首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

亚非夏季风降水对当地农业、水资源管理、粮食安全以及生态系统等均有广泛影响, 其对全球变暖的响应特征是一个重要的科学问题。本研究基于上新世模式比较计划(PlioMIP2)的15个上新世暖期模式模拟数据和第六次国际耦合模式比较计划(CMIP6)的31个高排放情景SSP5-8.5模式模拟数据, 对比分析了上新世暖期和未来增暖背景下亚非夏季风降水变化特征的差异及其成因机制。结果表明: 在这两类气候增暖背景下, 亚非夏季风降水都呈增加的趋势, 然而对应于全球平均1 ℃升温, 季风降水在上新世暖期的强度增幅(0.24 mm/day/℃)明显大于其在未来增暖情景的强度增幅(0.17 mm/day/℃), 前者降水异常值约为后者的1.4倍。这种差异主要源于, 对应于全球平均1 ℃升温, 上新世暖期中高纬增温幅度显著强于未来增暖情景, 而低纬度较小。上新世暖期低纬和北半球中高纬度之间的经向温度梯度减弱幅度更大, 有利于亚非夏季风环流显著增强, 从而导致亚非夏季风降水强度显著强于未来增暖时期。本研究表明, 气候增暖背景下低纬与中高纬度之间的经向温度梯度变化对亚非夏季风具有显著影响, 准确衡量暖期南-北半球间经向温度梯度的变化对预估区域季风和水循环变化至关重要。

  相似文献   

2.
张冉  姜大膀 《第四纪研究》2013,33(1):136-145
中上新世是古气候研究领域的重要时期,研究此时期气候能为理解地球气候系统和预估未来气候变化提供帮助。利用美国国家大气研究中心研发的通用气候系统模式的平板海洋模式组件CCSM4-SOM,模拟了相对于工业革命前期,大气CO2浓度、地形和地表类型改变对中上新世气候增暖的不同影响。结果表明,地形改变对全球年平均地表气温影响较小,但在地形降低较大区域其增温效果十分明显; 大气CO2浓度增加导致全球年均地表气温显著增加,而且全球各纬度均有增温,由于海冰反馈作用,两半球高纬海域增温更为显著; 地表类型改变在北半球高纬增温效应最为明显,部分地区增温幅度已超过大气CO2浓度增加所引起的增幅。总体来看,大气CO2浓度增加所引起的增温效应在全球年平均和全年纬向平均上表现显著,但在高纬局地区域,它的影响并没有地形和地表类型改变的影响大。  相似文献   

3.
Proxy reconstructions of precipitation from central India, north-central China, and southern Vietnam reveal a series of monsoon droughts during the mid 14th–15th centuries that each lasted for several years to decades. These monsoon megadroughts have no analog during the instrumental period. They occurred in the context of widespread thermal and hydrologic climate anomalies marking the onset of the Little Ice Age (LIA) and appear to have played a major role in shaping significant regional societal changes at that time. New tree ring-width based reconstructions of monsoon variability suggest episodic and widespread reoccurrences of monsoon megadroughts continued throughout the LIA. Although the El-Niño Southern Oscillation (ENSO) plays an important role in monsoon variability, there is no conclusive evidence to suggest that these megadroughts were associated with anomalous sea surface temperature anomalies that were solely the result of ENSO-like variability in the tropical Pacific. Instead, the causative mechanisms of these megadroughts may reside in protracted changes in the synoptic-scale monsoon climatology of the Indian Ocean. Today, the intra-seasonal monsoon variability is dominated by ‘active’ and the ‘break’ spells – two distinct oscillatory modes of monsoon that have radically different synoptic scale circulation and precipitation patterns. We suggest that protracted locking of the monsoon into the “break-dominated” mode – a mode that favors reduced precipitation over the Indian sub-continent and SE Asia and enhanced precipitation over the equatorial Indian Ocean, may have caused these exceptional droughts. Impetus for periodic locking of the monsoon into this mode may have been provided by cooler temperatures at the extratropical latitudes in the Northern Hemisphere which forced the mean position of the Inter-Tropical Convergence Zone (ITCZ) further southward in the Indian Ocean.  相似文献   

