首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Summary The growth of error energy from initially uncertain states is a characteristic of global forecast models that is absent or markedly diminished in limited area forecasts. The enhanced regional predictability is presently studied with a limited area boundary layer model applied to a European region centered on the Alps. The results are remarkably insensitive to initial data, and a qualitative explanation of this is sought in terms of Thompson's (1957) and Lorenz's (1969) predictability analysis. It appears that the high predictability of regional models is an artifact of the overwhelming role that the prespecification of external boundaries plays in this problem. In cases that Dirichlet boundary conditions are imposed at the perimeter of the limited forecast region, the larger scale flow components, including most of the advecting flow are determined completely independently of internal dynamics and vorticity fluctuations, a condition that does not promote uncertainty growth.The simplest relaxation of this constraint is accomplished by imposing Neumann boundary conditions with zero gradient of forecast variables at the outer boundary. In this case the boundary values depend completely upon the interior forecast, and there is no theoretical reason to expect that error growth should be limited. Nevertheless, present results show that the only significant forecast errors associated with initial uncertainties in these cases are trapped near external boundaries. An explanation of this phenomenon and its generality is discussed. Our forecast results and analysis of error spread from boundaries suggest that topography may enhance local predictability.Although the predictability of a regional boundary layer model is high with respect to initial errors of even rather large magnitude, the same is not true with respect to large uncertainties in the representation of topography and surface, radiative and dissipative effects. Substantial variations of the parameterization of these processes through changes of the model equations produce boundary layer solution divergence with doubling time scales as short as one day. The uncertainty growth associated with smaller (and more realistic) perturbations of these processes remains to be studied.
Über die Voraussagbarkeit von bodennahen Strömungen während ALPEX
Zusammenfassung Das Anwachsen der Fehler auf Grund anfänglich unsicherer Zustände ist ein Charakteristikum globaler Vorhersagemodelle. Diese Beschränkung ist nicht vorhanden oder stark vermindert in Vorhersagen für begrenzte Gebiete. Die verbesserte regionale Vorhersagbarkeit wird gegenwärtig an einem Grenzschichtmodell untersucht, welches auf einen Teil Europas mit den Alpen im Zentrum angewandt wird. Die Ergebnisse sind auffallend im empfindlich gegenüber den Anfangsdaten. Eine qualitative Erklärung dafür kann anhand der Vorhersagbarkeitsanalyse von Thompson (1957) und Lorenz (1969) durchgeführt werden. Die hohe Vorhersagbarkeit regionaler Modelle erscheint als Ergebnis der überwältigenden Rolle, die die Vorgabe der äußeren Ränder in diesem Problem spielt. In Fällen, wo Dirichlet-Randbedingungen an der Peripherie des begrenzten Vorhersagegebietes aufgezwungen werden, erfolgt die Bestimmung der großräumigen Strömungskomponenten inklusive des größten Teils der advektierenden Strömung, unabhängig von der internen Dynamik und den Wirbelfluktuationen. Diese Bedingung fördert das Anwachsen von Unsicherheiten nicht.Die einfachste Lockerung dieser Beschränkung wird durch Einführung von Neumann-Randbedingungen mit der Vorhersagevariablen ohne Gradienten an den äußeren Rändern erreicht. In diesem Fall hängen die Randwerte vollständig von der Vorhersage im Inneren ab und es besteht kein theoretischer Grund, eine Beschränkung des Fehlerwachstums zu erwarten. Dennoch zeigen die gegenwärtigen Ergebnisse, daß die einzigen wesentlichen Vorhersagefehler in Zusammenhang mit Anfangsunsicherheiten in diesen Fällen auf den Randbereich beschränkt sind. Eine Erklärung dieses Phänomens und seine Allgemeingültigkeit wird diskutiert. Unsere Vorhersageergebnisse und die Analyse der Fehlerausbreitung von den Rändern aus legt nahe, daß die topographie die lokale Vorhersagbarkeit verbessern kann.Obwohl die Vorhersagbarkeit eines regionalen Grenzschichtmodells in bezug auf die verhältnismäßig großen Anfangsfehler hoch ist, ist dies nicht so in bezug auf die großen Unsicherheiten in der Wiedergabe der Topographie und der Oberfläche sowie Strahlungs- und dissipativer Effekte. Wesentliche Variationen der Parametrisierung dieser Prozesse durch Änderungen der Modellgleichungen erzeugen Divergenzen in den Grenzschichtlösungen, die sich schon in einem Tag verdoppeln. Das Wachstum der Unsicherheit verbunden mit kleineren (und realistischeren) Störungen dieser Prozesse bleibt noch zu untersuchen.


