首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diopside-melt and forsterite-melt rare earth (REE) and Ni partition coefficients have been determined as a function of bulk compositions of the melt. Available Raman spectroscopic data have been used to determine the structures of the melts coexisting with diopside and forsterite. The compositional dependence of the partition coefficients is then related to the structural changes of the melt.The melts in all experiments have a ratio of nonbridging oxygens to tetrahedral cations (NBOT) between 1 and 0. The quenched melts consist of structural units that have, on the average, 2 (chain), 1 (sheet) and 0 (three-dimensional network) nonbridging oxygens per tetrahedral cation. The proportions of these structural units in the melts, as well as the overall NBOT, change as a function of the bulk composition of the melt.It has been found that Ce, Sm, Tm and Ni crystal-liquid partition coefficients (Kcrystal?liqi = CcrystaliCliqi) decrease linearly with increasing NBOT. The values of the individual REE crystal-liquid trace element partition coefficients have different functional relations to NBOT, so that the degree of light REE enrichment of the melts would depend on their NBOT.The solution mechanisms of minor oxides such as CO2, H2O, TiO2, P2O5 and Fe2O3 in silicate melts are known. These data have been recast as changes of NBOT of the melts with regard to the type of oxide and its concentration in the melt. From such data the dependence of crystal-liquid partition coefficients on concentration and type of minor oxide in melt solution has been calculated.  相似文献   

2.
Equations are developed for calculating the density of aluminosilicate liquids as a function of composition and temperature. The mean molar volume at reference temperature Tr, is given by Vr = ∑XiV?oi + XAV?oA, where the summation is taken over all oxide components except A12O3, X stands for mole fraction, V?oi terms are constants derived independently from an analysis of volume-composition relations in alumina-free silicate liquids, and V?oA is the composition-dependent apparent partial molar volume of Al2O3. The thermal expansion coefficient of aluminosilicate liquids is given by α = ∑Xi\?gaio + XA\?gaAo, where \?gaio terms are constants independent of temperature and composition, and \?gaoA is a composition-dependent term representing the effect of Al2O3 on the thermal expansion. Parameters necessary to calculate the volume of silicate liquids at any temperature T according to V(T) = Vrexp[α(T-Tr)], where Tr = 1400°C have been evaluated by least-square analysis of selected density measurements in aluminosilicate melts. Mean molar volumes of aluminosilicate liquids calculated according to the model equation conform to experimentally measured volumes with a root mean square difference of 0.28 ccmole and an average absolute difference of 0.90% for 248 experimental observations. The compositional dependence of V?oA is discussed in terms of several possible interpretations of the structural role of Al3+ in aluminosilicate melts.  相似文献   

3.
The diffusivity of oxygen was determined in melts of Jadeite (NaAlSi2O6) and diopside (CaMgSi2O6) compositions using diffusion couples with 18O as a tracer. In the Jadeite melt, the diffusivity of oxygen increases from 6.87?0.25+0.28 × 10?10cm2/sec at 5 Kb to 1.32 ± 0.08 × 10?9cm2/sec at 20 Kb at constant temperature (1400°C), whereas in the diopside melt at 1650°C, the diffusivity decreases from 7.30?0.180.29 × 10?7cm2/sec at 10 Kb to 5.28?0.55+0.60 × 10?7cm2/sec at 17 Kb. These results demonstrate that the diffusivity is inversely correlated with the viscosity of the melt. For the jadeite melt, in particular, the inverse correlation is very well approximated by the Eyring equation using the diameter of oxygen ions as a unit distance of translation, suggesting that the viscous flow is rate-limited by the diffusion of individual oxygen ions. In the diopside melt, the activation volume is slightly greater than the molar volume of oxygen ion, indicating that the individual oxygen ion is the diffusion unit. The negative activation volume obtained for the jadeite melt is interpreted as the volume decrease associated with a diffusive jump of an oxygen ion due to local collapse of the network structure.  相似文献   