4.
《Quaternary Science Reviews》2005,24(10-11):1159-1182
A case is made that seasonality switches dominated by wintertime were instrumental in abrupt climate changes in the North Atlantic region during the last glaciation and into the Holocene. The primary evidence comes from mismatches between mean annual temperatures from Greenland ice cores in comparison with snowline changes in East Greenland, northern Europe, and North America. The most likely explanation is a shutdown (or reduction in strength) of the conveyor. This allows the spread of winter sea ice across the North Atlantic, thus causing the northern region to experience much colder winters. Because they mimic the Greenland temperature rather than the snowline signal, changes in the Atlantic Intertropical Convergence Zone and the Asian monsoon may also share a winter linkage with Greenland. Thus the paleoclimate record is consistent with the notion that a huge continental sector of the Northern Hemisphere, stretching from Greenland to Asia, was close to an extreme winter threshold during much of the last glaciation. Winter climate crossed this threshold repeatedly, with marked changes in seasonality that may well have amplified and propagated a signal of abrupt change throughout the hemisphere and into the tropics.  相似文献   

5.
杨保 《第四纪研究》2012,32(1):81-94
小冰期气候为评估现代气候变化提供了最直接的背景。本文主要依据树轮资料,同时结合现代仪器观测记录,利用经验正交函数(EOF)方法探讨了青藏高原小冰期以来气候变化的时空特征。首先分析了高原的温度变化。近50年来青藏高原的温度变化基本同相位变化,没有明显的区域差异; 乌兰树轮序列是青藏高原的冬半年(9~4月)温度代用指标; 利用6条指示夏季或暖季温度变化的树轮序列合并形成的新序列可指示高原春季-夏季(3~8月)温度变化; 依据RCS(区域曲线标准化)方法建立的昌都树轮序列,能够反映整个青藏高原的年平均温度变化; 不同季节的温度重建序列均显示17世纪和18世纪20~70年代是高原小冰期气候寒冷的时期,而18世纪初,19世纪后半叶,20世纪中期的气候较温暖,且均显示20世纪末期气候的快速增暖事实。其次,从重建的亚洲区域夏季PDSI(Palmer Drought Severity Index)网格化数据集中提取42个网格点数据,分析了过去700年(1300~2005A.D.)高原的湿度变化。发现前3个特征向量代表了高原过去湿度变化的主要空间模态,与利用器测降水记录展开的EOF模态基本一致,表明主导高原干湿变化时空差异的物理过程是稳定的,不随时间而变化; 近700年来高原南北部湿度变化具有明显的区域差异,最显著的差别是: 自20世纪中期以来高原北部存在明显的变湿趋势,而高原南部却恰恰相反,呈现逐渐变干的趋势; 近700年来高原南部的干湿变化有超前于高原北部的趋势。  相似文献   

6.
研究季风区小冰期的结构特征和区域响应有助于深入了解季风系统与地球内外驱动力的耦合关系。利用湖北神农架永兴洞YX275石笋的7个230Th年龄和120个碳同位素数据,建立了1 360~1 955 AD期间5年分辨率的石笋碳同位素序列。石笋δ13C与δ18O记录在长期趋势上有很好的对应关系,对小冰期气候响应明显,δ13C记录在大尺度季风环流影响下主要反映了局域湿度变化特征。δ13C序列在1 453~1 890 AD显著正偏,表明小冰期时湿度明显降低。此外,石笋δ13C与亚洲夏季温度、南方涛动指数和热带辐合带记录有较好的一致性,表明亚洲大陆夏季温度和太平洋水汽可能通过影响夏季风的强弱来调控湖北地区的湿度变化。在小冰期内部,δ13C记录在1 450~1 550 AD和1 790~1 830 AD出现进一步正偏,这些振荡分别对应于太阳活动的Sp?rer和Dalton极小期,暗示太阳活动减弱期对中国中部小冰期水文振荡的进一步调控作用。  相似文献   

