首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Planetary equatorial waves are studied with the shallow water equations in the presence of a mean zonal thermocline gradient. The interactions between this gradient and waves are represented by three non-linear terms in the equations: one in the wind-forcing formulation in the x-momentum equation, and two for the advection of mass and divergence of the velocity field in the continuity equation. When the mean gradient is imposed but small, these three (linearized) terms will perturb the behavior of the equatorial waves. This paper gives a simple analytic treatment of this problem.The equatorial Kelvin mode is first solved with all three contributions, using a Wentzel-Kramers-Brillouin method. The Kelvin mode shows a spatial or/and temporal growth when the thermocline gradient is negative which is the usual situation in the equatorial Pacific ocean (deep thermocline in the west and shallow in the east). The more robust and efficient contribution comes from the advection term.The single effect of the advection of the mean zonal thermocline gradient is then studied for the Kelvin and planetary Rossby modes. The Kelvin mode remains unstable (damped), while the Rossby modes appear damped (unstable) for a negative (positive) thermocline gradient.  相似文献   

2.
Analyses of observations from four lakes in British Columbia, Canada, compare estimates of the amplitude of thermocline deflections to predictions of wind-driven internal seiche amplitudes made using the Wedderburn number,W. The study sites range from the 750 m diameter Brenda Mines pit-lake to the 107 km long Kootenay Lake. Causal filtering of the wind data with a frequency cut-off based on the fundamental baroclinic time-scale is critical for correct calculation ofW. With the filtering incorporated, good comparison betweenW, its integral equivalent the Lake numberL N and the observations can be made. In all but the mine pit-lake, upwelling or near-upwelling conditions (W≈1) were encountered.  相似文献   

3.
A non-hydrostatic model in cross-sectional form with an idealized sill is used to examine the influence of sill depth (h s) and aspect ratio upon internal motion. The model is forced with a barotropic tide and internal waves and mixing occurs at the sill. Calculations using a wide sill and quantifying the response using power spectra show that for a given tidal forcing namely Froude number F r as the sill depth (h s) increases the lee wave response and vertical mixing decrease. This is because of a reduction in across sill velocity U s due to increased depth. Calculations show that the sill Froude number F s based on sill depth and across sill velocity is one parameter that controls the response at the sill. At low F s (namely F s ≪ 1) in the wide sill case, there is little lee wave production, and the response is in terms of internal tides. At high F s, calculations with a narrow sill show that for a given F s value, the lee wave response and internal mixing increase with increasing aspect ratio. Calculations using a narrow sill with constant U s show that for small values of h s, a near surface mixed layer can occur on the downstream side of the sill. For large values of h s, a thick well-mixed bottom boundary layer occurs due to turbulence produced by the lee waves at the seabed. For intermediate values of h s, “internal mixing” dominates the solution and controls across thermocline mixing.  相似文献   

4.
The evolution of an internal bore at the Malin shelf break   总被引:2,自引:0,他引:2  
Observations of internal waves were made at the Malin shelf edge during SESAME (Shelf Edge Studies Acoustic Measurement Experiment), a part of the NERC LOIS-SES experiment, in August-September 1996. These measurements provide a high resolution dataset demonstrating internal wave generation and propagation. This note presents observations of the evolution of an internal bore. The process is shown clearly in a sequence of thermistor chain tows across the shelf break covering a complete tidal cycle, as the double-sided bore transforms into a group of undulations and eventually into more distinct solitary waveforms. Current structures associated with the bore and waves were also observed by ship-mounted ADCP. Analysis of the waveforms in terms of the linear modes and empirical orthogonal functions (EOFs) indicate the dominance of the first mode, which is typical of a shallow water seasonal thermocline environment. Determination of the phase speed of the waves from the consecutive ship surveys enabled the Doppler shift in the towed data to be removed, allowing analysis of the real length scales of the waves. The bore evolution has been modelled using a first order non-linear KdV model for the first mode, initialised with the waveform in the first survey. Comparison of the model and the observations show close agreement in the amplitudes, length scales, phase speeds and separations of the leading internal waves as they evolve. Finally, analysis of the observed internal wave shapes indicates that, within the uncertainties of measurement, the wave-lengths lie between those predicted by first and second order soliton theory.  相似文献   

