首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uptake rates of NH4+, NO3 and dissolved organic nitrogen (urea) were measured in phytoplankton and in ice algae in the Barents Sea using a 15N-technique. NO3 was the most important nitrogen source for the ice algae (f-ratio = 0.92). The in situ irradiances in the subsurface chlorophyll maximum and in the ice algal communities were low. The in situ NO3 uptake rate in the ice algal communities was light-limited The in situ NO3 and NH4 uptake rates in the subsurface chlorophyll maximum were at times light-limited. It is hypothesised that NH4+ may accumulate in low light in the bottom of the euphotic zone and inhibit the in situ NO3 uptake rate.  相似文献   

2.
Compiled data from published and unpublished sources on copepod grazing of the large-sized copepods in the Barents Sea give wide ranges in grazing rates. Approximate average values indicate daily rations of 7–18% for copepodite stages V and VI and considerably higher values for the earliest copepodite stages. It is demonstrated that individual variability in gut fullness of copepods from a given locality is typically very high and not closely related to variable food abundance or depth of occurrence. There is no diel feeding rhythm during the summer, and even when relating copepod grazing to a number of biotic and abiotic factors through stepwise linear regression analysis, much of the variability remains unexplained. It is suggested that feeding behaviour, food quality and feeding history of the copepods all play important roles as factors which regulate copepod grazing. Model simulations on the phytoplankton succession, using literature data on laboratory-determined growth characteristics for solitary cells and colonies of the prymnesiophyte Phaeocystis pouchetii and large diatoms, indicate that the extent of the mixed layer and selective grazing by zooplankton are important factors that may explain the occurrence of dense blooms of P. pouchetii colonies, frequently observed during the spring.  相似文献   

3.
Temperature conditions in the Barents Sea are determined by the quality and quantity of the inflowing Atlantic water from the west and by processes taking part in the Barents Sea itself, in particular as a consequence of winter cooling and ice formation. The field of inflow to the Barents Sea during the period 1977-1987 has been studied. The surface winter temperatures within the Barents Sea vary in parallel with variations in the deeper layers of the inflowing water masses, whereas the surface temperatures in summer have a different variation pattern which is most likely dependent on the summer heating process.  相似文献   

4.
Ice algal accumulations were recognised by their vertical distribution in the ice, as surface, interior and bottom assemblages. The latter were quantitatively the most important in the Barents Sea and in particular the sub-ice assemblage floating towards, or attached to, the undcr-surface of the sea ice. Colonisation of the ice takes place by a "sieving" of the water between closely spaced platelets on the ice under-surface. Once associated with the ice, the assemblage undergoes a succession terminated by the dominance of ice specialists. In a horizontal S-N section through the ice, three distinct zones may be recognised: at the ice edge the recently colonised ice has a layer of algae up to a few millimeters in thickness consisting primarily of planktonic species. Further into older first year ice the algal layer becomes thicker and is typically dominated by the pennate diatom Nilzschia frigida Grunow. Below multi-year ice in the central polar basin decimetre-thick mats of algae are found, consisting almost exclusively of the centric diatom Melosira arclica (Ehrenberg) Dickie and a few associated, mostly epiphytic, species. The predominantly planktonic sub-ice assemblages at the ice edge can grow under stable conditions as soon as the light becomes adequate in the spring, and they are able to multiply actively for one to two months before planktonic growth is possible. The sub-ice plankton assemblage thus forms an inoculum released to the stabilising water when the ice starts melting. This may explain how a phytoplankton bloom can develop explosively at the ice edge as soon as the ice melting commences, at a time when the number of algal cells in the water column is still very low.  相似文献   