7.
气候系统模式FGOALS_gI模拟的小冰期气候   总被引:2,自引:0,他引:2       下载免费PDF全文
利用1650~1750年逐年变化的太阳辐照度等外强迫资料,驱动中国科学院大气物理研究所LASG发展的快速气候系统模式FGOALS_gl,模拟了小冰期(LIA)气候.把模拟的LIA表面温度变化与重建资料进行对比,结果表明FGOALS_gl对LIA气候具有较强的模拟能力,说明太阳辐照度的自然变化是导致小冰期气候的重要成因.模拟结果显示,LIA时期纬向平均温度变化表现为整个对流层降温,低纬度地Ⅸ的降温中心位于对流层中层,北半球降温幅度大于南半球,高纬地区的降温幅度大于低纬地区.分析发现,中高纬地区的局地温度变化主要与环流异常相对应的冷暖平流有关;低纬地区的降温主要与赤道东风加强有关,东风增强通过增大蒸发和引起次表层冷海水上翻而令表层温度降低.LIA时期的降水变化丰要位于中低纬地区,表现为日界线东(西)侧降水的负(正)异常.与降水异常相对应.Walker环流加强,东太平洋对流活动减弱,它与低纬地区对流层中层冷异常相联系.与大气层顶净短波辐射异常的季节变化相对应,南、北半球夏季平均表面温度异常较之冬季低0.28℃左右.  相似文献   

8.
High-resolution proxy records from the circum-Caribbean region indicate significant variation in Late Holocene climate, especially precipitation, attributed primarily to shifts in the mean annual position of the Intertropical Convergence Zone (ITCZ). The paleoenvironmental and cultural impacts of this Late-Holocene climate variability have been analyzed intensively in the western Caribbean, and to a lesser extent in the southern Caribbean. However, the occurrence and impacts of Late Holocene climate shifts in the eastern Caribbean, especially in island interiors, has not been well documented. Here we present sediment records of Late-Holocene paleoenvironmental change from two lakes located on the Caribbean slope of the Cordillera Central in the Dominican Republic that span the last ~3000 years. Sediment characteristics, pollen, charcoal, biogenic carbonate assemblages and isotopic composition, and bulk sedimentary carbon isotope values in Laguna Castilla and Laguna de Salvador indicate extreme shifts in hydrology, vegetation, and disturbance regimes in response to climate change and human activity in the lake watersheds. Close correspondence between the hydrological histories of the lakes and trace metal concentrations in sediments of the Cariaco Basin indicate that precipitation variability here responds to the same controls, and may similarly reflect shifts in the mean annual position of the ITCZ. Human occupation of the watersheds appears to be closely linked to severe dry periods and may indicate larger scale cultural responses to precipitation variability on the island of Hispaniola. Prehistoric human populations strongly affected vegetation and disturbance regimes in the lake watersheds. Impacts may have lasted several centuries and may have been more severe than impacts of modern populations.  相似文献   

9.
气候系统模式FGOALS_gl模拟的小冰期气候   总被引:7,自引:3,他引:4       下载免费PDF全文
利用1650~1750年逐年变化的太阳辐照度等外强迫资料,驱动中国科学院大气物理研究所LASG发展的快速气候系统模式FGOALS_gl,模拟了小冰期(LIA)气候。把模拟的LIA表面温度变化与重建资料进行对比,结果表明FGOALS_gl对LIA气候具有较强的模拟能力,说明太阳辐照度的自然变化是导致小冰期气候的重要成因。模拟结果显示,LIA时期纬向平均温度变化表现为整个对流层降温,低纬度地区的降温中心位于对流层中层,北半球降温幅度大于南半球,高纬地区的降温幅度大于低纬地区。分析发现,中高纬地区的局地温度变化主要与环流异常相对应的冷暖平流有关; 低纬地区的降温主要与赤道东风加强有关,东风增强通过增大蒸发和引起次表层冷海水上翻而令表层温度降低。LIA时期的降水变化主要位于中低纬地区,表现为日界线东(西)侧降水的负(正)异常。与降水异常相对应,Walker环流加强,东太平洋对流活动减弱,它与低纬地区对流层中层冷异常相联系。与大气层顶净短波辐射异常的季节变化相对应,南、北半球夏季平均表面温度异常较之冬季低0.28℃左右。  相似文献   

