首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystallization experiments were conducted on dry glasses fromthe Unzen 1992 dacite at 100–300 MPa, 775–875°C,various water activities, and fO2 buffered by the Ni–NiObuffer. The compositions of the experimental products and naturalphases are used to constrain the temperature and water contentsof the low-temperature and high-temperature magmas prior tothe magma mixing event leading to the 1991–1995 eruption.A temperature of 1050 ± 75°C is determined for thehigh-temperature magma based on two-pyroxene thermometry. Theinvestigation of glass inclusions suggests that the water contentof the rhyolitic low-temperature magma could be as high as 8wt % H2O. The phase relations at 300 MPa and in the temperaturerange 870–900°C, which are conditions assumed to berepresentative of the main magma chamber after mixing, showthat the main phenocrysts (orthopyroxene, plagioclase, hornblende)coexist only at reduced water activity; the water content ofthe post-mixing dacitic melt is estimated to be 6 ± 1wt % H2O. Quartz and biotite, also present as phenocrysts inthe dacite, are observed only at low temperature (below 800–775°C).It is concluded that the erupted dacitic magma resulted fromthe mixing of c. 35 wt % of an almost aphyric pyroxene-bearingandesitic magma (1050 ± 75°C; 4 ± 1 wt % H2Oin the melt) with 65 wt % of a phenocryst-rich low-temperaturemagma (760–780°C) in which the melt phase was rhyolitic,containing up to 8 ± 1 wt % H2O. The proportions of rhyoliticmelt and phenocrysts in the low-temperature magma are estimatedto be 65% and 35%, respectively. It is emphasized that the strongvariations of phenocryst compositions, especially plagioclase,can be explained only if there were variations of temperatureand/or water activity (in time and/or space) in the low-temperaturemagma. KEY WORDS: Unzen volcano; magma mixing; experimental study  相似文献   

2.
Ultra-calcic ankaramitic magmas or melt inclusions are ubiquitousin arc, ocean-island and mid-ocean ridge settings. They areprimitive in character (XMg > 0·65) and have highCaO contents (>14 wt %) and CaO/Al2O3 (>1·1). Experimentson an ankaramite from Epi, Vanuatu arc, demonstrate that itsliquidus surface has only clinopyroxene at pressures of 15 and20 kbar, with XCO2 in the volatile component from 0 to 0·86.The parental Epi ankaramite is thus not an unfractionated magma.However, forcing the ankaramite experimentally into saturationwith olivine, orthopyroxene and spinel results in more magnesian,ultra-calcic melts with CaO/Al2O3 of 1·21–1·58.The experimental melts are not extremely Ca-rich but high inCaO/Al2O3 and in MgO (up to 18.5 wt %), and would evolve tohigh-CaO melts through olivine fractionation. Fractionationmodels show that the Epi parent magma can be derived from suchultra-calcic experimental melts through mainly olivine fractionation.We show that the experimental ultra-calcic melts could formthrough low-degree melting of somewhat refractory mantle. Thelatter would have been depleted by previous melt extraction,which increases the CaO/Al2O3 in the residue as long as someclinopyroxene remains residual. This finding corrects the commonassumption that ultra-calcic magmas must come from a Ca-richpyroxenite-type source. The temperatures necessary for the generationof ultra-calcic magmas are  相似文献   

3.
Palaeocene (c. 55–58 Ma) adakitic andesites from the Yanjiarea, NE China, are typically clinopyroxene-bearing sodic andesitescontaining 60· 9–62· 2% SiO2 and 4·02–4· 36% MgO, with high Mg-number [100 Mg/(Mg+ Fe) atomic ratio] from 65· 5 to 70· 1. Whole-rockgeochemical features include high Cr (128–161 ppm) andNi (86–117 ppm) concentrations, extremely high Sr (2013–2282ppm), low Y (10–11 ppm) and heavy rare earth elements(HREE; e.g. Yb = 0· 79–1· 01 ppm), and mid-oceanridge basalt (MORB)-like Sr–Nd–Pb isotopic compositions[e.g. 87Sr/ 86Sr(i) = 0· 70298–0· 70316,Nd(t) = +3· 8 to +6· 3 and 206Pb/ 204Pb = 17·98 – 18· 06], analogous to high-Mg adakites occurringin modern subduction zones. However, mineralogical evidencefrom clinopyroxene phenocrysts and microcrystalline plagioclaseclearly points to magma mixing during magma evolution. Iron-richclinopyroxene (augite) cores with low Sr, high Y and heavy REEcontents, slightly fractionated REE patterns and large negativeEu anomalies probably crystallized along with low-Ca plagioclasefrom a lower crustal felsic magma. In contrast, high Mg-numberclinopyroxene (diopside and endiopside) mantles and rims havehigher Sr and lower HREE and Y concentrations, highly fractionatedREE patterns (high La/Yb) and negligible Eu anomalies, similarto those found in adakites from subduction zones. The Yanjiadakitic andesites can be interpreted as a mixture between acrust-derived magma having low Mg-number and Sr, and high Yand HREE, and a mantle-derived high Mg-number adakite havinghigh Sr and low Y and HREE concentrations. During storage and/orascent, the mixed magma experienced further crustal contaminationto capture zircons, of a range of ages, from the wall rocks.The absence of coeval arc magmatism and an extensional tectonicregime in the Yanji area and surrounding regions suggest thatthese Palaeocene adakitic andesites were formed during post-subductionextension that followed the late Cretaceous Izanagi–Farallonridge subduction. Generation of these adakitic andesites doesnot require contemporaneous subduction of a young, hot oceanicridge or delamination of eclogitic lower crust as suggestedby previous models. KEY WORDS: magma mixing; adakitic andesites; Palaeocene; NE China  相似文献   

