首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 392 毫秒
1.
Rate coefficients have been measured for the gas phasereactions of hydroxyl (OH) radicals and ozone with twounsaturated esters, allyl acetate(CH3C(O)OCH2CH=CH2) and isopropenylacetate (CH3C(O)OC(CH3)=CH2). The OHexperiments were carried out using the pulsed laserphotolysis – laser induced fluorescence technique overthe temperature range 243–372 K and the kinetic dataused to derive the following Arrhenius expressions (inunits of cm3 molecule-1 s-1): allylacetate, k 1 = (2.33 ± 0.27) ×10-12 exp[(732 ± 34)/T]; and isopropenyl acetate,k 2 = (4.52 ± 0.62) × 10-12exp[(809 ± 39)/T]. At 298 K, the rate coefficients obtained (inunits of 10-12 cm3 molecule-1 s-1)are: k 1 = (27.1 ± 3.0) and k 2= (69.6± 9.4). The relative rate technique has been usedto determine rate coefficients for the reaction ofozone with the acetates. Using methyl vinyl ketone asthe reference compound and a value of4.8 × 10-18 cm3 molecule-1s-1 asthe rate coefficient for its reaction with O3,the following rate coefficients were derived at 298 ± 4 K (in units of10-18 cm3molecule-1 s-1): allyl acetate, (2.4 ± 0.7) andisopropenyl acetate (0.7 ± 0.2). Theresults are discussed in terms of structure-activityrelationships and used to derive atmospheric lifetimesfor the acetates.  相似文献   

2.
Rate coefficients have been measured for the reactions of hydroxyl radicals with a range of aliphatic ethers by a competitive technique. Mixtures of synthetic air containing a few ppm of nitrous acid, isobutene and an ether were photolyzed in a Teflon-bag smog chamber. From the rates of depletion of the ether and of the isobutene, and based on the value of the rate coefficient k(OH+i-C4H8)=5.26×10-11 cm3 molecule-1 s-1, the following rate coefficients were obtained for the hydroxyl radical reactions at 750 Torr and at 294±2K in units of 10-12 cm3 molecule-1 s-1: diethylether = 12.0±1.1, di-n-propylether = 15.3±1.6, di-n-butylether=17.1±0.9, ethyl n-butylether = 13.5±0.4, ethyl t-butyl-ether = 5.6±0.5, and di-isobutylether = 26.1±1.6. The quoted error limits correspond to 2 standard deviations but do not include any contribution from k(OH+i-C4H8) for which the error limits are estimated to be about ±10%. The results are discussed in relation to the available literature data and considered in terms of the structure-activity relation for hydroxyl radical reactions with organic molecules.  相似文献   

3.
Rate constants have been measured for the reactions of hydroxyl radicals with alkyl nitrates and with some oxygen-containing organic compounds by a competitive technique. Mixtures of synthetic air containing a few ppm of nitrous acid, ethylene and the organic substrate were photolysed in a Teflon bag smog chamber. Based on the value k HO+C2H4}=8.1×10-12 cm3 molecule-1 s-1 the following rate constants were obtained for the hydroxyl radical reactions at 750 Torr and at 303 K in units of 10-12 cm3 molecule-1: CH3ONO2, 0.37±0.09; C2H5ONO2, 0.48±0.20; n-C3H7ONO2, 0.70±0.22; C2H5OH, 3.6±0.4; CH3COCH3, 0.26±0.08; CH3CO2 i-C3H7, 3.0±0.8; CH3CO2 n-C3H7, 2.4±0.2. The results are discussed in relation to the available literature data and the implications of the results are considered in terms of the smog reactivity of these molecules.  相似文献   