10.
Presented here are stable nitrogen isotope data from a rock hyrax (Procavia capensis) middens from northwestern Namibia that record a series of rapid aridification events beginning at ca. 3800 cal yr BP, and which mark a progressive decrease in regional humidity across the Holocene. Strong correlations exist between this record and other terrestrial and marine archives from southern Africa, indicating that the observed pattern of climate change is regionally coherent. Combined, these data indicate hemispheric synchrony in tropical African climate change during the Holocene, with similar trends characterising the termination of the ‘African Humid Period’ (AHP) in both the northern and southern tropics. These findings run counter to the widely accepted model of direct low-latitude insolation forcing, which requires an anti-phase relationship to exist between the hemispheres. The combined dataset highlights: 1) the importance of forcing mechanisms influencing the high northern latitudes in effecting low-latitude climate change in Africa, and 2) the potential importance of solar forcing and variations in the Earth's geomagnetic shield in determining both long-term and rapid centennial-scale climate changes, identifying a possible mechanism for the variations marking the AHP termination in both the southern and northern tropics.  相似文献   

11.
全球小冰期的气候变化   总被引:1,自引:0,他引:1  
王立国  钟巍  李偲 《冰川冻土》2002,24(6):750-758
根据全球小冰期气候信息的不同代用指标的结果分析,全球小冰期冷、暖气候变化趋势具有一致性.其中,太阳活动是影响全球小冰期气候变化的主要因素,强火山爆发及厄尔尼诺事件则是其强化因素,这些因素通过海-气作用这一复杂机制对全球气候产生深远影响.  相似文献   

12.
深海记录中的热带过程及其周期性   总被引:2,自引:4,他引:2  
田军  汪品先 《地球科学》2006,31(6):747-753
地球运行轨道参数包括偏心率、斜率和岁差, 在地质时期分别具有413ka和100ka、41ka、23ka和19ka的周期, 它决定地表太阳辐射在不同纬度和季节的周期性变化.太阳辐射变化中, 岁差周期最为明显, 斜率周期在中高纬度比较明显, 而偏心率周期本身作用微弱, 主要通过调控岁差周期的变幅影响气候.传统的地球轨道驱动理论认为, 北半球高纬的太阳辐射决定全球冰量和地表的气候变化, 轨道周期可能线性地反映到气候变化的周期中去.实际的深海记录反映的情况并非如此, 尤其在热带海区, 气候替代性指标的周期性与太阳辐射的周期性既存在相似性, 也存在较大区别.相似性在于, 热带海区的气候替代性指标均表现出较强的岁差和斜率周期, 而且通常情况下岁差周期的强度要高于斜率周期的强度, 说明热带海区的气候变化受控于岁差调控的太阳辐射的变化; 区别性在于, 热带海区气候替代性指标通常表现出较强的不容忽视的100ka、413ka的偏心率周期和10ka左右的半岁差周期, 而且100ka、413ka的偏心率周期还是季风系统的典型周期, 说明热带海区的气候变化并不是简单的线性响应太阳辐射的变化, 也不完全受北半球高纬的控制, 而是具有自身的特性.   相似文献   

