首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Year-long moorings were deployed across the Alaskan Stream near Samalga Pass (169°W) on two occasions, first in 2001–2002 (5 moorings) and again in 2003–2004 (3 moorings). Currents were measured throughout the water column, and temperature and salinity were measured at selected depths. Satellite altimetry and satellite-tracked drifters revealed a well defined Alaskan Stream, with the largest near-surface average speeds (>60 cm s−1) and highest eddy kinetic energy just upstream from the mooring sites. Excluding periods when large eddies disrupted the flow, transport in the Alaskan Stream ranged from 10 to 30×106 m3 s−1. The estimated mean transport in 2001–2002 was 19×106 m3 s−1, and in 2003–2004 was 21×106 m3 s−1. Large (diameter>200 km), anti-cyclonic eddies were not uncommon in the vicinity of Samalga Pass (14 times in 20 year period, 1992–2012). Although there were no such eddies observed during the period 2000–2003, one of the largest ever recorded eddies occurred in spring 2004. In addition, smaller eddies occurred on several occasions. Eddies disrupted the flow, shifting the Alaskan Stream farther off shore and were clearly evident in both the satellite imagery and the mooring data. Other energetic events, which were less evident in the satellite records, but clearly evident in the mooring measurements, also disrupted the flow. In addition to the moorings in the Alaskan Stream, pressure gauges were placed in Samalga Pass and a single mooring measuring currents was placed in the Aleutian North Slope Current (ANSC) in the Bering Sea. The alongshore, near-surface flow measured at the moorings deployed on the 1000-m isobaths in the Alaskan Stream and the ANSC were significantly correlated with the bottom pressure time series. In addition, at periods longer than 14 days, the bottom pressure measured at the mooring sites in Samalga Pass was significantly correlated with the sea surface height measured by the satellites. The eddy kinetic energies measured from the satellites and from moorings were also significantly correlated.  相似文献   

2.
The Ulleung Basin is one of three deep basins that are contained within the East/Japan Sea. Current meter moorings have been maintained in this basin beginning in 1996. The data from these moorings are used to investigate the mean circulation pattern, variability of deep flows, and volume transports of major water masses in the Ulleung Basin with supporting hydrographic data and help from a high-resolution numerical model. The bottom water within the Ulleung Basin, which must enter through a constricted passage from the north, is found to circulate cyclonically—a pattern that seems prevalent throughout the East Sea. A strong current of about 6 cms−1 on average flows southward over the continental slope off the Korean coast underlying the northward East Korean Warm Current as part of the mean abyssal cyclonic circulation. Volume transports of the northward East Korean Warm Current, and southward flowing East Sea Intermediate Water and East Sea Proper Water are estimated to be 1.4 Sv (1 Sv=10−6 m3 s−1), 0.8 Sv, and 3.0–4.0 Sv, respectively. Deep flow variability involves a wide range of time scales with no apparent seasonal variations, whereas the deep currents in the northern East Sea are known to be strongly seasonal.  相似文献   

3.
The Alaskan Stream is the westward boundary current of the North Pacific subarctic gyre. In the central region of the North Pacific, the Alaskan Stream serves as a connection between the Alaskan gyre, Western subarctic gyre and Bering Sea gyre. Its volume transport is very important in estimating the magnitude of the subarctic circulation in the North Pacific. In order to clarify its seasonal and interannual variation, we conducted observations along a north-south section at 180° during June from 1990 to 1997. Moorings were deployed from 1995 to 1997. Hydrographic casts were made at intervals of 37 km to a depth of 3000 m. Moorings were set between CTD stations, with Moor1 (Moor2) at the center (southern edge) of the Alaskan Stream. Geostrophic volume transport (referred to 3000 m) revealed large interannual variability in the Alaskan Stream. Average volume transport over the 8 years was 27.5 × 106 m3s-1 with a standard deviation of 6.5 × 106 m3s-1. Maximum transport was 41.0 × 106 m3s-1 (1997) and minimum was 21.7 × 106 m3s-1 (1995). Stable westward flows were observed at Moor1 1500 m (259°, 11.7 cm s-1) and 3000 m (240°, 3.7 cm s-1, 1996–1997 year average). The ratio of eddy to mean kinetic energy (KE/ ) was very small (<0.6) throughout the year. A relatively weak and unstable westward flow was observed at Moor2 at 3000 m depth. Conversely, the average flow direction at Moor2 5000 m was eastward.  相似文献   

