首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The release kinetics of Xe of the isotopically normal component of noble gases (P3 component) from the coarse-grained fraction of nanodiamonds from the Orgueil (CI) meteorite and the kinetics of 4He release from lunar soil were studied by means of a numerical simulation. It is demonstrated that the release of these gases as a peak with a single pronounced maximum may not correspond to the diffusion model with a single activation energy and can in fact be controlled by a spectrum of activation energies with a number of peaks a number of peaks remaining unresolved at stepped pyrolysis. In particular, the amount of Xe-P3 preserved in nanodiamonds during thermal metamorphism of the Orgueil meteorite calculated using parameters of the diffusion process (activation energy and frequency factor) that were determined in the model with a single activation energy indicates that practically all Xe should be lost during a very short time. These losses are inconsistent with both the duration of thermal metamorphism of the meteorite parent bodies and the Xe-P3 concentrations measured in these meteorites. A much higher preservation of Xe-P3 during thermal metamorphism lasting for hundreds of years follows from calculations based on diffusion with a spectrum of activation energiesa for Xe release. The results of isothermal pyrolysis of a nanodiamonds fraction from Orgueil confirms a presence of several activation energies for Xe-P3 release from the nanodiamonds. The application of the diffusion model with a spectrum of activation energies to He release from lunar soil samples also shows that He can be retained in these samples at 20°C during a much longer time than it follows from the model with a single activation energy (Anufriev, 2010).  相似文献   

2.
The insoluble organic material in the Orgueil (Cl) chondrite was analyzed by combined high vacuum pyrolysis-gas chromatography-mass spectrometry. Stepwise pyrolyses at 150, 300, 450 and 600°C of Orgueil meteorite powder which had been exhaustively extracted with solvents yielded a series of alkenes and alkanes to C8, an extensive series of alkylbenzene isomers, thiophene, alkylthiophenes, and benzothiophene, together with the nitrogen- and oxygen-containing breakdown products, acetonitrile, acrylonitrile, benzonitrile, acetone and phenol. The Orgueil polymer fragmentation products are very similar both qualitatively and quantitatively to pyrolysis products of solvent-extracted Pueblito de Allende (C3) chondrite described in the literature.Changes in the relative abundances of polymer degradation products between 150 and 600°C imply the preferential loss of aliphatic and certain heteroatomic portions of the polymer at lower temperatures to leave highly condensed aromatic and heteroaromatic portions of the polymer which begin to fragment only at 450–600°C. The Orgueil polymer-like matter thus appears to be a complex mixture of polymerized materials having different thermal stabilities. Similarities between vacuum pyrolyzates of the Orgueil polymer and terrestrial kerogen suggest the possibility that meteorite organic matter may have been subjected on the meteorite parent bodies to diagenetic processes similar to those by which terrestrial kerogen is formed.  相似文献   

3.
Oxygen isotope compositions of the carbon-rich, acid-resistant fraction of four carbonaceous chondrites (Orgueil, Renazzo, Murchison and Murray) are reported, along with results of experiments wherein bulk samples of Orgueil and Renazzo were selectively outgassed.Variations of the whole rock isotopic compositions of Orgueil and Renazzo with the temperature of vacuum outgassing show that the water released, presumably from hydroxyl radicals bound to the phyllosilicates, has an O-isotope composition distinct from that of the rest of the silicates. A model of formation of carbonaceous chondrite phyllosilicates requiring a single water reservoir with this composition is proposed.The acid residues are only slightly different from the whole rocks and from terrestrial compositions in their 16O-content. A hydrogen-oxygen isotope relation is found, which can be interpreted in terms of low temperature reactions in the primitive solar nebula.  相似文献   

4.
Dehydration of Orgueil by stepwise calcination produced more than a tenfold change in its Kr B.E.T. surface area, which increased to 120 m2/g, then fell to 40 m2/g. This phenomenon characterizes structures of the montmorillonite type, but not other plausible constituents of Orgueil. It results from vacating of interlayer sites by H2O molecules which are replaced by Kr until finally the sheets collapse, excluding Kr. Differential calorimetric scans of Orgueil also gave a better match for montmorillonite than for other minerals. However, a simple identification as montmorillonite conflicts with chemical analyses of Orgueil phyllosilicates.Exchangeability of H2O in Orgueil was shown by water regain from lab air between calcination cycles and similarily of the cycles. Room temperature dehydration revealed up to 6 per cent free surface adsorbed water. High D/H ratios in CI's may result from D enrichment in OH? groups during equilibration of dispersed phyllosilicate dust with nebula gas at temperatures ?0°C. Adsorption on the very large free and interlayer surface areas of this dust was the major mechanism by which volatiles still uncondensed at the time of gas-dust separation (including planetary primordial Ar, Kr and Xe) were incorporated into solid solar system material.  相似文献   