4.
Thermodynamic properties of PbO-SiO2 melts, obtained from published data and calculated from freezing point depressions, reflect the gradual polymerization of silicate anions in the melt as the SiO2PbO ratio is increased. The free energy of mixing curve at 1000°C has a minimum at 40 mole % SiO2 and is convex-upward between 72 and 98 mole % SiO2. The latter is an indication of metastable liquid immiscibility. The free energy minimum is correlated with the maximum in the distribution of nonbridging oxygens in the melt. In SiO2-poor melts, the activities of PbO and SiO2 (pure liquid standard states) show sharp negative deviations from ideality. The PbO activity reflects the paucity of free oxygen species in the melt whereas the SiO2 activity reflects the depolymerized state of the silicate anions. In more SiO2-rich melts, the activity of SiO2 shows a positive deviation from ideality which is qualitatively correlated to a polymerization parameter. The heat of mixing term has a minimum of ?2000 cal at 35 mole % SiO2 and a maximum of +200 cal at 90 mole % SiO2. The minimum is associated with the exothermic heat effect obtained during the reaction (O0) + (O2?) = 2(O?), whereas the maximum corresponds to the endothermic heat effect obtained when coordination polyhedra of oxygens form around the Pb cation. The entropy of mixing curve has the same form but is systematically smaller than a theoretical curve calculated on the assumption of random mixing of oxygen species. The discrepancy is due to the entropy loss obtained by the clustering of oxygen species to form complex silicate species.  相似文献   

5.
Plagioclase—melt equilibria   总被引:1,自引:0,他引:1  
The crystallization of plagioclase feldspar from magmatic liquid has been investigated experimentally under equilibrium conditions at 1 atm total pressure in the temperature range 1400-1095°C. Natural and synthetic melts of composition basalt to rhyolite were used, crystallizing plagioclase of composition An89-An32.The experimental results are analyzed initially in terms of elemental plagioclase/melt partition coefficients (D). DSi is always less than unity and is invariant with temperature. DA1 is always greater than unity and is relatively insensitive to temperature. DNa is less than unity above 1200°C and is strongly dependent upon temperature. DCa is greater than unity below 1430°C and is strongly dependent upon temperature.Analysis of the temperature-dependence of equilibrium constants for plagioclase-melt formation and exchange reactions in which several mixing models for the melt are considered, leads to the conclusion that, with appropriate choice of melt-components, the melt-components mix quasi-ideally. At fixed temperature in the absence of H2O, the equilibrium constant for the equilibrium of albite with the melt is insensitive to changes in melt-composition, and is insensitive to changes in pressure up to at least 10 kbars. As a consequence the composition of plagioclase crystallizing at known temperature and at low total pressure from a dry melt of known composition may be predicted [XAb(p) = XNaAlO2(l)·XSiO2(l)3· exp (6100T ? 2.29)]. However, the equilibrium constant is sensitive to changes in water pressure.The analysis further suggests that Na is intimately associated with tetrahedrally-coordinated Al in the melt, while Ca appears to be partitioned between at least two distinct melt-sites.  相似文献   

6.
The distribution coefficients of Eu and Sr for plagioclase-liquid and clinopyroxene-liquid pairs as a function of temperature and oxygen fugacity were experimentally investigated using an oceanic ridge basalt enriched with Eu and Sr as the starting material. Experiments were conducted between 1190° and 1140°C over a range of oxygen fugacities between 10?8 and 10?14 atm.The molar distribution coefficients are given by the equations: log KEuPL = 3320/T?0.15 log?o2?4.22log KCPXEu = 6580/T + 0.04 log?o2?4.37logPLSr = 7320/T ? 4.62logKCPXSr = 18020/T ? 13.10. Similarly, the weight fraction distribution coefficients are given by the equations: log DPLEu =2460/T ? 0.15 log?o2 ? 3.87log DCPXEu = 6350/T + 0.04 log?o2 ? 4.49logDPLSr = 6570/T ? 4.30logDCPXSr = 18434/T ? 13.62.Although the mole fraction distribution coefficients have a smaller dependence on bulk composition than do the weight fraction distribution coefficients, they are not independent of bulk composition, thereby restricting the application of these experimental results to rocks similar to oceanic ridge basalts in bulk composition.Because the Sr distribution coefficients are independent of oxygen fugacity, they may be used as geothermometers. If the temperature can be determined independently — for example, with the Sr distribution coefficients, the Eu distribution coefficients may be used as oxygen geobarometers. Throughout the range of oxygen fugacities ascribed to terrestrial and lunar basalts, plagioclase concentrates Eu but clinopyroxene rejects Eu.  相似文献   