4.
The long-term mean (31-year mean) surface heat fluxes over the Japan Sea are estimated by the bulk method using the most of the available vessel data with the resolution of 1o×1o. The long-term annual mean net heat flux is about –53 W m–2 (negative sign means upward heat flux) with the annual range from 133 W m–2 in May to –296 W m–2 in December. The small gain of heat in the area near Vladivostok seems to indicate the existence of cold water flowing from the north. In that area in winter, the mean loss of heat attains about 200 W m–2, and the Bowen's ratio is over the unity. The largest insolation occurs in May in the Japan Sea, and the upward latent heat flux becomes the largest in November in this area. The heat flux of Haney type is also calculated, and the result, shows that the constantQ 1 has the remarkable seasonal and spatial variation, while the coefficientQ 2 has relatively small variation throughout all seasons. Under the assumption of constant volume transport of 1.35×106 m3s–1 through the Tsugaru Strait, the long-term averages of the volume transport through the Tsushima and Soya Straits are estimated to be about 2.20 and 0.85×106 m3s–1 from the result of the mean surface heat flux, respectively.  相似文献   

5.
The stability analysis for a double-inlet bay system is applied to an inlet system resembling Big Marco Pass and Capri Pass on the lower west coast of Florida. Since the opening of Capri Pass in 1967, the length of Big Marco Pass has increased from 2000 m in 1967 to 3000 m in 1988 and the cross-sectional area has decreased from 1200 m2 in 1967 to 1000 m2 in 1988. Since 1967, the cross-sectional area of Capri Pass has steadily increased and in 1988 was 700 m2. Tides off the inlets are of the mixed type with a diurnal range of 1 m. The gross littoral transport rate in the vicinity of the inlets is estimated at 150,000 m3 yr−1.For each inlet the maximum tidal velocities are calculated as a function of the gorge cross-sectional areas using a lumped-parameter model to describe the hydrodynamics of the flow. In the model it is assumed that the bay level fluctuates uniformly and the bay surface area remains constant. The velocities are used to calculate the tidal maximum of the bottom shear stress in each inlet as a function of the cross-sectional areas of the two inlets (=closure surface). Values of the equilibrium shear stress are derived from an empirical relationship between cross-sectional area and tidal prism for stable inlets along the west coast of Florida. Closure surfaces and equilibrium stress values are calculated for values of friction factors ranging from F=4×10−3 to F=6×10−3. Using the closure surfaces and equilibrium stress values, the equilibrium flow curve for each inlet is determined. The equilibrium flow curve represents the locus of the combination of cross-sectional areas for which the actual bottom shear stress in the inlet equals the equilibrium shear stress.Based on the equilibrium flow curves and the known values of the cross-sectional areas of the two inlets in 1988, it is expected that, ultimately, Big Marco Pass will close and Capri Pass will remain as the sole inlet with a cross-sectional area of 1250 m2 and a maximum tidal velocity pertaining to a diurnal tide of 0.85 m s−1.  相似文献   

6.
The Great Belt, the Øresund and the Little Belt connect the central Baltic Sea and the Kattegat. A fixed station was moored in the contraction area in the Little Belt during the period 18–28 July 1995, measuring temperature, salinity and current in two levels, while discharge was measured by the RVDana. The composite Froude number calculated at the fixed station shows that the two layer flow through this area was most often supercritical. The discharges were satisfactorily related to the currents measured at the fixed station, and time-series of transports through the Little Belt were established. When compared to the transports through the Øresund the water transport ratio (Øresund:Little Belt) was found to be 4·4, while the salt transport ratio was found to be 3·0. The resistance of the Little Belt, when considering the differences in sea level from Gedser to Hornbæk, was 1839×10−12 s2 m−5. On the basis of water level and surface salinity measurements made during the period 1931–76, a net discharge of 2300 m3 s−1and a net salt transport of 36 tonnes s−1through the Little Belt from the central Baltic Sea were found.  相似文献   