5.
New Sr isotopic analyses and calculated formation ages of carbonates from the Orgueil CI meteorite are reported. Among the samples analyzed in this work, dolomites give the youngest formation ages and may have been deposited intermittently starting near the time of parent body formation and continuing for at least 30 Ma. The Sr isotope data also suggest that breunnerites (Fe-Mn-Mg carbonates) crystallized after dolomite formation. Leaching experiments on bulk meteorite samples provide evidence for a very mobile, water soluble Sr reservoir in Orgueil that is characterized by extremely radiogenic Sr (87 Sr/86 Sr≈ 0.81-0.82). This unsupported Sr reflects recent element redistribution, possibly at the time of parent body breakup recorded by the ∼ 10 Ma exposure age of Orgueil. The carbonate data in particular corroborate earlier indications that hydrothermal processes were among the earliest events to affect the CI parent body.  相似文献   

6.
Sympathetic variations in nickel and sulfur abundances, on a scale of micrometers, in Orgueil phyllosilicates apparently reproduce similar correlations among matrices of different carbonaceous chondrites (McSween and Richardson, pp. 1145–1161, this issue). In Orgueil this effect probably results from aqueous alteration of a NiSi-bearing phase on the parent body.  相似文献   

7.
The hydroxyl in phyllosilicate minerals is the most common occurrence of water in primitive meteorites.Direct hydrogen isotopic analysis of this water component using an ion microprobe has been made in some glassy or phyllosilicate spherules from the A1 Rais (CR) and Orgueil (CI) chondrites. The spherules from A1 Rais show largedeuterium excesses (δD= 200- 800‰) relative to terrestrial standards, whereas deuterium-enrichments in the spherules from Orgueil are much smaller (δD= 40- 130‰). The phyllosilicate spherules are products of aqueous alteration of glassy precursors. In A1 Rais the phyllosilicate spherules have relatively higher δD values than the glassy ones, indicating that water introduced during aqueous alteration was deuterium-enriched. The deuterium-enrichments in the phyllosilicate spherules from Orgueil could result from isotopic exchange under thermodynamic conditions within the solar nebula. The much larger δD excesses of the A1 Rais spherules, however, cannot be attributed to the similar process;instead, an interstellar origin needs to be invoked.  相似文献   

8.
The highly aromatic structure of the macromolecular organic matter (OM) of the Murchison and Orgueil meteorites was recently shown to contain free organic radicals which are concentrated in micro-regions in contrast with terrestrial samples which always show an homogeneous distribution of radicals. An additional signature is revealed, in the present study, by the evolution of the radical concentration with temperature. Whereas in terrestrial samples, this concentration is independent of temperature (Curie magnetism), a significant increase is observed above 150 K in the two meteorites. Based on the electronic structure of organic radicals, calculated by Extended Hückel and Density Functional methods, this behavior was assigned to the occurrence of diradicaloid moieties hosted by aromatic structures of 10 to 15 rings and having a quinoidal structure. They represent 40 and 25% of the total radicals in Orgueil and Murchison, respectively. The search for the cosmochemical interpretation of this unique observation should open a new field of experimental investigations.  相似文献   

9.
For the bulk rocks of CI chondrites, various values are given for the modal abundance of matrix (95–100 vol%) and the accompanying mineral constituents. Here, we have determined the modal abundance of phases >5 μm in the CI chondrites Orgueil, Ivuna, Alais, and Tonk. Considering this cut-off grain-size to distinguish between matrix and coarse-grained constituents, then, we find the modal abundance of the minor phases magnetite, pyrrhotite, carbonate, olivine, and pyroxene to be 6 vol% in total, and these phases are embedded within the fine-grained, phyllosilicate-rich matrix, making up 94 vol%. The values vary slightly from meteorite to meteorite. Considering all four chondrites, the most abundant phase is - by far - magnetite (4.3 vol%) followed by pyrrhotite (∼1.1 vol%). All four CI chondrites are complex breccias, and their degree of brecciation decreases in the sequence: Orgueil > Ivuna > Alais ∼ Tonk. Because these meteorites contain clasts with highly variable modal abundances, we therefore also studied individual clasts with high abundances of specific coarse-grained phases. In this respect, in Orgueil we found a fragment with a 21.5 vol% of magnetite as well as a clast having 31.8 vol% phosphate. In Ivuna, we detected an individual clast with a 21.5 vol% of carbonates. Thus, since the CI composition is used as a geochemical standard for comparison, one also should keep in mind that sufficiently large sample masses are required to reveal a homogeneous CI composition. Small aliquots with one dominating lithology may significantly deviate from the suggested standard CI composition.  相似文献   