4.
Rate coefficients have been measured for the reactions of hydroxyl radicals with five aliphatic ethers over the temperature range 242–328 K. Competitive studies were carried out in an atmospheric flow reactor in which the hydroxyl radicals were generated by the photolysis of methyl nitrite in the presence of air containing nitric oxide. The reaction of OH with 2,3-dimethyl-butane was used as the reference reaction and the following Arrhenius parameters have been obtained for the reactions: OH+RORproducts:
RORE/kJ mol–1 1012 A/cm3 molecule–1 s–1
dethyl ether–2.8±0.43.5±0.6
di-n-propyl ether–1.2±0.611.5±2.7
methylt-butyl ether0.85±0.594.0±1.3
ethyln-butyl ether–1.3±0.58.7±1.7
ethylt-butyl ether–1.2±0.63.0±0.8
  相似文献   

5.
Rate constants for the reaction of OH radicals with some branched alkyl nitrates have been measured applying a competitive technique. Methyl nitrite photolysis in synthetic air was used as OH radical source at 295±2 K and 1000 mbar total pressure. Using a rate constant of 2.53×10-12 cm3 s-1 for the reaction of OH radicals with n-butane as reference, the following rate constants were obtained (units: 10-12 cm3 s-1): isopropyl nitrate, 0.59±0.22; isobutyl nitrate, 1.63±0.20; 3-methyl-2-butyl nitrate, 1.95±0.15; 2-methyl-1-butyl nitrate, 2.50±0.15; 3-methyl-1-butyl nitrate, 2.55±0.35. These values have been combined with the literature data to recalculate the substituent factors F(X) for the different nitrate groups which can be used to predict OH rate constants for organic nitrates for which experimental data are not available.Preliminary measurements of the photolysis frequency of isopropyl nitrate have shown that for this nitrate as a model substance, OH reactions and direct photolysis are of equal importance under tropospheric conditions.  相似文献   

6.
Degradation of isoprene, m-xylene, n-octane, propene, and methacrolein by hydroxyl radicals has been studied in the simulation chamber SAPHIR under burden of trace gases as they are typical for the moderately polluted planetary boundary layer. Measured time series of the hydrocarbon mixing ratios and the OH concentrations were used to determine the rate constants. The hydrocarbons were measured with gas chromatography and proton transfer reaction mass spectrometry. OH was measured with the Jülich DOAS (differential optical absorption spectroscopy) instrument. In all cases except methacrolein good agreement was found with the reference rate constants taken from the Master Chemical Mechanism (MCM3.1). The data for methacrolein are consistent with the results of Karl et al. (J. Atmos. Chem 55, 2006, doi:) who reported a 12% smaller value. The degradation of hydrocarbons provides an independent method to analyse precision and accuracy of the OH measurements. A precision of better than 4% over a period of nearly 4 months was found. The accuracy is within the limitations given by the light absorption cross section of OH. Both results are consistent with earlier results by Hausmann et al. (J. Geophys. Res. 102:16011–16022, 1997).  相似文献   

7.
The following temperature-dependent rate coefficients (k/cm3 molecule–1 s–1) of the reactions of hydroxyl radicals with aliphatic ethers have been determined over the temperature range 247–373 K by a competitive flow technique: diethyl ether,k OH=5.2×10–12 exp[(262±150)/T]; methyln-butyl ether,k OH=5.4×10–12 exp[(309±150)/T]; ethyln-butyl ether,k OH=7.3×10–12 exp[(335±150)/T]; di-n-butyl ether,k OH=5.5×10–12 exp[(502±150)/T] and di-n-pentyl ether,k OH=8.5×10–12 exp[(417±150)/T]. The data have been measured relative to the rate coefficientk(OH + 2,3-dimethylbutane)=6.2×10–12 cm3 molecule–1 s–1 independent of temperature.Previous discrepancies in the room-temperature rate coefficients for the OH reactions with ethyln-butyl ether and di-n-butyl ether, obtained in the flow and static experiments of Bennett and Kerr (J. Atmos. Chem. 8, 87–94, 1989;10, 29–38, 1990) compared with those of Wallingtonet al. (Int. J. Chem. Kinet. 20, 541–547, 1988;21, 993–1001, 1989) and of Nelsonet al. (Int. J. Chem. Kinet. 22, 1111–1126, 1990) have been resolved. The results are considered in relation to the available literature data and evaluated rate expressions are deduced where possible. The data are also discussed in terms of structure-activity relationships.  相似文献   