4.
The island of Pantelleria consists of trachytes, pantelleritesand minor mildly alkaline basalts. Rocks of intermediate composition(falling in the so-called ‘Daly Gap’) such as mugearites,benmoreites and mafic trachytes occur only in the form of enclavesin trachytes and pantellerites inside the main caldera of theisland (Caldera ‘Cinque Denti’), which collapsedduring the ‘Green Tuff’ ignimbrite eruption at 50ka. The enclaves include volcanic, subvolcanic and intrusiverock types. The enclaves in host trachyte contain traces ofglass; devitrified glass occurs within enclaves in host pantellerites.Minerals in the enclaves show regular compositional variationswith whole-rock silica content. Glass present in the medium-grainedsamples is interpreted to be the result of incipient melting.The major and trace element compositions of the enclaves showregular and linear variations between an evolved mafic magma(hawaiite) and a felsic end-member similar to the ‘GreenTuff’ trachyte. Fractional crystallization modelling ofcompatible and incompatible trace elements (V, Ni, Zr, La, Sm,Lu, Nb, Y, Th) does not reproduce the observed trends. Rocksof intermediate composition within the ‘Daly Gap’can be explained only by magma mixing between an already differentiatedmafic magma (hawaiite) and an anorthoclase-rich trachytic meltin the lower and higher parts, respectively, of a stratifiedmagmatic chamber. Medium-grained enclaves are interpreted asthe result of fragmentation of solidified mixing layers in theroof of the magma chamber during the eruption of the ‘GreenTuff’, when the collapse of the caldera took place. Diffusioncalculations suggest a residence time of <5 days for theenclaves in their host magmas. KEY WORDS: Daly Gap; enclaves; magma mixing; Pantelleria  相似文献   

5.
High-magnesian andesite occurs at Hachimantai, northern Honshu,Japan. Disequilibrium zoning features indicate that the phenocrystminerals were derived from three different magmas. Chemicalcompositions and zoning profiles are accounted for by two-stagemagma mixing: the first mixing occurred between a crystal-freebasalt magma and a more differentiated olivine basalt magma;the second stage occurred by mixing between the resultant ofthe first-stage mixing and a hypersthene–augite andesitemagma. Mass balance of phenocryst crystals shows that end-membercompositions were c. 52·0 wt % SiO2 and 10·1 wt% MgO for the mafic end-member and 57·0 wt % SiO2 forthe felsic end-member of the second-stage mixing. Phenocrystminerals of the first-stage mixing end-member indicate the similarityof the end-member composition to that of basalts from nearbyvolcanoes. The counterpart aphyric magma in the first-stagemixing was more magnesian than the estimated mafic end-member.Calculations of the phase equilibria of similar basalts fromnearby volcanoes and comparison of results with previous phaseequilibrium experiments showed that the olivine basalt end-memberof the first stage was hydrous and situated at a depth wherethe pressure was less than 2 kbar. Two-pyroxene thermometryestimates are about 1050°C for the pyroxenes derived fromthe felsic end-member of the second-stage mixing, and about1180°C for groundmass pyroxenes. Crystallization temperaturesof 1170–1230°C are estimated for minerals from themafic end-member of the second-stage mixing based on phase equilibriumcalculations. These similar temperature estimates between thegroundmass and the mafic end-member imply achievement of thermalequilibrium between end-members preceding crystallization. Themagma plumbing system of the eastern Hachimantai is illustratedby a recent volcanic event, involving lateral dike intrusiontoward a pressure source. The encounter of a laterally migratingbasalt dike and an andesite magma chamber triggered the magmamixing that produced the high-magnesian andesite. The modelcan account for the relation between the petrological modeland surface distribution of volcanic rocks. The infrequencyof such mixing-derived high-magnesian andesite stems from therarity of high-magnesian basalt as a potential mixing end-memberin northern Honshu. KEY WORDS: high-magnesian andesite; Hachimantai; Northern Honshu; high-magnesian basalt; two-stage magma mixing  相似文献   