13.
唐古拉山东段布加岗日地区小冰期以来的冰川变化研究   总被引:5,自引:12,他引:5  
王宁练  丁良福 《冰川冻土》2002,24(3):234-244
对唐古拉山东段布加岗日地区小冰期以来的冰川变化资料进行了分析,结果表明,该地区小冰期最盛时(即15世纪)冰川总面积和总储量分别为241.46km2和19.6282km3,目前其面积和储量分别已减少了23.7%和15.1%,并且自小冰期以来有184条长度大约为0.6km的小冰川已消失.该地区各冰川面积和储量的绝对变化量随着冰川规模的增大而增大,而其相对变化百分数却是随着冰川规模的增大而减小.不同方位冰川小冰期以来的平均面积萎缩量、平均末端退缩量和平均末端高程上升量均表明,南坡冰川变化的绝对量比北坡的大.这说明在同一气候变化背景下,该地区南坡冰川对于气候变化的响应比北坡冰川敏感.小冰期以来该地区冰川雪线上升了约90m,这大致相当于气温上升约0.6℃.  相似文献   

14.
The object of this study is to document how the Inuit on the northern coast of Labrador, Canada used terrestrial resources such as peat and wood during the Little Ice Age (LIA; A.D. 1500–1870). Paleoecological investigations consisting of pollen and macrofossil analyses were undertaken in conjunction with archaeological excavations at the Inuit winter settlement sites of Oakes Bay 1, located in the Nain region of north‐central Labrador. Our data indicate that the major changes in terrestrial ecosystems of this coastal region were triggered by climate change. From ca. 5700 to 3000 cal. yr B.P., climatic conditions were relatively warm and moist. At ca. 3000 cal. yr B.P. conditions became significantly drier and colder, which corresponds to broader climatic trends during the Neoglacial period. At ca. 1000 cal. yr B.P., the reappearance of hygrophilic species and the establishment of Larix laricina provide evidence of a return to more humid conditions that in turn triggered the onset of the paludification of sandy terraces in the Dog Island region. Peat accumulation persisted after ca. 580 cal. yr B.P. likely due to the elevation of the frost table during the LIA. Elevated frost tables contributed to water saturation of the surface during the spring, creating conditions that were conducive to the preservation of organic material. Natural resources such as trees and peat were therefore readily available and more abundant during the LIA and extensively used by the Inuit for house construction and heating in the Dog Island region.  相似文献   

15.
Monsoonal climates at low latitudes (< 32°N) are an inevitable consequence of seasonal migrations of the Inter-tropical Convergence Zone (ITCZ), but the character of these monsoons depends on continental configuration, orographic expression and the strength of Hadley circulation. To explore the evolution of monsoon systems across southern Asia we compare climate signatures archived in ten Paleogene floras from northern India, Tibet and southern China, occupying low palaeolatitudes at a time of extreme global warmth and elevated CO2. Fossil leaf form reveals that under such 'hothouse' conditions megathermal early Eocene to earliest Miocene forests were exposed to strong monsoonal climates typical of those experienced today arising from annual migrations of the ITCZ, possibly enhanced by a lower equator-to-pole temperature gradient. Throughout the Paleogene an elevated Tibetan highland produced no discernable modification of this ITCZ monsoon, although rainfall seasonality similar to that of the modern South Asia Monsoon (SAM) is observed in northern India as early as the beginning of the Eocene, despite its near-equatorial palaeoposition. In South China rainfall seasonality increased progressively achieving modern monsoon-like wet season/dry season precipitation ratios by the early Oligocene. Despite evidencing weak rainfall seasonality overall, fossil leaves from South China have exhibited monsoon-adapted morphologies, comparable to those seen in today's Indonesia-Australia Monsoon, for at least 45 million years. Together, the Indian and South China fossil leaf assemblages show that the evolution of megathermal ecosystems across southern Asia has been influenced profoundly by monsoonal climates for at least the last 56 million years. The Paleogene ITCZ-driven monsoon system strongly impacted India as it transited the Equator likely eliminating Gondwanan taxa not able to adapt to seasonal precipitation extremes. Furthermore, powerful seasonally-reversing winds, and associated surface ocean currents, are likely to have facilitated two-way biotic transfer between India and Eurasia long before closure of the Tethys Ocean.  相似文献   