8.
A study of the oxidation mechanism of N-methyl pyrrolidinone (C5H9NO, NMP) initiated by hydroxyl radicals was made at EUPHORE at atmospheric pressure (1000 ± 10) mbar of air and ambient temperature (T = 300 ± 5 K). The main products were N-methyl succinimide (NMS) (52 ± 4)% and N-formyl pyrrolidinone (FP) (23 ± 9)%. The relative rate technique was used to determine the rate constants of OH with NMP, NMS and FP, the measured values were (in units of cm3 molecule − 1 s− 1): kNMP = (2.2 ± 0.4) × 10− 11, kNMS = (1.4 ± 0.3) × 10− 12 and kFP = (6 ± 1) × 10− 12. The results are presented and discussed in terms of the atmospheric impact.  相似文献   

9.
A novel method has been examined for monitoring tropospheric hydroxyl radicals (OH), the most important oxidant in tropospheric chemistry. Aqueous phase salicylic acid reacts with atmospheric OH to produce 2,5-dihydroxy benzoic acid (2,5-DHBA) and other products. High Performance Liquid Chromatography (HPLC) is used to separate the post-reaction solution and the products are quantified using fluorescence detection. Unlike other methods, it has been reported to be inexpensive, portable and relatively simple. Although the sensitivity was sufficient to measure typical daytime OH concentrations of 0.04–0.4 ppt., the method was hindered by numerous interferences. Successive identification and elimination of these still resulted in a signal that was much larger than expected. Tests showed that this was not likely to be due to ozone, HO2, NOx, H2O2, aerosols, light or bacteria. Experimental and numerical studies suggest that the interference could be due to methyl peroxy radicals. The effect of many other components in the atmosphere, both individual and combined, must also be tested before the method can be used reliably in the field. The validity of previous reports of ambient hydroxyl measurements using this technique is therefore brought into question.  相似文献   

10.
Carbonyl products have been identified and their formation yields measured in the gas phase reaction of ozone with unsaturated oxygenates in experiments carried out at ambient T, p = 1 atm. of purified humid air (RH = 50%) and with sufficient cyclohexane added to scavenge the hydroxyl radical. The compounds studied are the esters methyl acrylate, vinyl acetate and cis-3-hexenyl acetate, the carbonyl crotonaldehyde, the hydroxy-substituted diene linalool, the ether ethylvinyl ether and the keto-ether trans-4-methoxy-3-buten-2-one. The alkene 1-pentene was included for comparison. The nature and formation yields of the carbonyl products from this study and those measured in earlier work under the same conditions are compared to those of alkenes and are supportive of a reaction mechanism that is similar to that for the reaction of ozone with alkenes, i.e. O3 + R1R2C=CR3X (R1COR2 + R3XCOO) + (1 – )(R3COX + R1R2COO), where Ri are the alkyl substituents, X is the oxygen-containing substituent (–CHO for aldehydes; –C(O)R for ketones; –C(O)OR and –OC(O)R for esters; –OH and hydroxyalkyl for alcohols; and –OR for ethers), R1COR2 is the primary carbonyl, R3COX is the other primary product and R1R2COO and R3XCOO are the carbonyl oxide biradicals. The biradicals lead to carbonyls in reactions that are also analogous to those involved in carbonyl formation from biradicals in the ozone-alkene reaction. These features make it possible to predict the nature and formation yields of the major carbonyl products of the reaction of ozone with unsaturated oxygenates that may be components of biogenic emissions.  相似文献   