6.
Origin of the UG2 chromitite layer, Bushveld Complex   总被引:3,自引:0,他引:3  
Chromitite layers are common in large mafic layered intrusions.A widely accepted hypothesis holds that the chromitites formedas a consequence of injection and mixing of a chemically relativelyprimitive magma into a chamber occupied by more evolved magma.This forces supersaturation of the mixture in chromite, whichupon crystallization accumulates on the magma chamber floorto form a nearly monomineralic layer. To evaluate this and othergenetic hypotheses to explain the chromitite layers of the BushveldComplex, we have conducted a detailed study of the silicate-richlayers immediately above and below the UG2 chromitite and anotherchromitite layer lower in the stratigraphic section, at thetop of the Lower Critical Zone. The UG2 chromitite is well knownbecause it is enriched in the platinum-group elements and extendsfor nearly the entire 400 km strike length of the eastern andwestern limbs of the Bushveld Complex. Where we have studiedthe sequence in the central sector of the eastern Bushveld,the UG2 chromitite is embedded in a massive, 25 m thick plagioclasepyroxenite consisting of 60–70 vol. % granular (cumulus)orthopyroxene with interstitial plagioclase, clinopyroxene,and accessory phases. Throughout the entire pyroxenite layerorthopyroxene exhibits no stratigraphic variations in majoror minor elements (Mg-number = 79·3–81·1).However, the 6 m of pyroxenite below the chromitite (footwallpyroxenite) is petrographically distinct from the 17 m of hangingwall pyroxenite. Among the differences are (1) phlogopite, K-feldspar,and quartz are ubiquitous and locally abundant in the footwallpyroxenite but generally absent in the hanging wall pyroxenite,and (2) plagioclase in the footwall pyroxenite is distinctlymore sodic and potassic than that in the hanging wall pyroxenite(An45–60 vs An70–75). The Lower Critical Zone chromititeis also hosted by orthopyroxenite, but in this case the rocksabove and below the chromitite are texturally and compositionallyidentical. For the UG2, we interpret the interstitial assemblageof the footwall pyroxenite to represent either interstitialmelt that formed in situ by fractional crystallization or chemicallyevolved melt that infiltrated from below. In either case, themelt was trapped in the footwall pyroxenite because the overlyingUG2 chromitite was less permeable. If this interpretation iscorrect, the footwall and hanging wall pyroxenites were essentiallyidentical when they initially formed. However, all the modelsof chromitite formation that call on mixing of magmas of differentcompositions or on other processes that result in changes inthe chemical or physical conditions attendant on the magma predictthat the rocks immediately above and below the chromitite layersshould be different. This leads us to propose that the Bushveldchromitites formed by injection of new batches of magma witha composition similar to the resident magma but carrying a suspendedload of chromite crystals. The model is supported by the commonobservation of phenocrysts, including those of chromite, inlavas and hypabyssal rocks, and by chromite abundances in lavasand peridotite sills associated with the Bushveld Complex indicatingthat geologically reasonable amounts of magma can account foreven the massive, 70 cm thick UG2 chromitite. The model requiressome crystallization to have occurred in a deeper chamber, forwhich there is ample geochemical evidence. KEY WORDS: Bushveld complex; chromite; crystal-laden magma; crustal contamination; magma mixing; UG2 chromitite  相似文献   

7.
The Alaska–Aleutian island arc is well known for eruptingboth tholeiitic and calc-alkaline magmas. To investigate therelative roles of chemical and temporal controls in generatingthese contrasting liquid lines of descent we have undertakena detailed study of tholeiitic lavas from Akutan volcano inthe oceanic Aleutian arc and calc-alkaline products from Aniakchakvolcano on the continental Alaskan Peninsula. The differencesdo not appear to be linked to parental magma composition. TheAkutan lavas can be explained by closed-system magmatic evolution,whereas curvilinear trace element trends and a large range in87Sr/86Sr isotope ratios in the Aniakchak data appear to requirethe combined effects of fractional crystallization, assimilationand magma mixing. Both magmatic suites preserve a similar rangein 226Ra–230Th disequilibria, which suggests that thetime scale of crustal residence of magmas beneath both thesevolcanoes was similar, and of the order of several thousandyears. This is consistent with numerical estimates of the timescales for crystallization caused by cooling in convecting crustalmagma chambers. During that time interval the tholeiitic Akutanmagmas underwent restricted, closed-system, compositional evolution.In contrast, the calc-alkaline magmas beneath Aniakchak volcanounderwent significant open-system compositional evolution. Combiningthese results with data from other studies we suggest that differentiationis faster in calc-alkaline and potassic magma series than intholeiitic series, owing to a combination of greater extentsof assimilation, magma mixing and cooling. KEY WORDS: uranium-series; Aleutian arc; magma differentiation; time scales  相似文献   