7.
The vertical distributions of suspended particles in Osaka Bay were measured by using anin situ beam attenuation meter. The concentration of suspended particles near the bottom increases rapidly toward the bottom where size of sediment is in a range of silt. The settling velocity of suspended particles near the bottom was measured with the use of a settling tower in the laboratory. The settling velocity of the suspended particles with diameter from 10 to 100m is 2×10–3cm s–1 to 5×10–2cm s–1. The density of the particles ranges from 2.0 to 1.1 and decreases with increasing particle diameter.  相似文献   

8.
In order to clarify the structure of the strong tidal current at the Naruto Strait in the Seto Inland Sea of Japan, the sea-level values were observed in the strait and the current measurements were made with an Acoustic Doppler Current Profiler (ADCP).The tidal volume transports for M2 and S2 tides were about 74×103 and 26×103 m3 sec–1, respectively. The horizontal profile of the velocity at the phase of the strong tidal current compares favorably with a theoretical profile of the two-dimensional steady turbulent jet except for the side parts of the profile. Moreover, the entrainment rate of the surrounding water into the strong tidal jet was estimated from the difference of mass flux between two cross-sections at the strait, the entrainment rate and entrainment constant for both the northward and southward flows being about 1.3–2.5×10–4m–1 and about 0.03–0.05, respectively.  相似文献   

9.
Current meter data from various depths near the sea bottom collected for 31 days at time intervals of 10 minutes using a subsurface buoy system at a depth at 38 m on the continental shelf off Akita, Japan have been analyzed. The results show the existence of a stationary Ekman layer. The typical range of the characteristic parameters are estimated as follows; friction velocity: 0.38 cm s–1; Ekman layer thickness: 16 m; logarithmic layer thickness: 4 m–6 m; constant flux layer thickness: 0.4–0.6 m; Ekman veering: 28.7°; drag coefficient: 0.24×10–2–0.53×10–2. Veering was also observed in the logarithmic layer.  相似文献   

10.
We discussed the detailed current structures in the Eastern Channel of the Tsushima Strait, using four sets of acoustic Doppler current profiler (ADCP) data, which were taken by the quadrireciprocal method (Katoh, 1988), for removing tidal currents, in summers of 1987–1989. In the Eastern Channel, diurnally averaged currents balanced almost geostrophically. In the upper layer of the deepest part of the Eastern Channel, there existed a current core which corresponded to one branch of the Tsushima Current. The current direction in this core was between NE and ENE in all observations but the magnitude of velocity in 1987 differed largely from that in 1988. Another current core with lower velocities was found near the north coast of Kyushu. Near the bottom at the deepest part of the Eastern Channel, the velocity was more or less 0.3 kt (15 cm s–1). Along the east coast of Tsushima and in waters northeast of it, countercurrents were observed. The continuity of these countercurrents was interpreted as follows: A part of the current flowing from the Western Channel of the Tsushima Strait into the Japan Sea turns clockwise in waters northeast of Tsushima, and flows southwestward along the east coast of Tsushima. The southwestward current along Tsushima was correlated with the northeastward current in the central part of the Eastern Channel. The transport through the Eastern Channel was between 0.59 and 1.30 Sv (1 Sv=106 m3s–1). The baroclinic component, which was defined as the transport based on calculations of geostrophic current with assuming zero velocity near the bottom, was very small.  相似文献   

