首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamics of an interacting luminous disc, dark halo and satellite companion   总被引:1,自引:0,他引:1  
This paper describes a method, based on linear perturbation theory, to determine the dynamical interaction between extended halo and spheroid components and an environmental disturbance. One finds that resonant interaction between a galaxy and passing interlopers or satellite companions can carry the disturbance inward, deep inside the halo, where it can perturb the disc.    Applied to the Milky Way for example, the LMC and SMC appear to be sufficient to cause the observed Galactic warp and possibly seed other asymmetries. This is a multi-scale interaction in which the halo wake has a feature at roughly half the satellite orbital radius owing to a 2:1 orbital resonance. The rotating disturbance then excites an m  = 1 vertical disc mode which has the classic integral-sign morphology. A polar satellite orbit produces the largest warp and therefore the inferred LMC orbit is nearly optimal for maximum warp production.   Both the magnitude and morphology of the response depend on the details of the disc and halo models. Most critically, a change in the halo profile will shift the resonant frequencies and response location and consequently alter the coupling to the bending disc. Increasing the halo support relative to the disc, a sub-maximal disc model, decreases the warp amplitude.   Finally, the results and prognosis for N -body simulations are discussed. Discreteness noise in the halo, similar to that arising from a population of 106-M⊙ black holes, can produce observable warping.  相似文献   

2.
This study establishes that SMC, LMC and Milky Way extinction curves obey the same extinction law which depends on the 2200 Å bump size and one parameter, and generalizes the Cardelli, Clayton and Mathis (Cardelli et al., Astrophys. J. 345, 245, 1989) relationship. This suggests that extinction in all three galaxies is of the same nature. The role of linear reddening laws over all the visible/UV wavelength range, particularly important in the SMC but also present in the LMC and in the Milky Way, is also highlighted and discussed.  相似文献   

3.
4.
In this paper, we investigate the intrinsic bias in detecting caustic crossings between the Galactic halo and self-lensing gravitational microlensing events in the Magellanic Clouds. For this, we determine the region for optimal caustic-crossing detection in the parameter space of the physical binary separations, ℓ, and the total binary lens mass, M , and find that the optimal regions for both populations of events are similar to each other. In particular, if the Galactic halo is composed of lenses with the claimed average mass of 〈 M 〉∼0.5 M, the optimal binary separation range of Galactic halo events of 3.5 au≲ℓ≲14 au matches well with that of a Magellanic Cloud self-lensing event caused by a binary lens with a total mass of M ∼1 M; well within the mass range of the most probable lens population of stars in the Magellanic Clouds. Therefore, our computation implies that if the binary fractions and the distributions of binary separations of the two populations of lenses are not significantly different from each other, there is no strong detection bias against Galactic halo caustic-crossing events.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
A review is given of a few of the aspects of Magellanic Cloud research which have been carried out by South African astronomers or by others using South African facilities.  相似文献   

13.
A sample of 1497 carbon stars in the Large Magellanic Cloud (LMC) has been observed in the red part of the spectrum with the 2dF facility on the Anglo-Australian Telescope. Of these, 156 have been identified as J-type (i.e. 13C-rich) carbon stars using a technique which provides a clear distinction between J stars and the normal N-type carbon stars that comprise the bulk of the sample, and yields few borderline cases. A simple two-dimensional classification of the spectra, based on their spectral slopes in different wavelength regions, has been constructed and found to be related to the more conventional c and j indices, modified to suit the spectral regions observed. Most of the J stars form a photometric sequence in the   K − ( J − K )  colour–magnitude diagram, parallel to and 0.6 mag fainter than the N-star sequence. A subset of the J stars (about 13 per cent) are brighter than this J-star sequence; most of these are spectroscopically different from the other J stars. The bright J stars have stronger CN bands than the other J stars and are found strongly concentrated in the central regions of the LMC. Most of the rather few stars in common with Hartwick and Cowley's sample of suspected CH stars are J stars. Overall, the proportion of carbon stars identified as J stars is somewhat lower than has been found in the Galaxy. The Na D lines are weaker in the LMC J stars than in either the Galactic J stars or the LMC N stars, and do not seem to depend on temperature.  相似文献   

14.
15.
We present an analysis of the spatial distribution of various stellar populations within the Large Magellanic Cloud (LMC). We combine mid-infrared selected young stellar objects, optically selected samples with mean ages between ∼9 and ∼1000 Myr and existing stellar cluster catalogues to investigate how stellar structures form and evolve within the LMC. For the analysis we use Fractured Minimum Spanning Trees, the statistical Q parameter and the two-point correlation function. Restricting our analysis to young massive (OB) stars, we confirm our results obtained for M33, namely that the luminosity function of the groups is well described by a power law with index −2, and that there is no characteristic length-scale of star-forming regions. We find that stars in the LMC are born with a large amount of substructure, consistent with a two-dimensional fractal distribution with dimension     and evolve towards a uniform distribution on a time-scale of ∼175 Myr. This is comparable to the crossing time of the galaxy, and we suggest that stellar structure, regardless of spatial scale, will be eliminated in a crossing time. This may explain the smooth distribution of stars in massive/dense young clusters in the Galaxy, while other, less massive, clusters still display large amounts of structure at similar ages. By comparing the stellar and star cluster distributions and evolving time-scales, we show that infant mortality of clusters (or 'popping clusters') has a negligible influence on the galactic structure. Finally, we quantify the influence of the elongation, differential extinction and contamination of a population on the measured Q value.  相似文献   

16.
Six stars out of a sample of ∼2300 carbon stars in the Magellanic Clouds have been identified as having strong C2 bands but CN bands that are very weak or absent. It is argued that five of these are likely to be R Coronae Borealis (RCB) stars on the basis of their spectral characteristics and peculiar colours. Most are variables and the Large Magellanic Cloud (LMC) members have extreme radial velocities that are more like the planetary nebula population than the carbon stars. This sample consists of four LMC members (only one of them previously recognized as an RCB star), one Small Magellanic Cloud (SMC) member (the first RCB star reported in the SMC) and one foreground Galactic star.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号