8.
MIRNEJAD  H.; BELL  K. 《Journal of Petrology》2006,47(12):2463-2489
Whole-rock major and trace element and O, Sr, Nd and Pb isotopicdata are reported for 3·0–0·89 Ma lamproitesfrom the Leucite Hills, Wyoming, USA. The two main groups oflamproites, madupitic lamproites and phlogopite lamproites,are geochemically distinct and cannot be related to one anotherby either fractional crystallization or crustal contamination.It seems likely that the geochemical differences between thesetwo rock types are related to variations in source mineralogyand depth of partial melting. The high Mg-number and large ionlithophile element abundances and negative Nd values of thelamproites indicate a mantle source that has experienced stagesof both depletion and enrichment. The negative Nb, Ta and Tianomalies in mantle-normalized trace element diagrams and lowtime-integrated U/Pb, Rb/Sr and Sm/Nd ratios of both lamproitegroups and other Cenozoic igneous rocks from the Wyoming ArcheanProvince indicate an ancient metasomatic enrichment (>1·0Ga) of the mantle source associated with the subduction of carbonate-bearingsediments. Other chemical characteristics of the Leucite Hillslamproites, especially their high K2O and volatile contents,are attributed to more recent metasomatism (<100 Ma) involvinginflux from upwelling mantle during back-arc extension or plumeactivity. KEY WORDS: isotopes; lamproites; metasomatism; Leucite Hills; Wyoming  相似文献   

9.
Pressures of Crystallization of Icelandic Magmas   总被引:1,自引:0,他引:1  
Iceland lies astride the Mid-Atlantic Ridge and was createdby seafloor spreading that began about 55 Ma. The crust is anomalouslythick (20–40 km), indicating higher melt productivityin the underlying mantle compared with normal ridge segmentsas a result of the presence of a mantle plume or upwelling centeredbeneath the northwestern edge of the Vatnajökull ice sheet.Seismic and volcanic activity is concentrated in 50 km wideneovolcanic or rift zones, which mark the subaerial Mid-AtlanticRidge, and in three flank zones. Geodetic and geophysical studiesprovide evidence for magma chambers located over a range ofdepths (1·5–21 km) in the crust, with shallow magmachambers beneath some volcanic centers (Katla, Grimsvötn,Eyjafjallajökull), and both shallow and deep chambers beneathothers (e.g. Krafla and Askja). We have compiled analyses ofbasalt glass with geochemical characteristics indicating crystallizationof ol–plag–cpx from 28 volcanic centers in the Western,Northern and Eastern rift zones as well as from the SouthernFlank Zone. Pressures of crystallization were calculated forthese glasses, and confirm that Icelandic magmas crystallizeover a wide range of pressures (0·001 to 1 GPa), equivalentto depths of 0–35 km. This range partly reflects crystallizationof melts en route to the surface, probably in dikes and conduits,after they leave intracrustal chambers. We find no evidencefor a shallow chamber beneath Katla, which probably indicatesthat the shallow chamber identified in other studies containssilica-rich magma rather than basalt. There is reasonably goodcorrelation between the depths of deep chambers (> 17 km)and geophysical estimates of Moho depth, indicating that magmaponds at the crust–mantle boundary. Shallow chambers (<7·1 km) are located in the upper crust, and probablyform at a level of neutral buoyancy. There are also discretechambers at intermediate depths (11 km beneath the rift zones),and there is strong evidence for cooling and crystallizing magmabodies or pockets throughout the middle and lower crust thatmight resemble a crystal mush. The results suggest that themiddle and lower crust is relatively hot and porous. It is suggestedthat crustal accretion occurs over a range of depths similarto those in recent models for accretionary processes at mid-oceanridges. The presence of multiple stacked chambers and hot, porouscrust suggests that magma evolution is complex and involvespolybaric crystallization, magma mixing, and assimilation. KEY WORDS: Iceland rift zones; cotectic crystallization; pressure; depth; magma chamber; volcanic glass  相似文献   