With 14 Figures  相似文献   

2.
Summary Regional and local scale windfield and air mass characteristics during two distinct synoptic foehn wind events over southern New Zealand are examined. The Southern Alps were observed to effectively block low level onshore gradient northwesterly airflow and to channel it through both Cook and Foveaux Straits. Blocking of the onshore synoptic northwesterly airstream also resulted in barrier jet formation along the western slopes of the Southern Alps. This feature of the regional windfield has not previously been documented and develops during favourable conditions to a height of between 1500 to 1800 m above sea level. In the immediate lee of the Southern Alps at Lake Tekapo, classic foehn conditions such as warm ambient air temperatures, low relative humidities and gusty winds were monitored throughout both foehn events examined. Differences in the local windfield were however observed, which reflect the importance of local topography on lee side windfield dynamics during foehn events. Spillover of precipitation to the lee of the mountains was monitored in the latter stages of each case study and appeared to be associated with the passage of the cold front over the Southern Alps. Observations made by this investigation have a number of applied and theoretical implications with respect to meso-scale modelling, orographic rainfall distribution and forecasting.With 12 Figures  相似文献   

3.
The note deals with looming during foehn north of the Alps. The results show that there is a weak effect in stretching optically the orography. However, the increase in view angle is probably not detectable by human observers looking south from Munich towards the Alps. The impression that the orography seems to be stretched during a foehn is also due to psychological effects which might be a factor of greater importance.  相似文献   

4.
Summary During the ALPEX SOP (March–April, 1982), microbarographic measurements were conducted on the Northern Adriatic as a part of research on the Bora. In this paper the measured pressure field around the Dinaric Alps is used to compute the total pressure drag vectors using Archimedes law.The 3-hourly temporal variations of these drag vectors is examined for different synoptic events. During the anticyclonic calm weather period at the end of March and beginning of April there is evidence of a divrnal drag variation. Regardless of magnitude, the pressure drag vectors seem to be aligned almost perpendicular to the main mountain ridge. During synoptic scale flow developments the drag direction change usually appears steady and slow (1–2 days). However during an exceptionally strong frontal passage (8/9 April) this time scale was much shorter (3–6 hours). The maximae of the pressure drag during SOP are always connected with Bora periods and the magnitudes of the drag values indicate that during these events there is a major sink of atmospheric momentum over the Dinaric Alpine region.With 11 Figures  相似文献   

5.
Overview of the South China sea monsoon experiment   总被引:24,自引:5,他引:24  
The present paper gives an overview of the key project “ South China Sea Monsoon Experiment(SCSMEX)” operated by the Ministry of Science and Technology of China during the period of 1996-2001. The SCSMEX is a joint atmospheric and oceanic field experiment which aims to better understandthe onset, maintenance, and variability of the summer monsoon over the South China Sea (SCS). It is a large-scale international effort with many participating countries and regions cooperatively involved in this experiment. With the field observation in May-August 1998, a large amount of meteorological and oceanic data was acquired, which provides excellent datasets for the study of the SCS monsoon and the East Asian monsoon and their interaction with the ocean. The preliminary research achievements are as follows. (1) The earliest onset of the Asian monsoon over the SCS and Indo-China Peninsula has been well documented. From the viewpoint of the synoptic process, its onset is closely related to the early rapid development of a twin cyclone to the east of Sri Lanka. The conceptual model of the SCS monsoon onset in 1998 was put forward. The 50-year time series of the SCS monsoon onset date was also made. (2) Two major modes, namely the 30-60-day and 10-20-day oscillations were ascertained. The influences of the abnormal SCS monsoon on the precipitation over eastern China and its modes were identified. A strong(weak) monsoon over the SCS usually leads to less (more) precipitation over the middle and lower reaches of the Yangtze River basin, and more (less) precipitation in North China. (3) During the monsoon onset over the SCS, a wide variety of organized mesoscale convective systems (MCSs) were observed by a Doppler radar array deployed over the northern SCS. The relationship between large-scale circulations and MCSs during the monsoon onset process in 1998 was clearly revealed. It was suggested that there is a kind of positive feedback mechanism between large-scale circulations and MCSs. (4) The SST over the SCS during the early period influences the timing of the monsoon onset date and the monsoon‘s intensity. During the monsoon onset, the ocean undergoes a process of energy release through air-sea interaction. During the break phase of the SCS monsoon, the ocean demonstrates the process of energy re-accumulation. Obvious differences in the air-sea turbulent flux exchange between the southern and northern parts of the SCS due to different characteristic features of the atmosphere and sea structure were observed in those regions.(5) The verification of impact of intensive observations on the predictive performance is made by the use of regional models. The air-sea coupled regional climate model (CRCM) was also developed under the SCSMEX Project . The simulation of the oceanic circulation in 1998 produced with the model was well compared with the observations.  相似文献   