11.
The yields of carbonyl-containing reaction products from the ozonolysis of α-pinene have been investigated using concentrations of ozone found in the indoor environment ([O3] ≤ 100 ppb). An impinger was used to collect gas-phase oxidation products in water, where the derivatization agent O-tert-butylhydroxylamine hydrochloride (TBOX) and gas chromatography-mass spectrometry were used to identify carbonyl-containing species. Seven carbonyl-containing products were observed. The yield of the primary product, pinonaldehyde was measured to be 76 %. Using cyclohexane as a hydroxyl radical (?OH) scavenger, the yield of pinonaldehyde decreased to 46 %, indicating the influence secondary OH radicals have on α-pinene ozonolysis products. Furthermore, the use of TBOX, a small molecular weight derivatization agent, allowed for the acquisition of the first mass spectral data of oxopinonaldehyde, a tricarbonyl reaction product of α-pinene ozonolysis. The techniques described herein allow for an effective method for the collection and identification of terpene oxidation products in the indoor environment.  相似文献   

12.
The ozonolysis of propene has been investigated in a temperature controlled reaction chamber at 295, 260, and 230 K. Experiments were performed using a total zero air pressure of 760 Torr (STP) and propene/ozone reactant mixing ratios ranging from 2.3 to 23 ppmv. An analysis of FTIR spectra collected at the conclusion of each reaction revealed that methane was formed with a yield of 0.14 ± 0.03 (precision) for all the temperatures investigated.In addition, the yield of HCHO decreased from 0.67 ± 0.04 to 0.43± 0.03 upon cooling from 295 to 230 K, whereas the yield of HCOOH increased from 0.11 ± 0.02 to 0.53 ± 0.04. Experiments were also performedusing an excess of cyclohexane (to scavenge OH) and it was found that the formaldehyde yield was 0.79 ± 0.05 and 0.61 ± 0.04 at 295 and260 K, respectively. Finally, to more fully understand the reaction energies involved in product formation, we have performed molecular orbital calculations of heats of formation of reactants, stable intermediates, and products. Three conclusions can be made of this work. First, the reaction CH2OO + Aldehyde Secondary Ozonide HCOOH + Aldehyde is not an important mechanism in formic acid production. Second, the decomposition of the primary ozonide products (e.g., C2 radical species) appears to occur, in part, by a thermal mechanism (e.g., thermalized to chamber temperature). Third, ab initio resultscombined with experiment reveal no correlation between reaction exothermicity and products formed (e.g., kinetically dictated product formation occurs). The abinitio database is provided nevertheless as a starting point for transition state calculations to be performed in the future. Finally, since formaldehyde yield decreases by at most 35% with decreasing temperature and formic acid is relatively unreactive in the atmosphere, our results suggest that temperature-dependent HCHO yield will constitute only a minor perturbation to HOx formation in the middle troposphere.  相似文献   

13.
Ion mobility spectrometry offers a robust and effective technique to study ion clusters in ambient conditions. Here, we have experimentally studied the influence of temperature on the positive ion cluster formation of 2-propanol vapor in air, along with parallel measurements for n-butyl acetate vapor in air. For both of these low proton affinity compounds in the ppm concentration range, temperatures below 0 °C tend to favor formation of dimers and trimers. The measurements indicate that approximate estimations for the fractions of these n-mers (n > 1) in the ion spectra, can be obtained by classical theory for ion induced nucleation. Presence of natural background vapors however slightly blurs the data, especially for the fraction of monomers, so that accurate prediction of the fractions of n-mers in the spectra would require more accurate information on the gas composition. The findings concerning thermal behavior of ions help to understand better ion phenomena also in field conditions.  相似文献   

14.
The 1,4-hydroxycarbonyl 5-hydroxy-2-pentanone is an important product of the gas-phase reaction of OH radicals with n-pentane in the presence of NO. We have used a relative rate method with 4-methyl-2-pentanone as the reference compound to measure the rate constant for the reaction of OH radicals with 5-hydroxy-2-pentanone at 296 ± 2 K. The carbonyls were sampled by on-fiber derivatization using a Solid Phase Micro Extraction (SPME) fiber coated with O> -(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride with subsequent thermal desorption of the oxime derivatives and quantification by gas chromatography with flame ionization detection. For comparison, the reference compound was also analyzed following sample collection onto a Tenax adsorbent cartridge. Products of the reaction were investigated using coated-fiber SPME sampling with gas chromatography-mass spectrometry analysis as well as by using in situ atmospheric pressure ionization mass spectrometry. A rate constant for the reaction of OH radicals with 5-hydroxy-2-pentanone of (1.6 ± 0.4) × 10–11 cm3 molecule–1 s–1 was obtained at 296 ± 2 K. Two dicarbonyl products, of molecular weight 86 and 100, were observed and are attributed to CH3C(O)CH2CHO and CH3C(O)CH2CH2CHO, respectively. Reaction schemes leading to these products are presented.  相似文献   