10.
The Rotoiti eruption from the Taupo Volcanic Zone (TVZ) in northernNew Zealand produced voluminous pyroclastic deposits. The ferromagnesianmineral assemblage in these dominantly consists of cummingtonite+ hornblende + orthopyroxene with uniform magnesium/iron ratios;a second assemblage of biotite + hornblende + orthopyroxene,also with uniform Fe/Mg ratios, appears midway through the eruptionsequence and, thereafter, increases in abundance. These contrastingmineral assemblages, together with pumice clast and groundmassglass compositions, provide evidence for mingling of two discretemagmas. Similarities in the chemical characteristics of thetwo magmas suggest that they developed from a similar source.The eruption initially tapped relatively homogeneous magma thatwas erupted throughout most of this phase of activity. The middlestages of the eruption included some mixed magma. The finalstages of the eruption were dominated by a second magma composition,which was probably injected into the bottom of the main magmabody as the eruption proceeded. The source that fed the eruptionwas complex, and discrete magma bodies existed and evolved separatelyprior to the eruption. We conclude that eruptions in the TVZare fed from a diffuse upper-crustal zone of partially interconnected,and at times physically separate, magma bodies rather than fromcentralized and necessarily large long-lived magma chambers. KEY WORDS: Taupo Volcanic Zone; Okataina Volcanic Centre; Rotoiti eruption; rhyolite system; magma mixing  相似文献   

11.
The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones   总被引:55,自引:2,他引:55  
A model for the generation of intermediate and silicic igneousrocks is presented, based on experimental data and numericalmodelling. The model is directed at subduction-related magmatism,but has general applicability to magmas generated in other platetectonic settings, including continental rift zones. In themodel mantle-derived hydrous basalts emplaced as a successionof sills into the lower crust generate a deep crustal hot zone.Numerical modelling of the hot zone shows that melts are generatedfrom two distinct sources; partial crystallization of basaltsills to produce residual H2O-rich melts; and partial meltingof pre-existing crustal rocks. Incubation times between theinjection of the first sill and generation of residual meltsfrom basalt crystallization are controlled by the initial geotherm,the magma input rate and the emplacement depth. After this incubationperiod, the melt fraction and composition of residual meltsare controlled by the temperature of the crust into which thebasalt is intruded. Heat and H2O transfer from the crystallizingbasalt promote partial melting of the surrounding crust, whichcan include meta-sedimentary and meta-igneous basement rocksand earlier basalt intrusions. Mixing of residual and crustalpartial melts leads to diversity in isotope and trace elementchemistry. Hot zone melts are H2O-rich. Consequently, they havelow viscosity and density, and can readily detach from theirsource and ascend rapidly. In the case of adiabatic ascent themagma attains a super-liquidus state, because of the relativeslopes of the adiabat and the liquidus. This leads to resorptionof any entrained crystals or country rock xenoliths. Crystallizationbegins only when the ascending magma intersects its H2O-saturatedliquidus at shallow depths. Decompression and degassing arethe driving forces behind crystallization, which takes placeat shallow depth on timescales of decades or less. Degassingand crystallization at shallow depth lead to large increasesin viscosity and stalling of the magma to form volcano-feedingmagma chambers and shallow plutons. It is proposed that chemicaldiversity in arc magmas is largely acquired in the lower crust,whereas textural diversity is related to shallow-level crystallization. KEY WORDS: magma genesis; deep hot zone; residual melt; partial melt; adiabatic ascent  相似文献   

12.
Phenocryst zoning patterns are used to identify open-systemmagmatic processes in the products of the 2001 eruption of ShiveluchVolcano, Kamchatka. The lavas and pumices studied are hornblende–plagioclaseandesites with average pre-eruptive temperatures of 840°Cand fO2 of 1·5–2·1 log units above nickel–nickeloxide (NNO). Plagioclase zoning includes oscillatory and patchyzonation and sieve textures. Hornblendes are commonly unzoned,but some show simple, multiple or patchy zoning. Apatite microphenocrystsdisplay normal and reverse zoning of sulphur. The textural similarityof patchy hornblende and plagioclase, together with Ba–Srsystematics in patchy plagioclase, indicate that the cores ofthese crystals were derived from cumulate material. Plagioclase–liquidequilibria suggest that the patchy texture develops by resorptionduring H2O-undersaturated decompression. When H2O-saturatedcrystallization recommences at lower pressure, reduced pH2Oresults in lower XAn in plagioclase, causing more Al-rich hornblendeto crystallize. Plagioclase cores with diffuse oscillatory zoning,and unzoned hornblende crystals, probably represent a populationof crystals resident in the magma chamber for long periods oftime. In contrast, oscillatory zoning in the rims of plagioclasephenocrysts may reflect eruption dynamics during decompressioncrystallization. Increasing Fe/Al in oscillatory zoned rimssuggests oxidation as a result of degassing of H2O during decompression.A general lack of textural overlap between phenocryst typessuggests that different phenocryst populations were spatiallyor temporally isolated during crystallization. We present evidencethat the host andesite has mixed with both more felsic and moremafic magmas. Olivine and orthopyroxene xenocrysts with reactionor overgrowth rims and strong normal zoning indicate mixingwith basalt. Sieve-textured plagioclase resulted from mixingof a more felsic magma with the host andesite. The mineralogyand mineral compositions of a mafic andesite enclave are identicalto those of the host magma, which implies efficient thermalquenching, and thus small volumes of intruding magma. Mixingof this magma with the host andesite results in phenocryst zoningbecause of differences in dissolved volatile contents. We suggestthat small magma pulses differentiated at depth and ascendedintermittently into the growing magma chamber, producing incrementalvariations in whole-rock compositions. KEY WORDS: patchy zoning; magma mixing; Shiveluch  相似文献   

