首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the inhomogeneous reionization in a critical density CDM universe resulting from stellar sources, including Population III objects. The spatial distribution of the sources is obtained from high-resolution numerical N -body simulations. We calculate the source properties, taking into account a self-consistent treatment of both radiative (i.e. ionizing and H2-photodissociating photons) and stellar (i.e. SN explosions) feedbacks regulated by massive stars. This allows us to describe the topology of the ionized and dissociated regions at various cosmic epochs, and to derive the evolution of H, He and H2 filling factors, soft UV background, cosmic star formation rate and the final fate of ionizing objects. The main results are: (i) galaxies reionize the intergalactic medium by z ≈10 (with some uncertainty related to the gas clumping factor), whereas H2 is completely dissociated already by z ≈25; (ii) reionization is mostly caused by the relatively massive objects which collapse via H line cooling, while objects the formation of which relies on H2 cooling alone are insufficient for this purpose; (iii) the diffuse soft UV background is the major source of radiative feedback effects for z ≤15; at higher z direct flux from neighbouring objects dominates; (iv) the match of the calculated cosmic star formation history with that observed at lower redshifts suggests that the conversion efficiency of baryons into stars is ≈1 per cent; (v) we find that a very large population of dark objects which failed to form stars is present by z ≈8. We discuss and compare our results with similar previous studies.  相似文献   

2.
3.
4.
5.
We develop a coupled model for the evolution of the global properties of the intergalactic medium (IGM) and the formation of galaxies, in the presence of a photoionizing background due to stars and quasars. We use this model to predict the thermodynamic history of the IGM when photoionized by galaxies forming in a cold dark matter (CDM) universe. The evolution of the galaxies is calculated using a semi-analytical model, including a detailed treatment of the effects of tidal stripping and dynamical friction on satellite galaxies orbiting inside larger dark matter haloes. We include in the model the negative feedback on galaxy formation from the photoionizing background. Photoionization inhibits galaxy formation in low-mass dark matter haloes in two ways: (i) heating of the IGM and inhibition of the collapse of gas into dark haloes by the IGM pressure, and (ii) reduction in the rate of radiative cooling of gas within haloes. The result of our method is a self-consistent model of galaxy formation and the IGM. The IGM is reheated twice (during reionization of H  i and He  ii ), and we find that the star formation rate per unit volume is slightly suppressed after each episode of reheating. We find that galaxies brighter than L are mostly unaffected by reionization, while the abundance of faint galaxies is significantly reduced, leading to present-day galaxy luminosity functions with shallow faint-end slopes, in good agreement with recent observational data. Reionization also affects other properties of these faint galaxies, in a readily understandable way.  相似文献   

6.
7.
We study the orbital evolution and accretion history of massive black hole (MBH) pairs in rotationally supported circumnuclear discs up to the point where MBHs form binary systems. Our simulations have high resolution in mass and space which, for the first time, makes it feasible to follow the orbital decay of a MBH either counter- or corotating with respect to the circumnuclear disc. We show that a moving MBH on an initially counter-rotating orbit experiences an 'orbital angular momentum flip' due to the gas-dynamical friction, i.e. it starts to corotate with the disc before a MBH binary forms. We stress that this effect can only be captured in very high resolution simulations. Given the extremely large number of gas particles used, the dynamical range is sufficiently large to resolve the Bondi–Hoyle–Lyttleton radii of individual MBHs. As a consequence, we are able to link the accretion processes to the orbital evolution of the MBH pairs. We predict that the accretion rate is significantly suppressed and extremely variable when the MBH is moving on a retrograde orbit. It is only after the orbital angular momentum flip has taken place that the secondary rapidly 'lights up' at which point both MBHs can accrete near the Eddington rate for a few Myr. The separation of the double nucleus is expected to be around ≲10 pc at this stage. We show that the accretion rate can be highly variable also when the MBH is corotating with the disc (albeit to a lesser extent) provided that its orbit is eccentric. Our results have significant consequences for the expected number of observable double active galactic nuclei at separations of ≲100 pc.  相似文献   

8.
Most of the baryons in the low-redshift Universe reside in a warm/hot component which is difficult to detect with standard absorption/emission-line techniques. We propose to use quasar refractive scintillation as a useful, complementary probe for such ionized, intergalactic gas. In particular, an application to the case of the intracluster medium is presented. We show that clusters located at z ≈0.02 should produce a source rms intensity fluctuation at 50–100 GHz of several tens of per cent and on time-scales ranging from days to months, depending on the projected location of the source on the foreground cluster. However, in order to produce such a signal, the source needs to be very compact. This effect, if observed, can be used as an independent test of the baryonic mass fraction in clusters.  相似文献   