6.
Summary Local scale windfield and air mass characteristics during the onset of two foehn wind events in an alpine hydro-catchment are presented. Grounding of the topographically modified foehn was found to be dependent on daytime surface heating and topographic channelling of flow. The foehn front was observed to advance down-valley until the valley widened significantly. The foehn wind appeared to decouple from the surface downstream of the accelerated flow associated with the valley constriction, and to be lifted above local thermally generated circulations including a lake breeze. Towards evening, the foehn front retreated up valley in response to reduced surface heating and the intrusion into the study area of a deep and cool air mass associated with a regional scale mountain-plain circulation. Differences in the local windfield observed during both case study events reflect the importance of different thermal and dynamic forcings on airflow in complex terrain. These are the result of variation in surface energy exchanges, channelling and blocking of airflow. Observations presented here have both theoretical and applied implications with regard to forecasting foehn onset, wind hazard management, recreational activities and air quality management in alpine settings. Received January 23, 2001 Revised October 17, 2001  相似文献   

7.
Summary A scheme for analysis of the ALPEX II-b data set is described. Using the calculus of variations in developing the analysis equations, considerations were consistent with requirements necessary for computing budgets for various meteorological quantities. One constraint which employs full equations of motion, reduces the momentum residual to any desired level based on selection of a weighting function. Time tendencies are assumed to be observed, while nonlinear terms can be observed or iterated. At the same time, mass continuity is completely imposed by application of a strong constraint. Approximation of terrain as a series of blocks in thex, y, p domain insures that the model terrain will block the flow to the maximum extent possible in a way consistent with the Alpine range. Comparative analyses are presented illustrating how coupling the variables increases resolution of fine scale features like fronts and jet maxima. Comparison with independently collected research aircraft data over the Mediterranean Sea also shows how the scheme can provide improved analysis even over data sparse areas. Derived vertical motion fields compare well with middle and upper level cloud patterns for a case of rapid cyclogenesis.
Ein variierbares, objektives Analyseschema zur Analyse der ALPEX-Daten
Zusammenfassung Es wird ein Schema für die Analyse der ALPEX II-b Daten beschrieben. Zur Entwicklung der Analysengleichung wurde die Variationsrechnung verwendet. Diese Überlegungen waren vereinbar mit den Voraussetzungen, die zur Berechnung der Bilanzen verschiedener meteorologischer Größen notwendig sind. Eine Einschränkung, die vollständigen Bewegungsgleichungen betreffend, reduziert die Impulsdifferenz mit Hilfe der Auswahl einer Gewichtsfunktion auf jede gewünschte Höhe. Zeittendenzen werden als beobachtet angenommen, während nichtlineare Terme beobachtet oder iteriert sein können. Gleichzeitig ist Massenerhaltung durch Anwendung einer starken Einschränkung vollständig gegeben. Durch Annäherung des Geländes in Form von Blöcken imx, y, p-Bereich wird sichergestellt, daß das Modellgelände die Strömung im größtmöglichen Ausmaß, annähernd vergleichbar mit der Alpenkette, hemmt. Die dargestellten vergleichenden Analysen zeigen, wie die Koppelung von Variablen die Auflösung feinskaliger Merkmale wie Fronten und Windmaxima verbessert. Ein Vergleich mit unabhängig gesammelten Daten von Flügen über dem Mittelmeer zeigt ebenfalls, daß das Schema sogar über datenarmen Gebieten verbesserte Analysen ermöglicht. Abgeleitete Vertikalbewegungsfelder entsprechen gut den mittleren und höheren Wolkenmustern im Fall einer schnellen Tiefdruckentwicklung.