15.
The solvent-extractable organic compounds of atmospheric PM10 samples, collected over two years beginning in 2003 at urban and suburban sites of Beijing, were characterized using gas chromatography–mass spectrometry (GC–MS). The elemental carbon (EC) contents were determined and ranged from 4.3 to 42 μg m− 3. Organic compounds in total extracts were identified and included unresolved complex mixture (UCM) and series of n-alkanes, n-alkanols, n-alkanoic acids, polycyclic aromatic hydrocarbons (PAHs); saccharides, alkanedioic acids, steroids, and other biomarkers and source tracers. The seasonal variations of their relative abundances are discussed. The abundance order for the major molecular classes in the particulate organic matter (POM) was the following: UCM > saccharides > n-alkanoic acids >n-alkanes > n-alkanols > PAHs > hydroxy-PAHs > other biomarker tracers. Based on the genetic significance of the molecular tracers, the dominant sources of POM are proposed for the two sampling sites. The emissions from fossil fuel use (both coal and petroleum products), biomass combustion, other pyrolysis sources, higher plant wax, and secondary products contribute > 98.0% of the POM mass. The fossil fuel use (average = 65% of POM) is the largest contributor and derives mainly from vehicular traffic.  相似文献   

16.
The room-temperature photodecomposition of acetone diluted with synthetic air was studied at nine wavelengths in the spectral region 250–330 nm. The quantum yields for the products CO2 and CO indicated that it was not possible to suppress secondary reactions sufficiently, even with acetone/air mixing ratios as low as 150 ppmv, to derive from these data primary acetone photodissociation quantum yields. The behavior of CO2 and CO formation nevertheless provides some insight into the mechanism of acetone photodecomposition. When small amounts of NO2 are added to acetone/air mixtures, peroxyacetyl nitrate (PAN) is formed. Quantum yields for PAN are reported. They are better suited to represent primary quantum yields for acetone photodissociation, because PAN is a direct indicator for the formation of acetyl radicals. The data were combined with absorption cross-sections for acetone measured at wavelengths up to 360 nm to calculate photodissociation coefficients applicable to the ground-level atmosphere at 40° northern latitude. Comparison with the rates for the reaction of acetone with OH radicals shows that both processes contribute almost equally to the total acetone losses in the lower atmosphere. The resulting atmospheric life time at 40° northern latitude is 32 days, on average. This value must be considered an upper limit, since it does not take into account acetone losses due to the reaction of excited triplet acetone with oxygen.  相似文献   

17.
The yields of products have been calculated for the reactions of hydroxyl radicals and ozone with 19 of the two-through-six carbon anthropogenic alkenes. Based on their rate of reaction, mechanisms of reactions and the ambient air distribution for these alkenes their seasonal ambient air yields have been estimated.Aldehydes predominate as products irrespective of season, with smaller yields of several ketones. Other minor products include carboxylic acids, carbon monoxide, carbon dioxide, and alkenes. About a two-fold increase is estimated in the yields of hot biradicals and their products from summer to winter.One sensitivity analysis was made by recomputing yields at a different OH radical to O3 concentration than assumed most likely in the calculations discussed above. In addition, the sensitivity of product yields to an estimated range of seasonally averaged sunset-to-sunrise NO3 radical concentrations was calculated. The effects of free radical reactions are discussed, but these are believed to make a relatively minor contribution within the NO x -rich atmospheres that contain anthropogenic alkenes.The uncertainties in product yields associated with the range of NO3 radical concentrations assumed present is relatively small for aldehydes, as is the decrease in yield of the one carbon hot biradical. Larger uncertainties occur for ketones. Significant decreases in yields occur for larger hot biradicals, especially the branched-chain hot radicals in the presence of NO3 radicals.  相似文献   