7.
The stability of the amphibole pargasite [NaCa2Mg4Al(Al2Si6))O22(OH)2] in the melting range has been determined at total pressures (P) of 1.2 to 8 kbar. The activity of H2O was controlled independently of P by using mixtures of H2O + CO2 in the fluid phase. The mole fraction of H2O in the fluid (XH2O1fl) ranged from 1.0 to 0.2.At P < 4 kbar the stability temperature (T) of pargasite decreases with decreasing XH2O1fl at constant P. Above P ? 4 kbar stability T increases as XH2O1fl is decreased below one, passes through a T maximum and then decreases with a further decrease in XH2O1fl. This behavior is due to a decrease in the H2O content of the silicate liquid as XH2O1fl decreases. The magnitude of the T maximum increases from about 10°C (relative to the stability T for XH2O1fl= 1) at P = 5 kbar to about 30°C at P = 8 kbar, and the position of the maximum shifts from XH2O1fl ? 0.6 at P = 5 kbar to XH2O1fl? 0.4 at P = 8 kbar.The H2O content of liquid coexisting with pargasite has been estimated as a function of XH2O1fl at 5 and 8 kbar P, and can be used to estimate the H2O content of magmas. Because pargasite is stable at low values of XH2O1fl at high P and T, hornblende can be an important phase in igneous processes even at relatively low H2O fugacities.  相似文献   

8.
Solution calorimetric measurements compared with solubility determinations from the literature for the same samples of gibbsite have provided a direct thermochemical cycle through which the Gibbs free energy of formation of [Al(OH)4 aq?] can be determined. The Gibbs free energy of formation of [Al(OH)4 aq?] at 298.15 K is ?1305 ± 1 kJ/mol. These heat-of-solution results show no significant difference in the thermodynamic properties of gibbsite particles in the range from 50 to 0.05 μm.The Gibbs free energies of formation at 298.15 K and 1 bar pressure of diaspore, boehmite and bayerite are ?9210 ± 5.0, ?918.4 ± 2.1 and ?1153 ± 2 kJ/mol based upon the Gibbs free energy of [A1(OH)4 aq?] calculated in this paper and the acceptance of ?1582.2 ± 1.3 and ?1154.9 ± 1.2 kJ/mol for the Gibbs free energy of formation of corundum and gibbsite, respectively.Values for the Gibbs free energy formation of [Al(OH)2 aq+] and [AlO2 aq?] were also calculated as ?914.2 ± 2.1 and ?830.9 ± 2.1 kJ/mol, respectively. The use of [AlC2 aq?] as a chemical species is discouraged.A revised Gibbs free energy of formation for [H4SiO4aq0] was recalculated from calorimetric data yielding a value of ?1307.5 ± 1.7 kJ/mol which is in good agreement with the results obtained from several solubility studies.Smoothed values for the thermodynamic functions CP0, (HT0 - H2980)T, (GT0 - H2980)T, ST0 - S00, ΔH?,2980 kaolinite are listed at integral temperatures between 298.15 and 800 K. The heat capacity of kaolinite at temperatures between 250 and 800 K may be calculated from the following equation: CP0 = 1430.26 ? 0.78850 T + 3.0340 × 10?4T2 ?1.85158 × 10?4T212 + 8.3341 × 106 T?2.The thermodynamic properties of most of the geologically important Al-bearing phases have been referenced to the same reference state for Al, namely gibbsite.  相似文献   

9.
CaCO3Ca(OH)2CaS serves as a model system for sulfide solubility in carbonatite magmas. Experiments at 1 kbar delineate fields for primary crystallization of CaCO3, Ca(OH)2 and CaS. The three fields meet at a ternary eutectic at 652°C with liquid composition (wt%): CaCO3 = 46.1%, Ca(OH)2 = 51.9%, CaS = 2.0%. Two crystallization sequences are possible for liquids that precipitate calcite, depending upon whether the liquid is on the low-CaS side, or the high-CaS side of the line connecting CaCO3 to the eutectic liquid. Low-CaS liquids precipitate no sulfide until the eutectic temperature is reached leading to sulfide enrichment. The higher-CaS liquids precipitate some sulfide above the eutectic temperature, but the sulfide content of the melt is not greatly depleted as the eutectic temperature is approached. Theoretical considerations indicate that sulfide solubility in carbonate melts will be directly proportional to ?S212 and inversely proportional to ?O212; it also is likely to be directly proportional to melt basicity, defined here by aCO32??CO2. A strong similarity exists in the processes which control sulfide solubility in carbonate and in silicate melts. By analogy with silicates, ferrous iron, which was absent in our experiments, may also exert an important influence on sulfide solubility in natural carbonatite magmas.  相似文献   

