通过与地基观测网AERONET站点实测数据对比验证,所有站点的相关系数R~2均大于0.88,精度较高。利用反演的高时间分辨率产品,分析了京津冀地区的大气空间分布和日变化情况,结果表明:采用暗目标法对H8静止卫星陆地气溶胶光学厚度反演具有一定的潜力和可行性,能反映气溶胶的高时间变化信息,有望成为大气环境污染变化监测新的重要手段。  相似文献   

20.
Quantitative estimations of the fractional cover of photosynthetic vegetation (fPV), non-photosynthetic vegetation (fNPV) and bare soil (fBS) are critical for soil wind erosion, desertification, grassland grazing, grassland fire, and grassland carbon storage studies. At present, regional and large-scale fPV, fNPV and fBS estimations have been carried out in many areas. However, few studies have used moderate resolution imaging spectroradiometer (MODIS) data to perform large-scale, long-term fPV, fNPV and fBS estimations in the Xilingol grassland of China. The objective of this study was to quantitatively estimate the time series of fPV, fNPV and fBS in the typical grassland region of Xilingol from MODIS image data. Field measurement spectral and coverage data from May and September 2017 were combined with the 8-day composite product (MOD09A1) acquired during 2017. We established an empirical linear model of different non-photosynthetic vegetation indices (NPVIs) and fNPV based on the sample scale. The linear correlation between the dead fuel index (DFI) and fNPV was best (R2 = 0.60, RMSE = 0.15). A normalized difference vegetation index (NDVI)-DFI model based on MODIS data was proposed to accurately estimate the fPV, fNPV and fBS (estimation accuracies of 44%, 71%, and 74%, respectively) in the typical grasslands of Xilingol in China. The fPV, fNPV and fBS values for the typical grassland time series estimated by the NDVI-DFI model were consistent with the phenological characteristics of the grassland vegetation. The results show that the application of the NDVI-DFI model to the Xilingol grassland is reasonable and appropriate, and it is of great significance to the monitoring of soil wind erosion and fires in grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号