16.
《Quaternary Science Reviews》2007,26(13-14):1818-1837
We present the first synchronously coupled transient simulation of the evolution of the northern Africa climate-ecosystem for the last 6500 years in a global general circulation ocean–atmosphere–terrestrial ecosystem model. The model simulated the major abrupt vegetation collapse in the southern Sahara at about 5 ka, consistent with the proxy records. Local precipitation, however, shows a much more gradual decline with time, implying a lack of strong positive vegetation feedback on annual rainfall during the collapse. The vegetation change in northern Africa is driven by local precipitation decline and strong precipitation variability. In contrast, the change of precipitation is dominated by internal climate variability and a gradual monsoonal climate response to orbital forcing. In addition, some minor vegetation changes are also simulated in different regions across northern AfricaThe model also simulated a gradual annual mean surface cooling in the subtropical North Atlantic towards the latest Holocene, as well as a reduced seasonal cycle of SST. The SST response is caused largely by the insolation forcing, while the annual mean cooling is also reinforced by the increased coastal upwelling near the east boundary. The increased upwelling results from a southward retreat of the North Africa monsoon system, and, in turn, an increased northeasterly trade wind. The simulated changes of SST and upwelling are also largely consistent with marine proxy records, albeit with a weaker magnitude in the model.The mismatch between the collapse of vegetation and gradual transition of rainfall suggests that the vegetation collapse is not caused by a strong positive vegetation feedback. Instead, it is suggested that the Mid-Holocene collapse of North African vegetation is caused mainly by a nonlinear response of the vegetation to a precipitation threshold in the presence of strong climate variability. The implication to the modeling and observations is also discussed.  相似文献   

17.
李宜垠  李博闻  徐鑫 《第四纪研究》2019,39(4):1034-1041

大兴安岭地处季风气候的尾闾区,是一个研究全球变化的关键区域。但由于该地区古气候代用指标(树轮、孢粉、石笋等)获取比较困难,历史文献也缺乏,使得古气候研究受到了限制。本研究通过大兴安岭北部的漠河县满归镇附近一个厚88 cm的泥炭剖面的孢粉记录,根据831个表土样品的花粉数据和附近90个气象台站30年的地面观测数据,运用现代类比法(Modern Analogue Technique,简称MAT)重建了该地区过去2100年的年均温(Tann)、年降水量(Pann)、1月均温(Tjan)和7月均温(Tjuly),结果表明Tann和Tjan的波动达到2.4℃,Tjuly的波动为1.7℃,Pann波动为28.2 mm。该地区的气候变化分为3个阶段:阶段Ⅰ(150 BC~850 A.D.)温度和降水量相对较低,年均温比现代30年均值低约0.5℃;阶段Ⅱ(850~1300 A.D.)以温度升高-降低的波动为特征,升温在1070~1170 A.D.期间最明显,年均温比现代30年平均值高0.2℃,这一时期相当于欧洲中世纪气候异常期(the Medieval Climate Anomaly,简称MCA);阶段Ⅲ(1300~2000 A.D.)早期(1300~1900 A.D.)以气温较低为特征,这一时期相当于小冰期(the Little Ice Age,简称LIA),年均温比现代30年平均值低0.8℃,晚期(1900~2000 A.D.)呈现升温的趋势。

  相似文献   

18.
Despite the hypothesized importance of the tropics in the global climate system, few tropical paleoclimatic records extend to periods earlier than the last glacial maximum (LGM), about 20,000 years before present. We present a well-dated 170,000-year time series of hydrologic variation from the southern hemisphere tropics of South America that extends from modern times through most of the penultimate glacial period. Alternating mud and salt units in a core from Salar de Uyuni, Bolivia reflect alternations between wet and dry periods. The most striking feature of the sequence is that the duration of paleolakes increased in the late Quaternary. This change may reflect increased precipitation, geomorphic or tectonic processes that affected basin hydrology, or some combination of both. The dominance of salt between 170,000 and 140,000 yr ago indicates that much of the penultimate glacial period was dry, in contrast to wet conditions in the LGM. Our analyses also suggest that the relative influence of insolation forcing on regional moisture budgets may have been stronger during the past 50,000 years than in earlier times.  相似文献   