10.
Precise determination of REE and Ba abundances in three carbonaceous (Orgueil Cl, Murchison C2 and Allende C3) and seven olivine-bronzite chondrites were carried out by mass spectrometric isotope dilution technique. Replicate analyses of standard rock and the three carbonaceous chondrites demonstrated the high quality of the analyses (accuracies for REE are ±1–2 per cent). Certain carbonaceous chondrite specimens showed small positive irregularities in Yb abundance. The Yb ‘anomaly’ (approximately + 5 per cent relative to the average of 10 ordinary chondrites) in Orgueil may relate to high temperature components. The REE pattern of Guareña (H6) exhibits comparatively extensive fractionation (about factor 2) with a negative anomaly for Eu (17 ± 1 percent) compared to the average H chondrite. This could be interpreted in terms of extensive thermal metamorphism leading to melting.Apart from absolute abundance differences, there appears to be small but recognizable fractionation among the average relative REE abundances of Cl, E, H and L chondrites. However, individual chondrites within these groups showed more or less fractionated REE patterns relative to each other. The distinction between H and L chondrites was well demonstrated in Eu-Sm correlation curves and absolute abundance differences of REE and major elements.Si-normalized atomic ratios of the REE abundances in different kinds of chondrites to those in Orgueil (Cl) chondrite were 0.58 (E), 0.75 (H), 0.81 (L), 1.07 (C2) and 1.32 (C3).  相似文献   

11.
An electron paramagnetic resonance (EPR) investigation was performed on the insoluble organic matter from the Orgueil and Murchison meteorites and on terrestrial coals with similar elemental composition. A complementary electron nuclear double resonance (ENDOR) study was also carried out. The measured g-factors of the observed paramagnetic radicals in the meteoritic organic matter exhibit a similar correlation with the chemical composition as for the type III (i.e., hydrogen-poor) terrestrial coals. The main result, obtained from EPR saturation and 1H ENDOR enhancement measurements, showed that the effective local concentration in radicals of about 3 to 4 × 1019 spin.g−1 in the meteoritic organic matter is much higher than the average concentration, hence the occurrence of radical-rich regions accounting for 5% and 20% of the total volume for Murchison and Orgueil, respectively. This heterogeneity of concentration seems to be unique among natural organic macromolecules. It is proposed that these radical-rich regions correspond to pristine parts of the organic matter synthesized in conditions close to those prevailing in the interstellar medium, and which have survived the hydrothermal process on the parent body.  相似文献   

12.
Pyrolysis with and without tetramethylammonium hydroxide (TMAH), vacuum pyrolysis, and solid state 15N nuclear magnetic resonance (NMR) were used to examine the macromolecular insoluble organic matter (IOM) from the Orgueil and Murchison meteorites. Conventional pyrolysis reveals a set of poorly functionalized aromatic compounds, ranging from one to four rings and with random methyl substitutions. These compounds are in agreement with spectroscopic and pyrolytic results previously reported. For the first time, TMAH thermochemolysis was used to study extraterrestrial material. The detection of aromatics bearing methyl esters and methoxy groups reveals the occurrence of ester and ether bridges between aromatic units in the macromolecular network.No nitrogen-containing compounds were detected with TMAH thermochemolysis, although they are a common feature in terrestrial samples. Along with vacuum pyrolysis results, thermochemolysis shows that nitrogen is probably sequestered in condensed structures like heterocyclic aromatic rings, unlike oxygen, which is mainly located within linkages between aromatic units. This is confirmed by solid state 15N NMR performed on IOM from Orgueil, showing that nitrogen is present in pyrrole, indole, and carbazole moieties.These data show that amino acids are neither derived from the hydrolysis of IOM nor from a common precursor. In order to reconcile the literature isotopic data and the present molecular results, it is proposed that aldehydes and ketones (1) originated during irradiation of ice in space and (2) were then mobilized during the planetesimal hydrothermalism, yielding the formation of amino acids. If correct, prebiotic molecules are the products of the subsurface chemistry of planetesimals and are thus undetectable through astronomical probes.  相似文献   