5.
A cross-sectional non-hydrostatic model with idealized topography was used to examine the processes influencing tidal mixing in the region of sills. Initial calculations with appropriate parameters for the sill at the entrance to Loch Etive showed that the model could reproduce the main features of the observed mixing in the region. In particular, the hydraulic jump in the sill region was reproduced, as was an intense mid-water jet that was observed to separate from the lee side of the sill. Shear instabilities associated with the jet appeared to be a source of mixing within the thermocline. In addition, internal lee waves were generated on the lee side of the sill, with the observed amplification because of trapping during the flood stage. Their magnitude and hence the mixing increased with increasing Froude number (F r). In the case of vertically varying buoyancy frequency, its value near the sill top determined the F r number, with its value below influencing internal waves magnitude at depth. At high F r values particularly with strong currents, short waves and overturning occurred.  相似文献   

6.
Hydro carbon fields beyond the shelf break are presently being explored and developed, which has increased the scientific focus in this area. Measurements from the slopes reveal large variability in temperature and velocity, and some of the observed events are due to interactions between large-amplitude oscillations of the thermocline and the topography. The present study focuses on the strong currents that are generated near the seabed during shoaling and breaking of internal waves along shelf slopes. The parameter regime used is similar to the one for the Nordic Seas. The results show that, during shoaling of large internal waves along (gentle) slopes, the energy is transferred towards smaller scales and strong velocities (over 1 m s − 1) can be generated. To resolve all scales involved is still not feasible, and therefore, the model results are sensitive to the grid size and the subgrid scale closure.  相似文献   

7.
Summary Comparisons are made of the attenuation of progressive internal waves in stratified fluids consisting of (a) a representation of a single thermocline, (b) a weak exponential density distribution and (c) a two-layer system. Effects of the earth's rotation are neglected, as also are heat and salt diffusion. Significant differences are found in the decay characteristics of the three density structures. Internal waves are most strongly damped in the layered system (c) whilst the calculated attenuation rates are least for the thermoclinic structure (a). All the internal modes investigated are, however, shown to be more strongly damped than the associated surface wave.  相似文献   

8.
The problem involving scattering of oblique waves by small undulation on the porous ocean bed in a two-layer fluid is investigated within the framework of linearised theory of water waves where the upper layer is free to the atmosphere. In such a two-layer fluid, there exist waves with two different wave numbers (modes): wave with lower wave number propagates along the free surface whilst that with higher wave number propagates along the interface. When an oblique incident wave of a particular mode encounters the undulating bottom, it gets reflected and transmitted into waves of both modes so that some of the wave energy transferred from one mode to another mode. Perturbation analysis in conjunction with Fourier transform technique is used to derive the first-order corrections of velocity potentials, reflection and transmission coefficients at both modes due to oblique incident waves of both modes. One special type of undulating bottom topography is considered as an example to evaluate the related coefficients in detail. These coefficients are shown in graphical forms to demonstrate the transformation of water wave energy between the two modes. Comparisons between the present results with those in the literature are made for particular cases and the agreements are found to be satisfactory. In addition, energy identity, an important relation in the study of water wave theory, is derived with the help of the Green’s integral theorem.  相似文献   

9.
This paper analyzes variations of vertical velocity w simulated by the 1/10° Ocean General Circulation Model for the Earth Simulator (OFES). Strong w-variability is found in the deep oceans. When w is WKBJ-normalized, the standard deviation averaged over the Southern Ocean increases with depth and is larger than 8 × 10 − 3 cm/s throughout the water column below 1,500 m. Evidences are presented that link this w-variability to internal waves generated by quasi-steady currents over topography. The aliasing errors in lag-3-day correlations suggest a bottom generation of near-inertial waves. A scale analysis indicates that vertically propagating waves that can be resolved by the OFES model are waves with frequencies of the order of inertial frequency and wavelengths comparable to the order of the grid size. The vertical energy flux associated with these waves is substantial. When integrated globally, the vertical energy flux is upward in the upper 4 km and reaches maximum values of about 0.8 TW at about 1 to 2 km depth. Thus, the w-variability in the 1/10° OFES integration points not only to a strong bottom generation of near-inertial internal waves in the deep Southern Ocean but also to the possibility that the power provided by internal waves generated by non-tidal currents over topography can be comparable to the power provided by internal waves generated by tidal flows over topography.  相似文献   

10.
Acoustic full waveforms recorded in wells are the simplest way to get the velocity of P, S, and Stoneley waves in situ. Processing and interpretation of acoustic full waveforms in hard formations does not generate problems with identification packets of waves and calculation of their slowness and arrivals, and determination of the elastic parameter of rocks. But in shallow intervals of wells, in soft formations, some difficulties arise with proper evaluation of the S-wave velocity due to the lack of refracted S wave in case when its velocity is lower than the velocity of mud. Dynamic approach to selection of a proper value of semblance to determine the proper slowness and arrival is presented. Correlation between the results obtained from the proposed approach and the theoretical modeling is a measure of the correctness of the method.  相似文献   