19.
本文对现有的区域植被动态模型进行了改进,改进后的模型包含了生态系统中生物量动态、植被结构动态、氮素循环过程三者之间的耦合,以及植被和土壤的相互作用.新模型的状态变量包括植被的绿色和非绿色生物量及其氮素浓度,3层土壤的水分,土壤的全氮和速效氮含量.利用全国范围内在过去数10年中定点观测生物量、生产力、土壤全氮和速效氮的含量、卫星遥感植被指数、全国植被图、地形图、土壤图等多方面的基础数据,我们进行了模型的参数化工作,并对模型做了初步验证.结果说明本模型能够比较准确地模拟当前气候条件下植被的生物量、生产力和氮素吸收等动态过程.在此基础上,我们将改进后的模型用于中国陆地生态系统对全球变化响应的研究.为此我们采用了7个大气环流模型的输出的降水和温度的改变量和大气CO2浓度加倍条件,结合现有气候条件,生成未来气候变化情景(scenarios),并用这些情景来驱动改进后的模型直到模型到达稳定状态.模拟结果说明:在未来气候变化条件下,温带常绿针叶林、亚热带山地常绿针叶林、落叶阔叶林、常绿阔叶林,典型禾草草原的分布将显著增加,而落叶针叶林、亚热带常绿针叶林、常绿灌木、禾草和半灌木草原、高寒禾草草甸的分布将有显著的下降,其他植被类型对全球变化的响应不太敏感.33°N以南,净第一性生产力将有显著增加,而33°N以北,净第一性生产力增加较少,局部地区生产力甚至下降.模拟的中国陆地生态系统的北部生产力比南部具有较大的变化和不确定范围.因此,从最大程度的减少和降低生态系统对气候变化响应的不确定程度出发,未来气候变化的研究的重点应该在北方.  相似文献   

20.
Main climatic indexes (mean January, July and annual temperatures; duration of the frost‐free period; seasonal and annual precipitation; and annual potential evaporation) are estimated for the Last Interglacial Eemian–Mikulino–Kazantsevo–Oxygen Isotopic Substage 5e) climatic optimum in northern Eurasia. Reconstructions are based on the palaeofloristic data from 29 sites. The distribution of temperature deviations from present‐day values in northern Eurasia, as well as in the northern hemisphere as a whole, indicates certain areas where temperatures during the Last Interglacial climatic optimum were lower than at present. The greatest positive deviations occurred in the high latitudes and gradually decreased towards mid‐latitudes. At about 45°N the mean January temperature was close to that of the present day. For the mean July temperature, the zone with minor deviations is situated further to the north, at 55°N. South of 50°N, an area with small negative temperature deviations from the present‐day values is reconstructed. A similar decrease in temperature deviations from high to low latitudes was the general tendency in various warm epochs, including the Holocene and the Eocene optima. In the arid and semi‐arid regions of northern Eurasia, a considerable increase in precipitation took place, while air temperatures were close to those of the present or even slightly lower. Another peculiarity of the climate in the Last Interglacial climatic optimum relates to the meridional temperature gradient, one of the factors strongly influencing the intensity of the Westerlies in the mid‐latitudes of the northern hemisphere. Our reconstructions for northern Eurasia tend to contradict this rule. The paradox can be explained by a compensation mechanism: a substantial increase in winter temperature in Siberia indicates that the Siberian atmospheric High was weaker and smaller at the Last Interglacial climatic optimum than at present. The reduced role of the Siberian High was compensated by more frequent invasions of the Atlantic air masses from the west, even though the meridional temperature gradient was smaller than at present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号