5.
Primary production of the northern Barents Sea   总被引:7,自引:0,他引:7  
The majority of the arctic waters are only seasonally ice covered; the northern Barents Sea, where freezing starts at 80 to 81°N in September, is one such area. In March, the ice cover reaches its greatest extension (74-75°N). Melting is particularly rapid in June and July, and by August the Barents Sea may be ice free. The pelagic productive season is rather short, 3 to 3.5 months in the northern part of the Barents Sea (north of the Polar Front, 75°N), and is able to sustain an open water production during only half of this time when a substantial part of the area is free of ice. Ice algal production starts in March and terminates during the rapid melting season in June and July, thus equalling the pelagic production season in duration.
This paper presents the first in situ measurements of both pelagic and ice-related production in the northern Barents Sea: pelagic production in summer after melting has started and more open water has become accessible, and ice production in spring before the ice cover melts. Judged by the developmental stage of the plankton populations, the northern Barents Sea consists of several sub-areas with different phytoplankton situations. Estimates of both daily and annual carbon production have been based on in situ measurements. Although there are few sampling stations (6 phytoplankton stations and 8 ice-algae stations), the measurements represent both pelagic bloom and non-bloom conditions and ice algal day and night production. The annual production in ice was estimated to 5.3 g Cm-2, compared to the pelagic production of 25 to 30 g Cm-2 south of Kvitøya and 12 to 15 g Cm-2 further north. According to these estimates ice production thus constitutes 16% to 22% of the total primary production of the northern Barents Sea, depending on the extent of ice-free areas.  相似文献   

6.
7.
The colonial algae Phaeocystis pouchetii and Dinobryon pellucidum dominated the phytoplankton crop at three stations in the Polar Front area of the Barents Sea.
Lipid extracted from the seawater containing the phytoplankton was dominated by neutral lipid classes, particularly triacylglycerols, and phospholipids were more abundant than galactolipids at all stations. Polyunsaturated fatty acids comprised between 15 and 26% of fatty acids of total lipid.
Of the carbon assimilated into lipid over 24 hours, 40% was located in the neutral lipid fraction. Phospholipids contained a smaller proportion of fixed carbon than galactolipids.
No defiinte relationships were observed between the distribution of fixed carbon in photosynthetic end products and the temperature or irradiance at which the phytoplankton was incubated. At a constant irradiance of 8.5 μmol m−2s−1, the highest proportion of fixed carbon was recovered in protein at 4.5°C, but at −1.5°C most radioactivity was present in low molecular weight compounds. Regardless of incubation conditions, lipid always contained less than 30% of total assimilated carbon.  相似文献   

8.
A study of the climatic system in the Barents Sea   总被引:10,自引:0,他引:10  
The climatic conditions in the Barents Sea are mainly determined by the influx of Atlantic Water. A homogeneous wind-driven numerical current model was used to calculate the fluctuations in the volume flux of Atlantic Water to the Barents Sea which are caused by local wind forcing. The study period is from 1970 to 86. When compared with observed variations in temperature, ice coverage, and air pressure, the results show remarkably good agreement between all three parameters. The climate system of the Barents Sea is discussed with emphasis on the interrelations and feedback mechanisms between air, sea, and ice.  相似文献   

9.
10.
Aerial strip surveys of polar bears in the Barents Sea   总被引:1,自引:0,他引:1  
Aerial strip surveys of polar bears in the Barents Sea were performed by helicopter in winter 1987. The number of bears within 100 m on each side of the helicopter was counted. A total of 263.6 km2 was surveyed and 21 bears were counted. Most of the bears were found in the southern part of the area, which indicates that the southwestern ice edge area in the Barents Sea is a very important winter habitat for polar bears.  相似文献   

11.
Calanus in North Norwegian fjords and in the Barents Sea   总被引:3,自引:0,他引:3  
The Physical environment of a North Norwegian fjord and of the Atlantic and Arctic domains of the Barents Sea are described. The seasonal variation of primary production and biomass of the most important copepod species are described in order to contrast regional differences in the timing of the plankton cycles. Analysis of the seasonal variation in the biomass of six different copepod species in Balsfjorden clearly demonstrate the importance of Calanus finmarchkus as a spring and early summer form, whereas Pseudoculanus acuspes , the most important smaller form, reaches the highest biomass later during the productive season. In the Atlantic part of the Barents Sea, C. finmarchkus is the dominant herbivorous form. The next most important species, Pseudocalanus sp. and M. longa , play a less important role here than in Balsfjorden. In the Arctic domain, the smaller copepod forms appear to have been replaced in trophodynamic terms by the youngest year-group (C-CIII) of C. glacialis , which prevails during the Arctic summer and autumn periods. The coupling between primary producers and Calanus on a seasonal basis is addressed through the grazing and the vertical organisation of the plant-herbivore community. The productivity of these two Calanus species is considered in relation to the seasonal and inter-annual variation in climate; although different mechanisms are utilised, cold periods tend to lower Calanus productivity both in the Arctic and the Atlantic domains of the Barents Sea. Interannual variations in Calanus biomass and productivity are discussed in the perspective of endemic and advective processes.  相似文献   