10.
The partitioning of germanium between forsterite (Fo) and liquids in the diopside-anorthiteforsterite join was investigated by electron microprobe analysis of Ge-doped samples equilibrated at 1300°–1450°C. Germanium is somewhat incompatible in Fo relative to the haplobasaltic melts, with a grand mean for all simple partition coefficients (DFo-lGe) of 0.68 ± 0.06. For the melt composition range studied, DFo-lGe is virtually constant in isothermal series of experiments, and shows only minor overall temperature dependence. The exchange reaction partition coefficient KD = (Mg2GeO4)Fo(SiO2)l(Mg2SiO4)Fo(GeO2)l] is near unity in all cases, with a grand mean of 0.93 ± 0.11. One exploratory run at 20 kbar yielded a distinctly lower partition coefficient (DFo-lGe = 0.54 ± 0.04), which confirms the negative pressure dependence predicted by the thermodynamics of Ge ai Si exchange.These new data indicate that absolute Ge enrichment must occur in terrestrial magmas undergoing olivine fractionation, while GeSi remains nearly constant.  相似文献   

11.
The olivine-ilmenite thermometer of Andersen and Lindsley (1979) was based on an incorrect formulation for the excess free energy of an asymmetric ternary solution. A valid formulation is derived and used to revise the parameters of the olivine-ilmenite thermometer. For olivine and ilmenite that have equilibrated above 700°C, temperature can be calculated from: T(°C) = ?273 +¦-12549 + P[0.03Xfa + 0.01099(Xgk?Xil)?0.062] + 10496 Xfa + 5767(Xgk?Xil) + Xhem(38602?141550Xil?47183Xgk)|/[5.67?R ln KD + 6.52Xfa + 3.09(Xgk?Xil) + Xhem(16.49?109.46 Xil?36.49Xgk)] with Kd = (XilXfo)(XgkXfa). The revised model gives Wil·gkG = 5767?3.09T + 0.011P and ΔGexch = 7301 ? 8.9T ? 0.047P (T in K, P in bars). Applications include Apollo 17 breccias and kimberlites.  相似文献   

12.
Diffusion of ions in sea water and in deep-sea sediments   总被引:3,自引:0,他引:3  
The tracer-diffusion coefficient of ions in water, Dj0, and in sea water, Dj1, differ by no more than zero to 8 per cent. When sea water diffuses into a dilute solution of water, in order to maintain the electro-neutrality, the average diffusion coefficients of major cations become greater but of major anions smaller than their respective Dj1 or Dj0 values. The tracer diffusion coefficients of ions in deep-sea sediments, Dj,sed., can be related to Dj1 by Dj,sed. = Dj1 · αθ2, where θ is the tortuosity of the bulk sediment and a a constant close to one.  相似文献   

13.
The effect of presure on the solubility of minerals in water and seawater can be estimated from In
(KPspK0sp) + (?ΔVP + 0.5ΔKP2)RT
where the volume (ΔV) and compressibility (ΔK) changes at atmospheric pressure (P = 0) are given by
ΔV = V?(M+, X?) ? V?[MX(s)]ΔK = K?(M+, X?) ? K?[MX(s)]
Values of the partial molal volume (V?) and compressibilty (K?) in water and seawater have been tabulated for some ions from 0 to 50°C. The compressibility change is quite large (~10 × 10?3 cm3 bar?1 mol?1) for the solubility of most minerals. This large compressibility change accounts for the large differences observed between values of ΔV obtained from linear plots of In Ksp versus P and molal volume data (Macdonald and North, 1974; North, 1974). Calculated values of KPspKosp for the solubility of CaCO3, SrSO4 and CaF2 in water were found to be in good agreement with direct measurements (Macdonald and North, 1974). Similar calculations for the solubility of minerals in seawater are also in good agreement with direct measurements (Ingle, 1975) providing that the surface of the solid phase is not appreciably altered.  相似文献   