With 9 Figures  相似文献   

8.
Summary This paper describes and documents the meteorological conditions which occur in association with a cold surface layer on the northern lee side of the Alps during foehn. A climatological study using four years' rawinsonde data shows that during many foehn events a weak advection from the east occurs in the cold surface layer beneath the southerly foehn flow. Three cases of foehn in the northern Alps were studied using data taken by instrumented aircraft. The analysis of various vertical soundings between the baseline of the Alps and Munich indicate that the cold surface layer is eroded up to 50 km north of the baseline but that further north, the foehn has not touched the ground. The analysis of data taken in the urban plume west of Munich shows that the pollution is trapped by the inversion in the cold air leading to high levels of air pollution west of Munich.With 13 Figures  相似文献   

9.
Summary In this paper, very-high-resolution numerical simulations are presented to analyze the small-scale dynamics of the foehn in the lower Wipp Valley and the adjacent parts of the Inn Valley. This region was one of the target areas for foehn observations during the Mesoscale Alpine Programme (MAP). Our simulations consider two MAP cases that markedly differed in the depth of the foehn flow. To isolate the dynamical effect of the key orographic features in the Wipp Valley region, we performed sensitivity experiments with different topography modifications. These involve lowering or even removing the Nordkette range, which constitutes the northern side wall of the east–west-oriented Inn Valley, and closing the Stubai Valley, which is the northernmost and largest tributary of the Wipp Valley. A comparison with surface and lidar observations indicates that our present model resolution of 467 m significantly improves the realism of the simulations compared to a resolution of 800 m, as used in a previous study. The Nordkette is found to have a twofold impact on the dynamics of foehn breakthrough into the Inn Valley. In reality, this mountain chain deflects part of the southerly foehn current coming from the Wipp Valley into the perpendicularly oriented Inn Valley. Our sensitivity tests indicate that this flow deflection tends to accelerate the foehn breakthrough into the Inn Valley, while upstream blocking effects induced by the Nordkette act to slow down the process of foehn breakthrough. The flow pattern in the Wipp Valley reveals that the upstream effects of the Nordkette are not quite far-reaching. The amplitude of the gravity waves over the lower Wipp Valley gets somewhat reduced by these upstream effects, but the overall flow pattern remains largely unaffected. Closing the Stubai Valley also has a minor effect of the wave structure and tends to reduce the cross-valley variability of the foehn flow in the lower Wipp Valley.  相似文献   

10.
Summary An unusually strong nocturnal downvalley wind can be regularly observed in the upper Isar Valley close to Mittenwald (Bavarian Alps) when a high-pressure system is located over Central Europe or when ambient southerly winds are present. Due to the structure of the local topography, this downvalley wind has foehn-like properties in the sense that the breakthrough of the flow into the valley is characterized by a strong increase in temperature and a decrease in relative humidity. Therefore the author called this flow Minifoehn. In fact, wind speeds are low in comparison to deep foehn, but gusts may reach values up to 20ms–1, even under the influence of high pressure systems with weak atmospheric pressure gradients. To investigate the Minifoehn, surface stations have been installed for collecting temperature, humidity, wind and pressure data. Measurements have shown that the Minifoehn represents the upper part of one of the drainage currents which flows over a mountain ridge into the valley at Mittenwald. Nocturnally cooled air drains from a plateau south of Mittenwald through different valleys which merge again near Mittenwald. It seems that the forcing of the nocturnal currents is dominated by the temperature difference between this plateau and the free atmosphere above Mittenwald at the same level. Strong temperature differences are found during clear winter nights and in case of subsidence inversions. Moreover, the appearance of the Minifoehn in autumn and winter is so frequent that we even may find a climatic effect: the upper Isar Valley is usually free of fog during these seasons and nocturnal temperatures are often considerably higher than in other Bavarian Alpine valleys at comparable altitude.  相似文献   

11.
The present note discusses physical mechanisms which may contribute to cold air channelling close to the Alps. This involves the modification of the prefrontal air by the warm foehn air and of the postfrontal air by blocking effects resulting in an increase in precipitation. Additionally the influence of a sloping surface in the vicinity of the orography is considered. The problems are discussed in term of a north-south-oriented cold front behaving as an atmospheric gravity current propagating along the east-west oriented Alps.  相似文献   

12.
Climate Dynamics - The South Atlantic subtropical dipole (SASD) has an impact on South American rainfall particular during its negative phase when continental precipitation in the northern part of...  相似文献   