11.
The characteristics of the disturbances in the atmosphere and oceans and in other stably stratified and rotating fluids are analyzed according to their phase and group velocities. It is shown that both stable stratification and rotation augment the velocity of the sound waves, and that the internal gravity waves and inertial waves are mutually exclusive when the Brunt-Väisälä frequency is different from the Coriolis parameter. It is also shown that both the barotropic and the internal Rossby waves are well separated from the gravity waves and that they can be represented accurately by the quasi-geostrophic potential vorticity equation, even close to the equator, except for the one member withn=0 which is coupled with an eastward propagating gravity wave.  相似文献   

12.
For converted waves stacking requires a true common reflection point gather which, in this case, is also a common conversion point (CCP) gather. We consider converted waves of the PS- and SP-type in a stack of horizontal layers. The coordinates of the conversion points for waves of PS- or SP-type, respectively, in a single homogeneous layer are calculated as a function of the offset, the reflector depth and the velocity ratio vp/vs. Knowledge of the conversion points enables us to gather the seismic traces in a common conversion point (CCP) record. Numerical tests show that the CCP coordinates in a multilayered medium can be approximated by the equations given for a single layer. In practical applications, an a priori estimate of vp/vs is required to obtain the CCP for a given reflector depth. A series expansion for the traveltime of converted waves as a function of the offset is presented. Numerical examples have been calculated for several truncations. For small offsets, a hyperbolic approximation can be used. For this, the rms velocity of converted waves is defined. A Dix-type formula, relating the product of the interval velocities of compressional and shear waves to the rms velocity of the converted waves, is presented.  相似文献   

13.
14.
Abstract

A class of long planetary waves in a zonal channel analogous to the solitary and cnoidal waves of surface and internal gravity wave theory is discussed. On a mid-latitude β-plane, such waves exist as the result of divergence, non-uniform zonal velocity fields or bottom topography. In all cases studied the wave profile along the channel was found to satisfy the Korteweg-de Vries equation.  相似文献   

15.
A method of wave mode determination, which was announced in Balikhin and Gedalin, is applied to AMPTE UKS and AMPTE IRM magnetic field measurements downstream of supercritical quasiperpendicular shock. The method is based on the fact that the relation between phase difference of the waves measured by two satellites, Doppler shift equation, the direction of the wave propagation are enough to obtain the dispersion equation of the observed waves. It is shown that the low frequency turbulence mainly consists of waves observed below 1 Hz with a linear dependence between the absolute value of wave vector |k| and the plasma frame wave frequency. The phase velocity of these waves is close to the phase velocity of intermediate waves Vint = Vacos().  相似文献   

16.
We demonstrate how multiples, generated at the interfaces of plane parallel beds, modify the propagation characteristics of an originally coherent seismic wave. For waves propagating at an angle to the bedding plane we find that theSV andP-waves couple so that neither is a pure mode. TheSH-wave, while modified in its propagation characteristics by multiples, remains a pure mode. The coupling ofSV-multiples into the quasi-P-mode appears weaker than the coupling ofP-wave multiples into the quasi-SV mode; at least this is so for the two simple cases of (a) density fluctuations only and (b) correlatedV p andV s fluctuations which conserve Poisson's ratio.We also find that the coupling is sensitive to both the angle of propagation and frequency. In addition there is a cut-off angle forP-wave multiples influencing the quasi-SV mode. Propagation angles larger than the cut-off permit theP-multiples to modify the phase of the quasi-SV mode, but not its effective attenuation. No such cut-off effect is found for SV-multiples influencing the quasi-P mode, whose angle-dependent and frequency-dependent phase distortion and effective attenuation are influenced both byP-wave multiples andSV-multiples.In view of the mathematical complexity of the expressions describing the phase, and effective attenuation of modes when allowance is made forP-andS-wave multiples, we strongly advocate numerical coding of the major mathematical formulae. By so doing a systematic study can be undertaken of the frequency and offset dependence of seismic waves as a function of seismic source input and power spectral behavior of the fluctuations in density and elastic constants of beds. It is our opinion that the full mathematical expressions are too involved to permit an analytic, systematic investigation to be given of the phase and attenuation of seismic waves with any degree of sophistication or generality.  相似文献   

