首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Using the stellar photometry catalogue based on the latest data release (DR4) of the Sloan Digital Sky Survey (SDSS), a study of the Galactic structure using star counts is carried out for selected areas of the sky. The sample areas are selected along a circle at a Galactic latitude of +60°, and 10 strips of high Galactic latitude along different longitudes. Direct statistics of the data show that the surface densities of ℓ from 180° to 360° are systematically higher than those of ℓ from 0° to 180°, defining a region of overdensity (in the direction of Virgo) and another one of underdensity (in the direction of Ursa Major) with respect to an axisymmetric model. It is shown by comparing the results from star counts in the ( g − r ) colour that the density deviations are due to an asymmetry of the stellar density in the halo. Theoretical models for the surface density profile are built and star counts are performed using a triaxial halo of which the parameters are constrained by observational data. Two possible reasons for the asymmetric structure are discussed.  相似文献   

3.
A method based on Lucy's iterative algorithm is developed to invert the equation of stellar statistics for the Galactic bulge and is then applied to the K -band star counts from the Two-Micron Galactic Survey in a number of off-plane regions (10°>| b |>2°, | l |<15°). The top end of the K -band luminosity function is derived and the morphology of the stellar density function is fitted to triaxial ellipsoids, assuming a non-variable luminosity function within the bulge. The results, which have already been outlined by López-Corredoira et al., are shown in this paper with a full explanation of the steps of the inversion: the luminosity function shows a sharp decrease brighter than M K =−8.0  mag when compared with the disc population; the bulge fits triaxial ellipsoids with the major axis in the Galactic plane at an angle with the line of sight to the Galactic centre of 12° in the first quadrant; the axial ratios are 1:0.54:0.33, and the distance of the Sun from the centre of the triaxial ellipsoid is 7860 pc. The major–minor axial ratio of the ellipsoids is found not to be constant, the best fit to the gradient being K z =(8.4±1.7)×exp(− t /(2000±920) pc), where t is the distance along the major axis of the ellipsoid in parsecs. However, the interpretation of this is controversial. An eccentricity of the true density-ellipsoid gradient and a population gradient are two possible explanations. The best fit for the stellar density, for 1300 pc< t <3000 pc, is calculated for both cases, assuming an ellipsoidal distribution with constant axial ratios, and when K z is allowed to vary. From these, the total number of bulge stars is ∼3×1010 or ∼4×1010, respectively.  相似文献   

4.
5.
6.
7.
We show that collisions with stellar-mass black holes can partially explain the absence of bright giant stars in the Galactic Centre, first noted by Genzel et al. We show that the missing objects are low-mass giants and asymptotic giant branch stars in the range  1–3 M  . Using detailed stellar evolution calculations, we find that to prevent these objects from evolving to become visible in the depleted K bands, we require that they suffer collisions on the red giant branch, and we calculate the fractional envelope mass losses required. Using a combination of smoothed particle hydrodynamic calculations, restricted three-body analysis and Monte Carlo simulations, we compute the expected collision rates between giants and black holes, and between giants and main-sequence stars in the Galactic Centre. We show that collisions can plausibly explain the missing giants in the  10.5 < K < 12  band. However, depleting the brighter  ( K < 10.5)  objects out to the required radius would require a large population of black hole impactors which would in turn deplete the  10.5 < K < 12  giants in a region much larger than is observed. We conclude that collisions with stellar-mass black holes cannot account for the depletion of the very brightest giants, and we use our results to place limits on the population of stellar-mass black holes in the Galactic Centre.  相似文献   

8.
We use the Hipparcos colour–magnitude diagram of field stars with Tycho colours to make a new minimum age estimate for the Galactic disc. The method is based on fits to the red envelope of subgiants in the Hipparcos colour–magnitude diagram with synthetic isochrones covering the range of disc metal abundance. The colours and luminosities of the isochrones as a function of abundance are checked using new techniques involving 'red-clump' stars in the giant branch region and on the main sequence using G and K dwarfs. We derive a minimum disc age of 8 Gyr, in good agreement with other methods.  相似文献   

9.
The halo structure at high Galactic latitudes near both the north and south poles is studied using Sloan Digital Sky Survey (SDSS) and SuperCOSMOS data. For the south cap halo, the archive of the SuperCOSMOS photographic photometry sky survey is used. The coincident source rate between SuperCOSMOS data in B J band from 16.5 to 20.5 mag and SDSS data is about 92 per cent, in a common sky area in the south. While that in the R F band is about 85 per cent from 16.5 to 19.5 mag. Transformed to the SuperCOSMOS system and downgraded to the limiting magnitudes of SuperCOSMOS, the star counts in the North Galactic Cap from SDSS show up to an  16.9 ± 6.3  per cent  asymmetric ratio (defined as relative fluctuations over the rotational symmetry structure) in the B J band, and up to  13.5 ± 6.7  per cent  asymmetric ratio in the R F band. From SuperCOSMOS B J and R F bands, the structure of the Southern Galactic hemisphere does not show the same obvious asymmetric structures as the northern sky does in both the original and downgraded SDSS star counts. An axisymmetric halo model with n = 2.8 and q = 0.7 can fit the projected number density from SuperCOSMOS fairly well, with an average error of about 9.17 per cent. By careful analysis of the difference of star counts between the downgraded SDSS northern halo data and SuperCOSMOS southern halo data, it is shown that no asymmetry can be detected in the South Galactic Cap at the accuracy of SuperCOSMOS, and the Virgo overdensity is likely a foreign component in the Galactic halo.  相似文献   