13.
A method to estimate the oxygen fugacity (fO2) during the crystallizationof kimberlites is developed using the Fe content of CaTiO3 perovskite(Pv), a common groundmass phase in these rocks. With increasingfO2, more Fe exists in the kimberlitic liquid as Fe3+, and thuspartitions into Pv. Experiments to study the partitioning ofFe between Pv and kimberlite liquid were conducted at 100 kPaon simple and complex anhydrous kimberlite bulk compositionsfrom 1130 to 1300°C over a range of fO2 from NNO –5 to NNO + 4 (where NNO is the nickel–nickel oxide buffer),and at Nb and rare earth element (REE) contents in the startingmaterials of 0–5 wt % and 1500 ppm, respectively. Thepartitioning of Fe between Pv and kimberlite liquid is influencedmostly by fO2, although the presence of Nb increases the partitionof Fe3+ into perovskite at a given T and fO2. Multiple linearregression (MLR) of all the experimental data produces a relationshipthat describes the variation of Fe and Nb in Pv with fO2 relativeto the NNO buffer:

(uncertaintiesat 2, and Nb and Fe as cations per three oxygens). Over therange of conditions of our experiments, this relationship showsno temperature (T) dependence, is not affected by the bulk Fecontent of the kimberlite starting material and reproduces experimentaldata to within 1 log fO2 unit. KEY WORDS: kimberlites; oxygen fugacity; perovskite; ferric iron; magma  相似文献   

14.
The Palaeogene Kangerlussuaq Intrusion (50 Ma) of East Greenlanddisplays concentric zonation from quartz-rich nordmarkite (quartzsyenite) at the margin, through pulaskite, to foyaite (nephelinesyenite) in the centre; modal layering and igneous laminationare locally developed but there are no internal intrusive contacts.This is an apparent violation of the phase relations in Petrogeny'sResidua System. We propose that this intrusion is layered, gradingfrom quartz syenite at the bottom to nepheline syenite at thetop. Mineral and whole-rock major and trace element data andSr–Nd–Hf–Pb isotope data are presented thatprovide constraints on the petrogenesis of the intrusion. Radiogenicisotope data indicate a continuously decreasing crustal componentfrom the quartz nordmarkites (87Sr/86Sr = 0·7061; Ndi= 2·3; Hfi = 5·2; 206Pb/204Pbmeas = 16·98)to the foyaites (87Sr/86Sr = 0·7043–0·7044;Ndi = 3·8–4·9; Hfi = 10·7–11·1;206Pb/204Pbmeas = 17·78–17·88); the foyaitesare dominated by a mantle isotopic signature. The average Mg-numberof amphibole cores becomes increasingly primitive, varying from26·4 in the nordmarkites to 57·4 in the pulaskites.Modal layering, feldspar lamination and the presence of hugebasaltic xenoliths derived from the chamber roof, now restingon the transient chamber floor, demonstrate bottom-upwards crystallization.The intrusion cannot, therefore, have formed in a system closedto magmatic recharge. The lack of gneissic xenoliths in thenordmarkites suggests that most contamination took place deeperin the crust. In the proposed model, the nordmarkitic magmaformed during crustal assimilation in the roof zone of a large,silica-undersaturated alkali basaltic/basanitic, stratifiedmagma chamber, prior to emplacement in the uppermost crust.The more primitive syenites, terminating with foyaite at thetop of the intrusion, formed as a consequence of repeated rechargeof the Kangerlussuaq Intrusion magma chamber by tapping lesscontaminated, more primitive phonolitic melt from deeper partsof the underlying chamber during progressive armouring of theplumbing system. KEY WORDS: Kangerlussuaq; East Greenland; syenite; crustal contamination; magma mixing  相似文献   