9.
10.
11.
I demonstrate by means of high-resolution cosmological simulations, which include modelling of a two-phase interstellar medium, that the dominant mechanism for transporting heavy elements from protogalaxies into the intergalactic medium (IGM) is the merger mechanism as discovered by Gnedin & Ostriker. Direct ejection of the interstellar gas by supernovae plays only a minor role in transporting metals into the IGM: for a realistic cosmological scenario only a small fraction of all metals in the IGM is delivered by the supernova-driven winds, while most of the metals in the IGM are transported by the merger mechanism. As a result, the metallicity distribution in the IGM is highly inhomogeneous, in agreement with studies of the QSO metal absorption systems, and the predicted metallicity distribution of Lyman alpha absorbers as a function of their column density is in excellent agreement with the observational data.  相似文献   

12.
We model the cosmological co-evolution of galaxies and their central supermassive black holes (BHs) within a semi-analytical framework developed on the outputs of the Millennium Simulation. This model, described in detail by Croton et al. and De Lucia and Blaizot, introduces a 'radio mode' feedback from active galactic nuclei (AGN) at the centre of X-ray emitting atmospheres in galaxy groups and clusters. Thanks to this mechanism, the model can simultaneously explain: (i) the low observed mass dropout rate in cooling flows; (ii) the exponential cut-off in the bright end of the galaxy luminosity function and (iii) the bulge-dominated morphologies and old stellar ages of the most massive galaxies in clusters. This paper is the first of a series in which we investigate how well this model can also reproduce the physical properties of BHs and AGN. Here we analyse the scaling relations, the fundamental plane and the mass function of BHs, and compare them with the most recent observational data. Moreover, we extend the semi-analytic model to follow the evolution of the BH mass accretion and its conversion into radiation, and compare the derived AGN bolometric luminosity function with the observed one. While we find for the most part a very good agreement between predicted and observed BH properties, the semi-analytic model underestimates the number density of luminous AGN at high redshifts, independently of the adopted Eddington factor and accretion efficiency. However, an agreement with the observations is possible within the framework of our model, provided it is assumed that the cold gas fraction accreted by BHs at high redshifts is larger than at low redshifts.  相似文献   

13.
14.
15.
We use a self-consistent model of galaxy formation and the evolution of the intergalactic medium to study the effects of the reionization of the Universe at high redshift on the properties of satellite galaxies like those seen around the Milky Way. Photoionization suppresses the formation of small galaxies, so that surviving satellites are preferentially those that formed before the Universe reionized. As a result, the number of satellites expected today is about an order of magnitude smaller than the number inferred by identifying satellites with subhaloes of the same circular velocity in high-resolution simulations of the dark matter. The resulting satellite population has an abundance similar to that observed in the Local Group, although the distribution of circular velocities differs somewhat from the available data. We explore many other properties of satellite galaxies, including their gas content, metallicity and star formation rate, and find generally good agreement with available data. Our model predicts the existence of many as yet undetected satellites in the Local Group. We quantify their observability in terms of their apparent magnitude and surface brightness, and also in terms of their constituent stars. A near-complete census of the Milky Way's satellites would require imaging to   V ≈20  and to a surface brightness fainter than 26 V -band magnitudes per square arcsecond. Satellites with integrated luminosity   V =15  should contain of order 100 stars brighter than   B =26  , with central stellar densities of a few tens per square arcminute. Discovery of a large population of faint satellites would provide a strong test of current models of galaxy formation.  相似文献   

16.
17.
Formation of primordial black holes (PBHs) on astrophysical mass scales is a natural consequence of inflationary cosmology, if the primordial perturbation spectrum has a large and negative running of the spectral index as observationally suggested today because double inflation is required to explain it and fluctuations on some astrophysical scales are enhanced in the field-oscillation regime in between. It is argued that PBHs thus produced can serve as intermediate-mass black holes (IMBHs), which act as the observed ultraluminous X-ray sources (ULXs) by choosing appropriate values of the model parameters in their natural ranges. Our scenario can be observationally tested in near future because the mass of PBHs is uniquely determined once we specify the values of the amplitude of the curvature perturbation, spectral index and its running on large scales.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号