11.
The Luzon Strait transport variations during 1997~2000   总被引:1,自引:0,他引:1  
1IntroductionTheSouthChinaSea(SCS)isthelargestmarginalseainSoutheastAsia.TheSCSiscon-nectedtotheopenoceanthroughseveralstraitsbetweenthesurroundinglandmassesandis-lands.TheLuzonStrait(seeFig.1)islocatedinthenortheastoftheSCSbetweenTaiwanIslandandthePhilippineIslands,whichisabout380kmwideanditslargestdepthismorethan2500m.Sincetheotherstraitsareveryshallow,theLuzonStraitistheonlymajorchannelallowingeffectivewaterexchangewiththewesternNorthPacific. Wyrtki(1961)firstlyassocia…  相似文献   

12.
A simplified physical model is proposed in this article to describe differences among basins in substance distributions which were not well described by previous simplified models. In the proposed model, the global ocean is divided into the Pacific/Indian Ocean (PI), the Atlantic Ocean (AT), the Southern Ocean and the Greenland/Iceland/Norwegian Sea. The model is consisted of five physical parameters, namely the air-sea gas exchange, the thermohaline circulation, the horizontal and vertical diffusions, and the deep convection in the high-latitude regions. Individual values of these parameters are chosen by optimizing model distribution of natural 14C as a physical tracer. The optimal value for a coefficient of vertical diffusion in the low-latitude region is 7.5 × 10–5 [m2s–1]. Vertical transports by the Antarctic Bottom Water and the North Atlantic Deep Water are estimated at 1.0 Sv and 9.0 Sv. Global-mean air-sea gas exchange time is calculated at 9.0 years. Using these optimal values, vertical profiles of dissolved inorganic carbon without biological production in PI and AT are estimated. Oceanic responses to anthropogenic fluctuations in substance concentrations in the atmosphere induced by the industrialization and nuclear bomb are also discribed, i.e., the effects appear significantly in AT while a signal is extremely weak in PI. A time-delay term is effective to make the PI water older near the bottom boundary.  相似文献   

13.
根据中国近海高分辨率 ( 1 / 6°)环流模式的模拟结果 ,计算了南沙邻近海域与外海之间的海水体积、热量和盐量输运及其对印度尼西亚贯穿流的贡献。研究海域为 0°— 1 4°N的整个南海南部海域。计算得出 ,穿过研究海域流向印度尼西亚海域 ,最终流向印度洋的年平均体积、热量和盐量输运分别为 5 .2Sv( 1Sv =1× 1 0 6m3·s- 1 )、0 .5 7PW和 1 84Gg·s- 1 ,大约占印度尼西亚贯穿流相应输运量的 1 / 4。这一结果表明南海是全球大传送带这一全球海洋最主要热盐环流系统的重要通道之一。从南海流向印度尼西亚海域的通道以卡里马塔海峡为最主要 ,以下依次为巴拉巴克海峡、民都洛海峡和马六甲海峡。大的南向通量主要发生在冬、秋季 ,春末夏初总的通量向北。计算还得出输入本海区的热输运量比输出少 0 .0 64PW ,由这一结果推得 ,通过海 -气界面由大气进入海洋的年平均净热通量约为 30W·m- 2 。  相似文献   

14.
The wind-stress field in the North Pacific Ocean during 1961–75 is computed from nearly five million ship reports. With a drag coefficient having a linear relation to wind speed, annual mean and monthly mean wind-stress fields are obtained, and their features are described.Compared with the stress fields obtained byHellerman (1967) andWyrtki andMeyers (1976), the eastward component of the stress in the present study is larger in magnitude and the northward one smaller in magnitude, especially in the trade wind region. Differences in the drag coefficient do not have a pronounced effect on the estimated stress field. Long-period inter-annual variations in the wind field are the most likely cause of the discrepancies between the present study and those of the above authors.The maximum of the wind-stress curl, estimated from the annual mean wind-stress fields, is as large as 1.0×10–8dyn cm–3 around 30°N, and is larger than that estimated byEvenson andVeronis (1975). The discrepancy is considered to be mainly due to differences in the computed stress field itself rather than due to differences in the grid size used in the stress computations.The Sverdrup transports integrated from the eastern boundary on the basis of the present stress field have a maximum greater than 40×10–12cm3 s–1 (Sv.) near the western boundary around 30°N. This value is closer to the observed transport of the Kuroshio than that based on Hellerman's stress field.  相似文献   