15.
Beard  James S. 《Journal of Petrology》2008,49(5):1027-1041
If a magma is a hybrid of two (or more) isotopically distinctend-members, at least one of which is partially crystalline,separation of melt and crystals after hybridization will leadto the development of isotopic heterogeneities in the magmaas long as some of the pre-existing crystalline material (antecrysts)retains any of its original isotopic composition. This holdstrue whether the hybridization event is magma mixing as traditionallyconstrued, bulk assimilation, or melt assimilation. Once a magma-scaleisotopic heterogeneity is formed by crystal–melt separation,it is essentially permanent, persisting regardless of subsequentcrystallization, mixing, or equilibration events. The magnitudeof the isotopic variability resulting from crystal–meltseparation can be as large as that resulting from differentialcontamination, multiple isotopically distinct sources, or insitu isotopic evolution. In one model, a redistribution of one-thirdof the antecryst cargo yielded a crystal-enriched sample with87Sr/86Sr of 0·7058, whereas the complementary crystal-poorsample has 87Sr/86Sr of 0·7068. In other models, crystal-richsamples are enriched in radiogenic Sr. Isotopic heterogeneitiescan be either continuous (controlled by the modal distributionof crystals and melt) or discontinuous (when there is completeseparation of crystals and liquid). The first case may be exemplifiedby some isotopically zoned large-volume rhyolites, formed bythe eruptive inversion of a modally zoned magma chamber. Inthe latter case, the isotopic composition of any (for example)interstitial liquid will be distinct from the isotopic compositionof the bulk crystal fraction. The separation of such an interstitialliquid may explain the presence of isotopically distinct late-stageaplites in plutons. Crystal–melt separation provides anadditional option for the interpretation of isotopically zonedor heterogeneous magmas. This option is particularly attractivefor systems whose chemical variation is otherwise explicableby fractionation-dominated processes. Non-isotopic chemicalheterogeneities can also develop in this fashion. KEY WORDS: isotopic heterogeneity; zoning; hybrid magma; crystal separation; Sr isotopes; aplite; rhyolite  相似文献   

16.
We present an experimental and petrological study aimed at estimatingthe pre-eruptive conditions of a Holocene dacitic lava fromVolcán San Pedro (36°S, Chilean Andes). Phase-equilibriumexperiments were performed at temperatures (T) from 800 to 950°C,and mainly at 200 MPa, but also at 55, 150, and 406 MPa. Oxygenfugacity (fO2) ranged from the Ni–NiO buffer (NNO) to3·5 log units above (NNO + 3·5), and water contentsfrom  相似文献   

17.
The Serbian province of Tertiary ultrapotassic volcanism isrelated to a post-collisional tectonic regime that followedthe closure of the Tethyan Vardar Ocean by Late Cretaceous subductionbeneath the southern European continental margin. Rocks of thisprovince form two ultrapotassic groups; one with affinitiesto lamproites, which is concentrated mostly in the central partsof the Vardar ophiolitic suture zone, and the other with affinitiesto kamafugites, which crops out in volcanoes restricted to thewestern part of Serbia. The lamproitic group is characterizedby a wide range of 87Sr/86Sri (0·70735–0·71299)and 143Nd/144Ndi (0·51251–0·51216), whereasthe kamafugitic group is isotopically more homogeneous witha limited range of 87Sr/86Sri (0·70599–0·70674)and 143Nd/144Ndi (0·51263–0·51256). ThePb isotope compositions of both groups are very similar (206Pb/204Pb18·58–18·83, 207Pb/204Pb 15·62–15·70and 208Pb/204Pb 38·74–38·99), falling withinthe pelagic sediment field and resembling Mesozoic flysch sedimentsfrom the Vardar suture zone. The Sr and Nd isotopic signaturesof the primitive lamproitic rocks correlate with rare earthelement fractionation and enrichment of most high field strengthelements (HFSE), and can be explained by melting of a heterogeneousmantle source consisting of metasomatic veins with phlogopite,clinopyroxene and F-apatite that are out of isotopic equilibriumwith the peridotite wall-rock. Decompression melting, with varyingcontributions from depleted peridotite and ultramafic veinsto the final melt, accounts for consistent HFSE enrichment andisotopic variations in the lamproitic group. Conversely, themost primitive kamafugitic rocks show relatively uniform Srand Nd isotopic compositions and trace element patterns, andsmall but regular variations of HFSE, indicating variable degreesof partial melting of a relatively homogeneously metasomatizedmantle source. Geochemical modelling supports a role for phlogopite,apatite and Ti-oxide in the source of the kamafugitic rocks.The presence of two contrasting ultrapotassic suites in a restrictedgeographical area is attributable to the complex geodynamicsituation involving recent collision of a number of microcontinentswith contrasting histories and metasomatic imprints in theirmantle lithosphere. The geochemistry of the Serbian ultrapotassicrocks suggests that the enrichment events that modified thesource of both lamproitic and kamafugitic groups were relatedto Mesozoic subduction events. The postcollisional environmentof the northern Balkan region with many extensional episodesis consistent at regional and local levels with the occurrenceof ultrapotassic rocks, providing a straightforward relationshipbetween geodynamics and volcanism. KEY WORDS: kamafugite; lamproite; Mediterranean; Serbia; mantle metasomatism; veined mantle; petrogenesis  相似文献   