13.
All CI chondrites are regolith breccias consisting of various types of chemically and mineralogically distinct mineral and lithic fragments (or units). In the CI chondrite Ivuna, for example, four different lithological units were identified and are referred to as lithology I, II, III, and IV. So far, lithologies III and IV have been identified in Orgueil as well. It appears that at least Ivuna and Orgueil consist of the same basic lithologies in different proportions. Carbonates in CIs occur as individual grains within such lithic units or exist as large fragments between them. Carbonate fragments are remnants of former carbonate veins and, in contrast to individual carbonate grains, are not genetically linked to lithological units. Four different types of carbonates (dolomite, breunnerite, calcite, siderite) occur in CIs and they constitute, on average, 5 vol% of each studied section. In this study, carbonates in the CI chondrites Orgueil, Ivuna, Alais, and Tonk were studied petrographically, mineralologically, and chemically. The results clearly indicate that, in contrast to most previous studies, compositional differences exist between dolomites within and among CI chondrites. From these differences it can be derived that (1) several episodes of alteration occurred on the CI parent body, (2) physicochemical conditions during carbonate formation must have been different among CIs, and (3) CI carbonates obviously were formed at low temperatures in equilibrium with surrounding fluid(s). While local compositional changes in fluid(s) on a micrometer to millimeter scale (as reflected by dolomite compositions within CI chondrites) were most likely controlled by the availability of Ca2+ Mg2+, Fe2+, and especially Mn2+ ions in the aqueous solutions, more widespread compositional changes on a meter (or even larger) scale were controlled by variable pH, Eh, CO2 partial pressure, and, especially, temperature conditions (as reflected by the compositional variability of dolomites among CIs).  相似文献   

14.
Ruthenium tetroxide oxidation was used to examine the macromolecular insoluble organic matter (IOM) from the Orgueil and Murchison meteorites and especially to characterize the aliphatic linkages. Already applied to various terrestrial samples, ruthenium tetroxide is a selective oxidant which destroys aromatic units, converting them into CO2, and yields aliphatic and aromatic acids. In our experiment on chondritic IOM, it produces mainly short aliphatic diacids and polycarboxylic aromatic acids. Some short hydroxyacids are also detected.Aliphatic diacids are interpreted as aliphatic bridges between aromatic units in the chemical structure, and polycarboxylic aromatic acids are the result of the fusion of polyaromatic units. The product distribution shows that aliphatic links are short with numerous substitutions. No indigenous monocarboxylic acid was detected, showing that free aliphatic chains must be very short (less than three carbon atoms). The hydroxyacids are related to the occurrence of ester and ether functional groups within the aliphatic bridges between the aromatic units. This technique thus allows us to characterize in detail the aliphatic linkages of the IOMs, and the derived conclusions are in agreement with spectroscopic, pyrolytic, and degradative results previously reported.Compared to terrestrial samples, the aliphatic part of chondritic IOM is shorter and highly substituted. Aromatic units are smaller and more cross-linked than in coals, as already proposed from NMR data. Orgueil and Murchison IOM exhibit some tiny differences, especially in the length of aliphatic chains.  相似文献   

15.
To better understand the role of aqueous alteration on the CI1 parent body, we have analyzed the texture, composition and mineral associations of iron nickel sulfides in four of the five known CI1 chondrites.The most commonly-occurring sulfide present in the CI1 chondrites is the iron-deficient Fe,Ni sulfide pyrrhotite ([Fe,Ni]1−xS), that has a composition close to that of stoichiometric troilite (FeS). Three of the CI1s (Alais, Ivuna and Tonk) also contain pentlandite ([Fe,Ni]9S8), although pentlandite is a rare phase in Ivuna. Cubanite (CuFe2S3) was found in both Alais and Ivuna in this study, although it has also been reported in Orgueil (MacDougall and Kerridge, 1977). The pyrrhotite grains in all four chondrites form hexagonal, rectangular or irregular shapes, and show no evidence of Ni or Co zoning. The pyrrhotite grains in Orgueil and Ivuna are, in general, smaller, and show more “corrosions,” or “embayments,” than those in Alais or Tonk.We suggest that the precursor sulfide present in the CI1 chondrites was troilite which, during brecciation and oxidation on the parent body at a temperature of 100°C or less, converted the troilite to magnetite and pyrrhotite with pentlandite inclusions. Subsequently, continued alteration on the parent body removed pentlandite—partially from Alais, Tonk and Ivuna, completely from Orgueil—leaving behind pyrrhotite with spaces (“corrosions”) where the pentlandite had been. Ni derived from the pentlandite was incorporated into ferrihydrite, onto the surface of which the Ni,Na sulfate Ni-bloedite formed.Based on the size and abundant “corrosions” within pyrrhotite grains, combined with observations from other authors, we conclude that Orgueil and Ivuna have undergone a greater degree of alteration than Alais and Tonk. Further work is needed to assess the conditions under which pentlandite would be dissolved preferentially to pyrrhotite, as the study of terrestrial literature indicates that the latter mineral is preferentially removed.  相似文献   