14.
The diffusivities of network-forming cations (Si4+, Al3+, Ge4+ and Ga3+) in melts of the jadeitic composition NaAl(Si, Ge)2O6 and Na(Al, Ga)Si2O6 have been measured at pressures between 6 and 20 kbar at 1400°C. The rates of interdiffusion of Si4+-Ge4+ and Al3+-Ge3+ increase with increasing pressure at constant temperature. The results are consistent with the ion-dynamics computer simulations of Jadeite melt by Angellet al. (1982, 1983). The coefficient measured for the Si4+-Ge4+ interdiffusion is between 8 × 10?10 and 2.5 × 10?8cm2sec at 6 kbar, depending on the composition of the melt, whereas at 20 kbar it is between 7 × 10?9 and 2 × 10?7cm2sec. The effect of pressure is greater for more Si-rich compositions (i.e., closer to NaAlSi2O6 composition). The coefficient measured for the Al3+-Ga3+ inter- diffusion is between 9 × 10?10 and 3 × 10?9 cm2/sec at 6 kbar and between 3 × 10?9 and 1 × 10?8cm2sec at 20 kbar. The rate of increase in diffusivity with pressure of Al3+-Ga3+ (a factor of 3–4) is smaller than that of Si4+-Ge4+ (a factor of 7–17).The Si4+-Ge4+ interdiffusion in melts of Na2O · 4(Si, Ge)O2 composition has also been measured at 8 and 15 kbar for comparison. The effect of pressure on the diffusivity in this melt is significantly smaller than that for the jadeitic melts. The increase in diffusivity of the network-forming cations in jadeitic melts with increasing pressure may be related to the decrease in viscosity of the same melt. The present results, as well as the ion-dynamics simulations, suggest that the homogenization of partial melts and mixing of magmas would be more efficient at greater depths.  相似文献   

15.
16.
A model for the mixing of H2O and silicate melts has been derived from the experimentally determined effects of H2O on the viscosity (fluidity), volumes, electrical conductivities, and especially the thermodynamic properties of hydrous aluminosilicate melts. It involves primarily the reaction of H2O with those O?2 ions of the melt that are shared (bridging) between adjacent (Al, Si)O4 tetrahedra to produce OH? ions. However, in those melts that contain trivalent ions in tetrahedral coordination, such as the Al3+ ion in feldspathic melts, the model further involves exchange of a proton from H2O with a non-tetrahedrally coordinated cation that must be present to balance the net charge on the AlO4 group. This cation exchange reaction, which goes essentially to completion, results in dissociation of the H2O and is limited only by the availability of H2O and the number of exchangeable cations per mole of aluminosilicate.In the system NaAlSi3O8-H2O, upon which this thermodynamic model is based, there is 1 mole of exchangeable cations (Na+) per mole (GFW) of NaAlSi3O8, consequently ion exchange occurs for H2O contents up to a 1:1 mole ratio (Xmw = mole fraction H2O = 0.5). For mole fractions of H2O greater than 0.5, no further exchange can occur and the reaction with additional bridging oxygens of the melt produces 2 moles of associated OH? ions per mole of H2O dissolved. These reactions lead to a linear dependence of the thermodynamic activity of H2O (amw) on the square of its mole fraction (Xmw) for values of Xmw, up to 0.5 and an exponential dependence on Xmw at higher H2O contents. Thus, for values of Xmw ? 0.5, amw = k(Xmw)2, where k is a Henry's law constant for the dissociated solute.Extension of the thermodynamic model for NaAlSi3O8-H2O to predict H2O solubilities and other behavior of compositionally more complex aluminosilicate melts (magmas) requires placing these melts on an equimolal basis with NaAlSi3O8. This is readily accomplished using chemical analyses of quenched glasses by normalizing to the stoichiometric requirements of NaAlSi3O8, first in terms of equal numbers of exchangeable cations for mole fractions of H2O up to 0.5 and secondly in terms of 8 moles of oxygen for higher H2O contents. Chemical analyses of three igneous-rock glasses, ranging in composition from tholeiitic basalt to lithium-rich pegmatite, were thus recast and the experimental H2O solubilities were computed on this equimolal basis. The resulting equimolal solubilities are all the same, within experimental error, as the solubility of H2O in NaAlSi3O8 melt calculated from the thermodynamic relations.The equivalence of equimolal solubilities implies that the Henry's law constant (k), which is a function of temperature and pressure, is independent of aluminosilicate composition over a wide range. Moreover, as a consequence of the Gibbs-Duhem relation and the properties of exact differentials, it is clear that the silicate components of the melt, properly defined, mix ideally. Thus, a relatively simple mixing model for H2O in silicate melts has led to a quantitative thermodynamic model for magmas that has far-reaching consequences in igneous petrogenesis.  相似文献   