15.
Rivers draining into the Gulf of Papua (GOP) from the Papua New Guinea mainland deliver approximately 340 × 106 t yr–1 of sediment to the marine environment. The terrestrially derived sediment contains 1.1 ± 0.2% particulate organic carbon with a carbon-isotope composition of –26.5 ± 0.2, and amounts to 3.7 ± 0.7 × 106 t yr–1. The carbon-isotope composition of sediments in the Gulf of Papua indicates that 40% of the sediment cover contains 75% or more terrestrially derived carbon. Suspended sediments that are transported beyond the delta complex of the Fly River are transported north and northwest, augmented by sediments from other rivers along the coast of the GOP. The carbon-isotope results suggest that a significant quantity of terrestrially derived sediment escapes from the GOP, either along the coastlines to east and west or into the deep ocean via the Moresby and Pandora troughs. Little sediment travels south onto the Great Barrier Reef shelf. Extrapolating the results from this study to the region of Oceania suggests a total flux of particulate organic carbon to the world's oceans from the islands of Oceania of ~ 90 × 106 t yr–1 or twice the flux of riverine POC from the major rivers of North America, South America, and Africa combined. While such a calculation must be considered illustrative only, the similar tectonic, geomorphologic, and climatic features of the islands of Oceania suggest that the calculation is unlikely to be grossly in error and that the rivers of Oceania therefore represent a major but poorly documented source of sediment and organic carbon to the global ocean.  相似文献   

16.
Using the “Eikonal Approach” (Henyey et al., 1986), we estimate energy dissipation rates in the three-dimensional Garrett-Munk internal wave field. The total energy dissipation rate within the undisturbed GM internal wave field is found to be 4.34 × 10−9 W kg−1. This corresponds to a diapycnal diffusivity of about 0.3 × 10−4 m2s−1, which is less than the value 10−4 m2s−1 required to sustain the global ocean overturning circulation. Only when the high vertical wavenumber, near-inertial current shear is enhanced can diapycnal diffusivity reach ∼10−4 m2s−1. It follows that the energy supplied at low vertical wavenumbers and low frequencies is efficiently transferred to high vertical wavenumbers and near-inertial frequencies in the mixing hotspots in the real ocean.  相似文献   

17.
An array of sediment traps was deployed for the analysis of the pattern of particulate organic carbon (POC) supply to the sea bottom in April, May and July 1988 at the mouth of Otsuchi Bay (about 80 m depth), Northeastern Japan.On the basis of a simple two-component mixing model using stable carbon isotope ratios, the POC flux was separated into marine planktonic and terrestrial components. Both the planktonic and terrestrial POC fluxes had maximum values at 30 m above the sea bottom throughout the three experiments. The planktonic POC flux showed a significant decrease with depth between 30 m and 10 m or 5 m above the bottom. Vertical supply of the planktonic POC and supply of the resuspended planktonic POC were estimated on the basis of regression lines between water depth and the planktonic POC flux in the depth range where the flux decreases with depth.Vertical supply of the planktonic POC and supply of the resuspended planktonic POC to the sea bottom were largest in May (52.1 mgC m–2 d–1 and 19.5 mgC m–2 d–1 at 5 m above the sea bottom), and horizontal supplies of the terrestrial POC were almost constant (31.9±3.5 mgC m–2 d–1 at 5 m above the bottom) throughout the three experiments.  相似文献   