18.
The concentrations of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) are determined in atmospheric aerosol samples collected at a rural sampling site in Hungary. For the n-alkanes the chromatographic profiles are established and the average carbon number and carbon preference index (CPI) are calculated. An attempt is made to obtain the origin of n-alkanes found in atmospheric aerosol samples. Based on the results of the measurements the probable importance of a round-the-year biogenic source for the n-alkanes with CPIs close to unity is emphasized.  相似文献   

19.
The objectives of this study were to identify species and levels of volatile organic compounds (VOCs), and determine their oxidation capacity in the rural atmosphere of western Senegal. A field study was conducted to obtain air samples during September 14 and September 15, 2006 for analyses of VOCs. Methanol, acetone, and acetaldehyde were the most abundant detected chemical species and their maximum mixing ratios reached 6 parts per billion on a volume basis (ppbv). Local emission sources such as firewood and charcoal burning strongly influenced VOC concentrations. The VOC concentrations exhibited little temporal variations due to the low reactivity with hydroxyl radicals, with reactivity values ranging from 0.001 to 2.6 s−1. The conditions in this rural site were rather clean. Low ambient NO x levels limited ozone production. Nitrogen oxide (NO x ) levels reached values less than 2 ppbv and maximum VOC/NO x ratios reached 60 ppbvC/ppbv, with an overall average of 2.4 ± 4.5 ppbvC/ppbv. This indicates that the rural western Senegal region is NO x limited in terms of oxidant formation potential. Therefore, during the study period photochemical ozone production became limited due to low ambient NO x levels. The estimated ozone formation reactivity for VOCs was low and ranged between −5.5 mol of ozone/mol of benzaldehyde to 0.6 mol/mol of anthropogenic dienes.  相似文献   

20.
Gas phase ozonolysis of -pinene was performedin a 570 l static reactor at 730 Torr and 296 K insynthetic air and the products were analysed by acombination of gas phase FTIR spectroscopy, HPLC andIC analyses of gas phase and aerosol samples,respectively. The reaction mechanism was investigatedby adding HCHO, HCOOH and H2O as Criegeeintermediate scavenger and cyclohexane as OH radicalscavenger. Main identified products (yields inparentheses) in the presence of cyclohexane as OHradical scavenger were HCHO (0.65 ± 0.04),nopinone (0.16 ± 0.04), 3-hydroxy-nopinone (0.15± 0.05), CO2 (0.20 ± 0.04), CO (0.030± 0.002), HCOOH (0.020 ± 0.002), the secondaryozonide of -pinene (0.16 ± 0.05), andcis-pinic acid (0.02 ± 0.01). The decompositionof the primary ozonide was found to yieldpredominantly the excited C9-Criegee intermediateand HCHO (0.84 ± 0.04) and to a minor extent theexcited CH2OO intermediate and nopinone (0.16± 0.04). Roughly 40% of the excitedC9-Criegee intermediate becomes stabilised andcould be shown to react with HCHO, HCOOH and H2O. The atmospherically important reaction of thestabilised C9-Criegee intermediate with H2Owas found to result in a nopinone increase of (0.35± 0.05) and in the formation of H2O2(0.24 ± 0.03). Based on the observed products,the unimolecular decomposition/isomerisationchannels of the C9-Criegee intermediate arediscussed in terms of the hydroperoxide and esterchannels. Subsequent reactions of the nopinonylradical, formed in the hydroperoxide channel, lead tomajor products like 3-hydroxy-nopinone but also tominor products like cis-pinic acid. A mechanismfor the formation of this dicarboxylic acid isproposed and its possible role in aerosol formationprocesses discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号