17.
The distribution of trace amounts of Na, Rb and Cs, between muscovite, phlogopite, sanidine and hydrothermal solution have been studied by ion exchange in a temperature range from 400 to 800°C.These distributions have been expressed with a partition ratio Paq?mx = (XK)aq(XK)m (where X is Na, Rb or Cs).In the case of Na and Cs in muscovite, even for the dilute solutions, the ratio Paq?mx is not the equilibrium constant kx of exchange reactions. In other cases, Paq?mx does not depend on the trace alkali ion concentration in silicates (X) and is equal to kx. Variations of Px or kx with T are greater for Na and Cs than for Rb. Generally, kx decreases with increase in T. The function log Px = f(1T) is not linear for Na or Cs, but in the case of Rb, f(1T) is linear and the standard enthalpy and entropy of exchange reactions have been estimated by applying the Arrhenius relation.The distribution relations obtained between silicate and vapour phase permit the determination of distributions of Na, Rb and Cs between two minerals mI and mII, relative to K. These have been expressed with the partition ratio Qx =(XK)mI(XK)mII. Variations of Qx with T are not remarkable, and even for Rb between phlogopite and feldspar are negligible. Nevertheless, one may use the distributions of Rb and Cs between muscovite and feldspar for geothermometry. Experimental results have been applied to some rocks by effecting corrections from the major element composition of the natural minerals. Estimated temperatures are near to 400°C in the granites and pegmatite studied here.  相似文献   

18.
19.
Potentiometric measurements in dilute sodium borate solutions with added alkali earth chlordie salts yield the following expressions for the dissociation constants of alkali earth borate ion pairs from 10 to 50°C:
pK(MgH2BO3+=1.266+0.001204 T
pK(CaH2BO3+=1.154+0.002170 T
pK(SrH2BO3+=1.033+0.001738 T
pK(BaH2BO3+=1.942+0.001850 T
where T is in °K. Enthalpies for the dissociation reactions at 25°C are less than 1 kcal./mole for all the alkali earth borate ion pairs.Values for pK(NaH2BO3°) from 5 to 55°C computed from the experimental data of Owen and King are in good agreement with those determined potentiometrically. The average value from both methods is 0.22 ± 0.1 at 25°C.Application to seawater of computed pK's for MgH2BO3+, CaH2BO3+ and NaH2BO30 yields an apparent dissociation constant for boric acid of 8.73 vs. 8.70 measured by Lyman, 8.68 by Buch and 8.73 by Byrne and Kester.  相似文献   

20.
For a phase at equilibrium in which two cation species are partitioned ideally between two sub-lattice sites, the excess functions of mixing (free energy, enthalpy and entropy) are directly related to the bulk composition of the phase and ΔGE°(T, P), the standard-state intra- crystalline exchange free energy. If the phase is not at equilibrium internally, an additional ordering parameter is necessary to fix the excess free energy of mixing, GmixEX, unambiguously. Conversely, for any fixed GmixEX there exists an infinity of possible intracrystalline cation dis- tributions, only one of which is the equilibrium distribution for the specified temperature and pressure. As ideal intraphase cation ordering becomes more pronounced, GmixEX decreases. In response, the total free energy of mixing for the phase decreases progressively for non-end member compositions, approaching, at the limits of ordering, values appropriate for stabilizing compounds of intermediate composition.The model-dependent activity coefficient for component A in the phase, γAT, can be calculated for any bulk composition, XAT, either from GmixEX directly or from more basic equations involving the interrelation of chemical potentials at equilibrium. A general form for γAT is ln γAT= 1n[2(XAαXAβ)12/(XAα+XAβ)]+Y, where Xjκ denotes the mole fraction of species j in site κ. The first term on the right-hand side of this equation is the contribution to γAT from ideal intracrystalline partitioning, and is common to the several theories lately presented to model intraphase cation partitioning. It can be shown rigorously that this term contributes to a negative deviation from ideality for the bulk phase. The second term is the contribution to the macroscopic activity coefficient from non-ideal intraphase partitioning, and is related to an enthalpy of mixing, HmixN in excess of that resulting from ideal inter-site cation ordering. While the expression represented by Y can take several functional forms, the additional enthalpy can be evaluated explicitly for specific non-ideal partitioning models from the relation HmixN = 2RT(1? XAT) ∝ Y(1 ? XAT)2dXAT.In those cases, GmixEX can also be determined exactly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号