17.
Aki (1969) first modeled coda waves of a local earthquake as a superposition of scattered surface waves. This paper attempts to clarify the constituents of surface-wave coda at long periods at very long lapse times. For a large earthquake of magnitude 7 or larger, vertical component oscillation in periods from 90 to 180 s persists for more than 20 hours from the earthquake origin time. Although the early portion of the coda envelope is successfully modeled by assuming incoherent scattered Rayleigh waves by heterogeneities distributed all over the Earth, the later potion of the observed coda envelope (roughly later than 35,000 s) has systematically larger amplitude than theoretical prediction. To clarify the cause of this discrepancy, we studied the constituents of vertical-component seismograms of three large earthquakes recorded by the F-net in Japan using the f-k power spectral analysis. We found that the direct and scattered fundamental-mode Rayleigh waves of velocity about 3.7 km/s are dominant in the earlier part of each envelope. It justifies the use of a scattering model of the fundamental Rayleigh waves for synthesizing the envelope. At lapse times later than 20,000 s–35,000 s, higher modes with phase velocities around 20 km/s become dominant. The transition time to the dominance of higher modes is found to become earlier for a deeper focus earthquake. The small coda attenuation factor from (1.90±0.23) × 10−3 to (2.38±0.32) × 10−3 estimated from later coda envelopes recorded at IRIS stations distributed worldwide also agrees with the attenuation factor of spheroidal modes according to PREM. We may interpret that higher mode waves are uniformly distributed at large lapse time due to large velocity dispersion and/or scattering and they dominate over the fundamental mode waves because of smaller attenuation in the lower mantle. The coda attenuation measurement proposed by Aki is found to be useful even for long periods and at very large lapse times.  相似文献   

18.

The effects of finite amplitude are examined in two-dimensional, standing, internal gravity waves in a rectangular container which rotates about a vertical axis at frequency f/ 2. Expressions are given for the velocity components, density fluctuations and isopycnal displacements to second order in the wave steepness in fluids with buoyancy frequency, N , of general form, and the effect of finite amplitude on wave frequency is given in an expansion to third order. The first order solutions, and the solutions to second order in the absence of rotation, are shown to conserve energy during a wave cycle. Analytical solutions are found to second order for the first two modes in a deep fluid with N proportional to sech( az ), where z is the upward vertical coordinate and a is scaling factor. In the absence of rotation, results for the first mode in the latter stratification are found to be consistent with those for interfacial waves. An analytical solution to fourth order in a fluid with constant N is given and used to examine the effects of rotation on the development of static instability or of conditions in which shear instability may occur. As in progressive internal waves, an effect of rotation is to enhance the possibility of shear instability for waves with frequencies close to f . The analysis points to a significant difference between the dynamics of standing waves in containers of limited size and progressive internal waves in an unlimited fluid; the effect of boundaries on standing waves may inhibit the onset of instability. A possible application of the analysis is to transverse oscillations in long, narrow, steep-sided lakes such as Loch Ness, Scotland.  相似文献   

19.
Abstract

A new non-linear model of mixing and convection based on a modelling of two buoyant interacting fluids is applied to penetrative convection in the upper ocean due to surface cooling. In view of simple algebra, the model is one-dimensional. Dissipation is included, but no mean shear is present. A non-similar analytical solution is found in the case of a well-mixed layer bounded below by a sharp thermocline treated as a boundary layer. This solution is valid if the Richardson number, R i , defined as the ratio of the total mixed-layer buoyancy to a characteristic rms vertical velocity, is much greater than unity. The model predicts a deepening rate proportional to R i ?3/4. The thermocline remains of constant thickness, and the ratio thermocline thickness to mixed-layer depth decreases as R i ?3/4 as the mixed layer deepens. If the surface flux is constant, the mixed-layer depth increases with time as t ½. The vertical structure throughout the mixed layer and thermocline is given by the analytical solution, and vertical profiles of mean temperature and vertical fluxes are plotted. Computed profiles and available laboratory data agree remarkably well. Moreover, the accuracy of the simple analytical results presented here is comparable to that of sophisticated turbulence numerical models.  相似文献   

20.
Abstract

It is found that in a rotating stratified fluid bounded by a single rigid wall, edge waves may occur at all frequencies less than or equal to N sin a (a is the angle of the wall from the horizontal and N the Brunt‐Vaisala frequency). These decay exponentially away from the boundary, in a distance of O(S) wavelengths, for α = O(1), or O(S ‐1) wavelengths, for αS ≤ O(1), where S is the ratio of N to the Coriolis parameter f, taken for illustration to be large. The phase and energy both move with a component to the left, facing shallow water. The waves could, for example, appear as an internal tide at the continental rise or as baroclinic meandering of currents over a slope.

The low‐frequency limit, αS ? 1, is studied in detail. To allow for large scales of motion other rigid boundaries and variations in f are included. The edge (actually “bottom") waves then merge with topographic‐planetary waves as the wavelengths increase; the familiar depth‐independent mode is found to be possible in the sea for wavelengths exceeding about 450 km. The ß‐effect introduces modes complementary to that trapped at the bottom, which instead are isolated from it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号