13.
Summary The present study concerns an attempt to determine the influence of foehn winds on air temperature and humidity in the Polish Carpathians. This was carried out using the mean monthly temperature and relative humidity obtained from a number of synoptic stations. Periods with classical foehn conditions and the whole period (1966–1985) of record were analysed.With 3 Figures  相似文献   

14.
Summary This case study describes the decay of a low-level jet in the alpine foreland as a planetary boundary layer phenomenon. Few measurements are known, which document this transition period of the boundary layer from night to day. Analysis of 1 and 20 Hz data of temperature and the three wind components of the ELECTRA aircraft mission on April 16, 1982 between 5 and 11 GMT allow an assessment of the temporal and spatial fine structure during the decay phase of the jet in the morning. Using the flight technique of horizontal and vertical zigzagging, the coupling of thermal stability, turbulence intensity, topography and behavior of the jet is shown.Vertical profiles and cross-sectional analysis of mean and turbulent parameters document three separate jet decay phases: decoupling, transition and erosion. During the first phase, the jet maximum is situated between surface and synoptic inversions, decoupling from surface friction and prohibiting momentum transport towards the free atmosphere. During the transition phase, the jet maximum increases in altitude. In the erosion phase, the jet covers the top of a developing well mixed layer. Turbulent mixing and entrainment on top of the layer are responsible for the decay of the jet. This is confirmed by calculating the decrease of the wind speed maximum from the turbulent momentum flux and the growth rate of the mixing layer by means of a mixed layer model in comparison to the measured wind speed jump and to other observations.With 7 Figures  相似文献   

15.
Summary This study presents high-resolution numerical simulations of north foehn in the Austrian Inn Valley which have been performed with the Penn State/NCAR mesoscale model MM5. As the Inn Valley is located north of the Alpine crest, north foehn occurs comparatively rarely in this valley, and there are only sparse observations available for this phenomenon. Simulations of the 24 January 1993 case as well as idealized simulations are performed to get a deeper insight into the dynamics of the north foehn. Moreover, the synoptic conditions leading to the occurrence of north foehn in the Inn Valley are investigated. The simulations indicate that there are at least four different paths for the foehn to penetrate into the valley. Two of them are running along side valleys entering the upper Inn Valley from the west. These flow paths appear to be most important when the large-scale flow has a significant westerly component. The other possible flow paths enter the Inn Valley from the northwest or north and require a strong northerly component of the large-scale flow. From a dynamical point of view, north foehn appears to be similar to the well researched south foehn in that vertically propagating gravity waves force the descent of the ambient flow into the valleys. However, there are also indications that trapped lee waves have a significant impact on the surface wind field, which has not been reported for south foehn so far. Moreover, the model results show that a precondition for the formation of north foehn in the Inn Valley is the absence of significant orographic precipitation. Evaporative cooling induced by precipitation falling into subsaturated air not only reduces the surface temperatures but also inhibits the formation of large-amplitude gravity waves, suppressing the development of stormy surface winds.  相似文献   

16.
Summary The present paper is the continuation of two recent studies investigating the foehn-like valley wind system around Mittenwald (Bavarian Isar Valley). We deal with the synoptic/mesoscale conditions causing the local foehn (“Minifoehn”), considering field campaigns from both the mesoscale and the climatological point of view. Furthermore, we describe the structure and further features of the local foehn at smaller scales, using both the results of the VERTIKATOR field campaign and numerical simulations. We obtain as a new result that the foehn-caused local warm air pool around Mittenwald induces slight nocturnal upvalley winds between an adjacent valley basin located some 8 km north of Mittenwald and the basin of Mittenwald. Furthermore, a weak northerly flow may also occur at Mittenwald prior to the onset of the Minifoehn. Numerical simulations indicate that the local pressure gradient responsible for this phenomenon is related to a gravity wave forming over the hill range southwest of Mittenwald. Observations within a five-year period indicate that Minifoehn frequently occurs when ambient winds coming from the southern sector are predominant, but, contrary to deep foehn, weather conditions with northerly synoptic-scale flows do not necessarily exclude the development of the local foehn which comes from the southwest. We also present further evidence that in the presence of southerly synoptic-scale winds, orographic gravity waves interact with the drainage flow. Another new result is that strong synoptic-scale westerly winds are able to suppress the occurrence of Minifoehn. In addition, the possible influence of the Inn Valley wind system as well as dynamical differences between the thermally driven up- and downvalley winds are briefly discussed.  相似文献   