18.
Cylindrical sediment traps were deployed at various depths in the anoxic water of Framvaren for two periods of one year (1981–1982 and 1983–1984). The traps were emptied three times during 1981–1982 and five times during 1983–1984. The vertical fluxes of total suspended material, organic carbon and nitrogen were calculated on a daily and annual basis. The average annual sediment flux 20 m above the bottom was approximately 60 g m−2 y−1 and the flux of organic carbon was 20 g m−2 y−1. On the basis of an average C/N ratio of 8 and a constant carbon flux below a depth of 20 m, it is concluded that little mineralization of the organic matter takes place in the anoxic water column. Assuming a primary production of the order to 50–100 g m−2 y−1, 22–24% of that reaches the anoxic water masses. Further breakdown of organic matter takes place in the surface sediments.  相似文献   

19.
Five transects across the NW Iberian margin were studied in the framework of the EU-funded Ocean Margin EXchange II (OMEX II) project, to determine and establish recent sediment and organic carbon transport and accumulation processes and fluxes.On the Galician shelf and shelf edge, resuspension of sediments resulting in well-developed bottom nepheloid layers was observed at all stations, but transport of suspended sediment appears largely confined to the shelf. On the continental slope, only very dilute bottom nepheloid layers were present, and intermediate nepheloid layers were only occasionally seen. This suggests that cross-slope transfer of particles is limited by the prevailing northerly directed shelf and slope currents.Optical backscatter and ADCP current measurements by the BOBO lander, deployed at 2152 m depth on the Galician slope, indicated that particles in the bottom boundary layer were kept in suspension by tidal currents with highest speeds between 15–25 cm s−1. Net currents during the recording period August 6th–September 10th 1998, were initially directed along-slope toward the NNW, but later turned off-slope toward the SW.The separation of the water masses on the slope from the sediment-laden shelf water by the along-slope current regime is reflected in the recent sedimentary deposits of the Galician shelf and slope. Apart from compositional differences, shelf deposits differ from those on the slope by their higher flux of excess 210Pb (0.57–5.37 dpm cm−2y−1 versus 0.11–3.00 dpm cm−2y−1), a much higher sediment accumulation rate (315.6–2295.9 g m−2y−1 versus 10.9–124.7 g m−2y−1) and organic carbon burial rate (1.01–34.30 g m−2y−1 versus 0.01–0.69 g m−2y−1).In contrast to the observations on the Galician margin, pronounced nepheloid layers occurred in the Nazaré Canyon, which extended to considerably greater water depths. This indicates that significantly greater transport of fine-grained particles in both the INL and the BNL was occurring within the canyon, as reflected in the exceptionally high 210Pb excess flux (up to 34.09 dpm cm−2y−1), mass accumulation rates (maximum 9623.1 g m−2y−1) and carbon burial fluxes (up to 180.91 g m−2y−1) in the sediment. However, radioisotope fluxes in the lower canyon were only slightly higher than at comparable depths on the Galician margin. This suggests that transport and rapid accumulation is focused on the upper and middle part of the canyon, from where it is episodically released to the deep sea. Compared to the Galician margin, the Nazaré Canyon may be considered as an important organic carbon depocenter on short time-scales, and a major conduit for particulate matter transport to the deep sea on >100 y time-scales.  相似文献   

20.
We have observed the temporal variation of oxygen deficient water with short time scale (less than a few days) in the central area of Ohmura Bay, Kyushu, Japan, in summer, 1995 and 1996. The vertical profiles of temperature were similar to those of dissolved oxygen. We noticed a linear relation between temperature and dissolved oxygen in the bottom layer, and applied the T-DO relation to estimate the net oxygen consumption rate, rather than direct evaluation of the advection and diffusion. Oxygen consumption rate just above the bottom was estimated to be about 0.21 g O2 m–3day–1 in July 1995, and about 0.28 g O2 m–3day–1 in August 1996. The net oxygen consumption rate estimated for the bottom layer below the second thermocline was about 0.61 g O2 m–3day–1 with variability from 0.55 to 0.66 g O2 m–3day–1 during July 25 to 29, 1995. This is was about 0.64 g O2 m–3day–1 with variability from 0.18 to 1.4 g O2 m–3day–1 during August 22 to 30, 1996. The net oxygen consumption rates are about half of those measured with a closed system in the Seto Inland Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号