12.
Features of the physical oceanographic conditions of the Barents Sea   总被引:17,自引:2,他引:15  
  相似文献   

13.
Dynamics of plankton growth in the Barents Sea: model studies   总被引:2,自引:0,他引:2  
1-D and 3-D models of plankton production in the Barents Sea are described and a few simulations presented. The 1-D model has two compartments for phytoplankton (diatoms and P. pouchelii) , three for limiting nutrients (nitrate, ammonia and silicic acid), and one compartment called "sinking phytoplankton". This model is coupled to a submodel of the important herbivores in the area and calculates the vertical distribution in a water column. Simulations with the 3-D model indicate a total annual primary production of 90-120g C m−2 yr−1 in Atlantic Water and 20-50g C m−2 yr−1 in Arctic Water, depending on the persistence of the ice cover during the summer.
The 3-D model takes current velocities, vertical mixing, ice cover, and temperature from a 3-D hydrodynamical model. Input data are atmospheric wind, solar radiation, and sensible as well as latent heat flux for the year 1983. The model produces a dynamic picture of the spatial distribution of phytoplankton throughout the spring and summer. Integrated primary production from March to July indicates that the most productive area is Spitsbcrgenbanken and the western entrance to the Barents Sea. i.e. on the northern slope of Tromsøflaket.  相似文献   

14.
Ship-following Kittiwakes Rissa tridactyla were caught and dye-marked with picric acid on three occasions from a ship trawling in the Barents Sea in August 1986. The ship trawled regularly every 20-30 nautical miles and most of the trawl contents were fed to the birds accompanying the ship. Kittiwakes followed the ship for an average of 480-591 min. Between trawl-stations the birds rested on lifeboats and on the rail of the ship, and resting birds showed aggressive behaviour towards neighbours and intruders. The mean departure rate ranged from 4.2 to 5.1% per hour, and the turnover rate was 32 hours. It is obvious that the Kittiwakes behaved opportunistically and had adapted to exploit the waste from the commercial fisheries in the area.  相似文献   

15.
Biomass and respiratory ETS activity of microplankton in the Barents Sea   总被引:1,自引:0,他引:1  
The activity of the respiratory electron transport system (ETS) of microplankton was measured in the Central Barents Sea during summer 1988. In vitro ETS activity increased with assay temperature between 0 and 2°C, as reported for other enzyme systems in plankton. The higher in situ activities were observed near the surface (upper 10-25 m) and were associated with chlorophyll a maxima. Respiratory activity in the upper 60 m accounted for 40-60% of the total column respiration. The activities (0-100 m) were lower than oxygen consumption rates reported in the Canadian Arctic, mainly due to lower phytoplankton biomass. They were higher than ETS activity measured in the Weddell Sea (Antarctic Ocean). A high detrital versus total microplankton mass accounted for the low activity related to particulate organic carbon (POC). In general, the levels of respiratory ETS activity were in the range reported for temperate oligotrophic oceanic regions.  相似文献   

16.
Deep seismic reflection profiles across the western Barents Sea   总被引:1,自引:0,他引:1  
Summary. The continental crust beneath the western Barents Sea has been acoustically imaged down to Moho depths in a large scale deep seismic reflection experiment. A first-order pattern of crustal reflectivity has been established and the thickness of the crust determined. A number of features with important implications for the tectonics of the area have been discovered. The results are presented in the form of two transects.  相似文献   

17.
Distribution and life history of krill from the Barents Sea   总被引:2,自引:0,他引:2  
Krill from the Barents Sea were studied on six cruises from 1985 to 1989. Thysanoessa inermis and T. longicaudata were the dominant species, while T. raschii and Meganyctiphanes norvegica were rarer in the studied areas. The two dominant species T. inermis and T. longicaudata are mainly found in the Atlantic. Water and they do not to a large extent penetrate into Arctic water masses in the northern Barents Sea. M. norvegica is a more strict boreal species that does not occur as extensively in the Barents Sea as do the Thysanoessa species. The mean population abundance ranged from 1 to 61 individuals m−2 for T. inermis and from 2 to 52 ind. M−2 for T. longicaudata . The mean dry weight biomass of these two species ranged from 14 to 616 and from 19 to 105 mg−2. Length frequency distributions indicate a life span of just over two years for T. inermis and T. longicaudata . Growth took place from about April to autumn with no apparent growth during winter. Maturation and spawning seem to occur after two years for T. inermis and one year for T. longicaudata . Main spawning occurred from May to June coinciding with the spring phytoplankton bloom. Captive spawners of T. inermis (total length 17-22 mm) shed 30-110 eggs per female in a single batch.  相似文献   