17.
Summary The local wind system in the upper Isar Valley (Bavarian Alps) near Mittenwald has the peculiarity that regularly strong foehn-like nocturnal flows occur, mainly during clear nights in autumn and winter. We will refer to this phenomenon as “Minifoehn”, as its properties are similar to the classical deep foehn in the sense that its breakthrough into the Isar Valley usually brings a striking increase in temperature and a concomitant decrease in relative humidity. Numerical simulations with the MM5 model reveal that this phenomenon is related to a nocturnal drainage flow originating from a plateau south of Mittenwald. This flow is driven by the temperature difference between this plateau (1180 m) and the free atmosphere above Mittenwald (920 m, 15 km north of the plateau) at the same level. The air masses flow through two different valleys that merge again further downstream. The upper part of one of the two drainage currents goes over a small mountain ridge (1180 m) south-west of Mittenwald and then descends into the Isar Valley, leading to an advection of potentially warm air towards Mittenwald. This branch of the drainage current constitutes the Minifoehn. The remaining part of the drainage current flows through a narrow gap towards the Isar Valley and then joins the drainage flow of this valley. As these air masses are significantly cooler than the Minifoehn branch, large horizontal temperature gradients can be found around Mittenwald. The dynamical behaviour of the cold air flow turns out to be qualitatively consistent with shallow-water theory only in the absence of a forcing by large-scale winds. Otherwise, gravity-wave induced pressure perturbations interact with the drainage flow and modify the low-level flow field. The simulations show that the gravity waves are excited by the mountain range that separates the two valleys mentioned above. Moreover, the simulations indicate that the structure of this nocturnal wind system is not very sensitive to the direction of synoptic-scale winds as long as they come from the southern sector. On the other hand, ambient northerly winds are able to prevent the drainage flow and therefore the local foehn effects in the Isar Valley provided that synoptic winds are strong enough. The results of the MM5 simulations are in good agreement with the measurements and observations described in part 1 of this study.  相似文献   

18.
19.
为了解1990年以来鲁南地区热量资源变化情况,将资料分为近15 a(1991—2005)及前30 a(1961-1990年)两组,用K-W检验分析两组样本是否有显著差异,并用一元线性回归模型的回归系数估算未来气候变暖时热量资源的变化。结果表明:1991-2005年鲁南地区与前30 a相比,年平均气温明显升高,≥0℃及≥10℃积温及持续日数明显增加,无霜期明显延长,热量资源显著增加。当未来气候变暖时,年平均气温每升高1℃,≥0℃积温将增加308~309℃.d,持续日数延长15~16天,≥10℃积温将增加235~248℃.d,持续日数延长6~8天,无霜期将延长9~14天。  相似文献   

20.
Mid-latitude winter atmospheric variability in the South Indian Ocean and southwest Pacific Ocean regions of the circum-Antarctic are reconstructed using sea-salt aerosol concentrations measured in the high resolution Law Dome (DSS) ice core from East Antarctica. The sea-salt aerosol concentration data, as sodium (Na), were measured at approximately monthly resolution spanning the past 700 years. Analyses of covariations between Na concentrations in Law Dome ice, and mean sea-level pressure (MSLP) and wind field data were conducted to define the mid-latitude and sub-Antarctic atmospheric circulation patterns associated with variations in Na delivery. High Na concentrations in Law Dome snow are associated with increased meridional aerosol transport from mid-latitude sources. The seasonal average Na concentration for early winter (May, June, July (MJJ)) is strongly correlated to the mid-latitude MSLP field in the South Indian and southwest Pacific Oceans, and southern Australian regions. In addition, the average MJJ Na concentrations display a strong association with the stationary Rossby wave number 3 circulation, and are anti-correlated to the Southern Annular Mode (SAM) index of climate variability: high (low) Na concentrations occurring during negative (positive) SAM phases. This observed relationship is used to derive a proxy record for early-winter MSLP anomalies and the SAM in the South Indian and southwest Pacific Ocean regions over the period 1300–1995 AD. The proxy SAM index from 1300 to 1995 AD shows pronounced decadal-scale variability throughout. The period after 1500 AD is marked by a tendency toward slower variations and a weakly-positive mean SAM (enhanced westerlies in the 50° to 65°S zone) compared to the early part of the record.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号