10.
The structure of the Galactic bar   总被引:1,自引:0,他引:1  
We present a deep near-infrared wide-angle photometric analysis of the structure of the inner Galactic bar and central disc. The presence of a triaxial structure at the centre of the Galaxy is confirmed, consistent with a bar inclined at  22°± 55  from the Sun—Galactic Centre line, extending to approximately 2.5 kpc from the Galactic Centre and with a rather small axis ratio. A feature at  ℓ=−98  not aligned with this triaxiality suggests the existence of a second structure in the inner Galaxy, a double triaxiality or an inner ring. We argue that this is likely to be the signature of the end of the Galactic bar, at approximately 2.5–3 kpc, which is circumscribed by an inner pseudo-ring. No thick dust lane preceding the bar is detected and a hole in the dust distribution of the disc inside the bar radius is inferred.  相似文献   

11.
12.
13.
14.
15.
Based on the Hipparcos proper motions and available radial velocity data of O-B stars, we have re-examined the local kinematical structure of the young disk population of-1500 O-B stars not including the Gould-belt stars. A systematic warping motion of the stars about the direction to the Galactic center has been reconfirmed. A negative K-term implying a systematic contraction of stars in the solar vicinity has been detected. Two different distance scales are used in order to find out their impact on the kinematical parameters, and we conclude that the adopted distance scale plays an important role in characterizing the kinematical parameters at the present level of the measurement uncertainty.  相似文献   

16.
We present near-infrared colour–magnitude diagrams and star counts for a number of regions along the Galactic plane. It is shown that along the l =27°, b =0° line of sight there is a feature at 5.7±0.7 kpc with a density of stars at least a factor of 2 and probably more than a factor of 5 times that of the disc at the same position. This feature forms a distinct clump on an H versus J − H diagram and is seen at all longitudes from the bulge to about l =28°, but at no longitude greater than this. The distance to the feature at l =20° is about 0.5 kpc further than at l =27°, and by l =10° it has merged with, or has become, the bulge. Given that at l =27° and l =21° there is also a clustering of very young stars, the only component that can reasonably explain what is seen is a bar with half-length of around 4 kpc and a position angle of about 43°±7°.  相似文献   

17.
18.
We present survey data in the narrow-band L filter (nb L ), taken at UKIRT, for a total area of 277 arcmin2, roughly equally divided between four regions at zero Galactic latitude and longitudes ±4.°3 and ±2.°3. The 80 per cent completeness level for these observations is at roughly magnitude 11.0. This magnitude limit, owing to the low coefficient for interstellar extinction at this wavelength ( A nb L =0.047 AV ), allows us to observe bulge giants. We match the nb L magnitudes with DENIS survey K magnitudes, and find 95 per cent of nb L sources are matched to K sources. Constructing colour–magnitude diagrams, we deredden the magnitudes and find evidence for a longitude-dependent asymmetry in the source counts. We find that there are ∼15 per cent and ∼5 per cent more sources at the negative longitude than at the corresponding positive longitude for the fields at ±4.°3 and ±2.°3, respectively. This is compared with the predictions of some Galactic bar models. We find an asymmetry in the expected sense, which favours gas dynamical models and the recent deconvolution of surface photometry data over earlier treatments of photometric data.  相似文献   

19.
20.
High signal-to-noise ratio spectra were obtained of 10 high-proper-motion stars having  −1 ≲[Fe/H] < 0  , and a comparable number of disc stars. All but two of the high-proper-motion stars were confirmed to have  [Fe/H] > −1.0  , some approaching solar metallicity, but, even so, earlier measurements overestimated the metallicities and velocities of some of these stars. Models of stellar populations were used to assign membership probabilities to the Galactic components to which the high-velocity stars might belong. Many were found to be more probably thick-disc than halo objects, despite their large space motions, and two might be associated with the inner Galaxy. It may be necessary to reassess contamination of previous halo samples, such as those used to define the metallicity distribution, to account for contamination by high-velocity thick-disc stars, and to consider possible subcomponents of the halo.
The change in [α/Fe] ratios at  [Fe/H]≃−1.0  is often used to constrain the degree and timing of Type Ia supernova nucleosynthesis in Galactic chemical-evolution models. [Ti/Fe] values were measured for eight of the high-velocity stars. Both high- and low-[Ti/Fe] halo stars exist; likewise high- and low-[Ti/Fe] thick-disc stars exist. We conclude that the [Ti/Fe]'break' is not well defined for a given population; nor is there a simple, continuous evolutionary sequence through the break. Implications for the interpretation of the [α/Fe] break in terms of SN Ia time-scales and progenitors are discussed. The range of [Ti/Fe] found for high -velocity (low rotation) thick-disc stars contrasts with that for the low -velocity (high rotation) thick-disc sample studied by Prochaska et al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号