18.
Surface wave tomography of the Barents Sea and surrounding regions   总被引:1,自引:0,他引:1  
The goal of this study is to refine knowledge of the structure and tectonic history of the European Arctic using the combination of all available seismological surface wave data, including historical data that were not used before for this purpose. We demonstrate how the improved data coverage leads to better depth and spatial resolution of the seismological model and discovery of intriguing features of upper-mantle structure. To improve the surface wave data set in the European Arctic, we extensively searched for broad-band data from stations in the area from the beginning of the 1970s until 2005. We were able to retrieve surface wave observations from regional data archives in Norway, Finland, Denmark and Russia in addition to data from the data centres of IRIS and GEOFON. Rayleigh and Love wave group velocity measurements between 10 and 150 s period were combined with existing data provided by the University of Colorado at Boulder. This new data set was inverted for maps showing the 2-D group-velocity distribution of Love and Rayleigh waves for specific periods. Using Monte Carlo inversion, we constructed a new 3-D shear velocity model of the crust and upper mantle beneath the European Arctic which provides higher resolution and accuracy than previous models. A new crustal model of the Barents Sea and surrounding areas, published recently by a collaboration between the University of Oslo, NORSAR and the USGS, constrains the 3-D inversion of the surface wave data in the shallow lithosphere. The new 3-D model, BARMOD, reveals substantial variations in shear wave speeds in the upper mantle across the region with a nominal resolution of 1°× 1°. Of particular note are clarified images of the mantle expression of the continent-ocean transition in the Norwegian Sea and a deep, high wave speed lithospheric root beneath the Eastern Barents Sea, which presumably is the remnant of several Palaeozoic collisions.  相似文献   

19.
A quantitative study of palynomorphs and palynodebris in a shallow core from the central part of Bjørnøyrenna, western Barents Sea, is presented. The core could be subdivided into a lower part characterized by a complete dominance of reworked plant debris of Mesozoic age and an upper part with considerable input of first cycle algal debris and dinoflagellate cysts. Two hypotheses are suggested to explain this radical change in palynodebris composition. Either it represents a transition from a situation with permanent ice to normal marine conditions, or the absence of first cycle plant debris in the lower part of the core is caused by a masking of this component due to extremely high input of glacially eroded material from the bordering shallow parts of the Barents Sea. The present study shows that palynodebris analysis may contribute important information to the study of composition and depositional environment of Quaternary marine sediments in the area.  相似文献   

20.
Pigment budgets use chlorophyll a and phaeopigment standing stock in combination with their photo-oxidation and sedimentation rates in the euphotic zone to estimate phytoplankton growth and grazing by micro- and macrozooplankton. Using this approach, average phytoplankton growth in the euphotic zone of the Barents Sea was estimated at 0.17 and 0.14 d−1 during spring of 1987 and 0.018 and 0.036 d−1 during late- and postbloom conditions in summer of 1988. Spring growth was 65% lower than the estimates from radiocarbon incorporation, supporting a 33% pigment loss during grazing. Macrozooplankton grazing and cell sinking were the main loss terms for phytoplankton during spring while microzooplankton grazing was dominant in summer.
In contrast to tropical and temperate waters, Arctic waters are characterized by a high phaeopigment: chlorophyll a ratio in the seston. Photooxidation rates of phaeopigments at in situ temperatures (0 ± 1°C) are lower than in temperate waters and vary by a factor of 2 for individual forms (0.009 to 0.018 m−2mol−1). The phaeopigment fraction in both the suspended and sedimenting material was composed of seven main compounds that were isolated using high-performance liquid chromatography and characterized by spectral analysis. The most abundant phaeopigment in the sediment traps, a phaeo-phorbide-like molecule of intermediate polarity (phaeophorbide a3), peaked in abundance in the water column below the 1% isolume for PAR (60-80 m) and showed the highest rate of photooxidation. This phaeopigment was least abundant in the seston when phytoplankton was dominated by prymnesiophytcs but increased its abundance in plankton dominated by diatoms. This distribution suggests that larger grazers feeding on diatoms are the main producers of this phaeopigment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号