18.
Proterozoic mafic potassic and ultrapotassic igneous rocks emplacedin the Cuddapah Basin and Dharwar Craton of the southern Indianshield are among the earliest recorded on Earth. Lamproitesintrude the basin and its NE margin, whereas kimberlites intrudethe craton to the west of the basin. Kimberlites occur in twospatially separate groups: the non-diamondiferous Mahbubnagarcluster that was emplaced at 1400 Ma and is of a similar ageto the Cuddapah lamproites, and the predominantly diamondiferousAnantapur cluster, emplaced at  相似文献   

19.
The latest eruption of Haruna volcano at Futatsudake took placein the middle of the sixth century, starting with a Plinianfall, followed by pyroclastic flows, and ending with lava domeformation. Gray pumices found in the first Plinian phase (lowerfall) and the dome lavas are the products of mixing betweenfelsic (andesitic) magma having 50 vol. % phenocrysts and maficmagma. The mafic magma was aphyric in the initial phase, whereasit was relatively phyric during the final phase. The aphyricmagma is chemically equivalent to the melt part of the phyricmafic magma and probably resulted from the separation of phenocrystsat their storage depth of 15 km. The major part of the felsicmagma erupted as white pumice, without mixing and heating priorto the eruption, after the mixed magma (gray pumice) and heatedfelsic magma (white pumice) of the lower fall deposit. Althoughthe mafic magma was injected into the felsic magma reservoir(at 7 km depth), part of the product (lower fall ejecta) precedederuption of the felsic reservoir magma, as a consequence ofupward dragging by the convecting reservoir of felsic magma.The mafic magma injection made the nearly rigid felsic magmaerupt, letting low-viscosity mixed and heated magmas open theconduit and vent. Indeed the lower fall white pumices preservea record of syneruptive slow ascent of magma to 2 km depth,probably associated with conduit formation. KEY WORDS: high-crystallinity felsic magma; magma plumbing system; multistage magma mixing; upward dragging of injected magma; vent opening by low-viscosity magma  相似文献   

20.
AUDETAT  A.; PETTKE  T. 《Journal of Petrology》2006,47(10):2021-2046
The magmatic processes leading to porphyry-Cu mineralizationat Santa Rita are reconstructed on the basis of petrographicstudies, thermobarometry, and laser-ablation inductively-coupled-plasmamass-spectrometry analyses of silicate melt and sulfide inclusionsfrom dikes ranging from basaltic andesite to rhyodacite. Combinedresults suggest that magma evolution at Santa Rita is similarto that of sulfur-rich volcanoes situated above subduction zones,being characterized by repeated injection of hot, mafic magmainto an anhydrite-bearing magma chamber of rhyodacitic composition.The most mafic end-member identified at Santa Rita is a shoshoniticbasaltic andesite that crystallized at 1000–1050°C,1–3 kbar and log fO2 = NNO + 0·7 to NNO + 1·0,whereas the rhyodacite crystallized at 730–760°C andlog fO2 = NNO + 1·3 to NNO + 1·9. Mixing betweenthe two magmas caused precipitation of 0·1–0·2wt % magmatic sulfides and an associated decrease in the Cucontent of the silicate melt from 300–500 ppm to lessthan 20 ppm. Quantitative modeling suggests that temporal storageof ore-metals in magmatic sulfides does not significantly enhancethe amount of copper ultimately available to ore-forming hydrothermalfluids. Magmatic sulfides are therefore not vital to the formationof porphyry-Cu deposits, unless a mechanism is required thatholds back ore-forming metals until late in the evolution ofthe volcanic–plutonic system. KEY WORDS: porphyry-Cu; sulfur; sulfides; magma mixing; LA-ICP-MS  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号