16.
We have analyzed B in carbonaceous chondrites in order to clarify a factor of 100 difference between the solar system B abundance derived from the solar photosphere and that inferred from previous meteorite data. Consistent results were obtained from two instrumental methods for B analysis: (a) counting of the high energy betas from 12B produced by the 11B(d,p) reaction, and (b) measurement of particle track densities from 10B(n,α)7Li in a plastic track detector affixed to a homogenized meteorite sample. Contamination is a major problem in B analyses, but extensive testing showed that our results were not seriously affected. Our B concentrations are typically 1–2 ppm and are a factor of 2–6 lower than previous carbonaceous chondrite measurements. Our data for the Cl chondrites Ivuna and Orgueil would indicate a solar system B/Si atomic abundance ratio of 58 × 10?6, but this is still a factor of 2–10 higher than the photospheric estimates. It may be that B is depleted in the sun by thermonuclear processes; however, the similarity of photospheric and meteoritic Be abundances is a problem for this point of view. Alternatively, B may be enhanced in carbonaceous chondrites, but this would make B a cosmochemically unique element. A mm-sized (Fe,Mn,Mg)CO3 crystal from Orgueil shows no B enrichment. We find 10B ≤ 1016 atoms/g in two Allende fine-grained inclusions suggesting that B is not a refractory element under solar nebula conditions. This 10B limit, when taken as a limit on 10Be when the inclusion formed, puts constraints on the possibility of a solar system synthesis of 26Al. For a proton spectrum of E?a, a must be ≥ 3 if a solar gas is irradiated or a ≥1.5 if dust of solar composition is irradiated.  相似文献   

17.
Data are presented from stepwise heating experiments on five carbonaceous chondrites: Alais, Ivuna, Orgueil, Cold Bokkeveld and Nogoya. The data indicate the presence of two isotopically distinct major trapped components, components A and B. Two additional components, ‘C’ and ‘E,’ were isolated on the basis of neon isotopic structure. Components B and C, found in. gas-rich meteorites, are attributed to ion implantation by the present day solar wind and solar flares respectively. Component A is interpreted as a mixture of component E and component D (Paper I), where component D is identified with the primitive solar wind and component E is assigned an extra solar system origin.  相似文献   

18.
The mass spectrometric isotope dilution technique was used to measure the elemental abundances of Pd, Ag, Cd and Te in Orgueil (C1), Ivuna (C1), Murray (C2) and Allende (C3) chondrites. The Pd abundance of 554 ppb for the C1 chondrites is almost identical to the recommended value of Anders and Ebihara (1982); that for Cd (712 ppb) is approximately 5% higher, whereas that for Ag (198 ppb) is approximately 10% lower than the recommended values. A smooth distribution for the abundances of the odd-A nuclides between65 ≦ A ≦ 209 have been observed except for small irregularities in the Pd-Ag-Cd and the Sm-Eu mass regions (ANDERS and Ebihara, 1982). The results from the present work have the effect of smoothing out the dip in the Pd-Ag-Cd region and indicate that there is no systematic fractionation of cosmochemical element groups in this mass region.A Te abundance of 2.25 ppm has been determined for the C1 chondrites Orgueil and Ivuna in agreement 2+with the value of Smith et al. (1977). This value is some 30% lower than the value of Krähenbühl et al. (1973) but is in good agreement with the more recent measurements from Chicago. The Krähenbühl et al. value causes 128Te and 130Te to lie approximately 30% above the r-process peak at A = 130 (Käppeler el al., 1982), whereas the new value fits smoothly into the general trend.  相似文献   

19.
The insoluble organic matter (IOM) of the Orgueil meteorite contains deuterium-rich radicals detectable by Electron Paramagnetic Resonance (EPR) techniques (Gourier et al., 2008). However the structure of these deuterium carriers remains poorly constrained. In this work, their electronic structure is deduced from the measurement of the spin states S by transient nutation in pulsed-EPR. It is shown that these deuterium-rich radicals are dominated by biradicaloids (species with S = 0 ground state and thermally accessible S = 1 state) and biradicals (species with S = 1 ground state) representing ∼61% and ∼31% of the radicals in the IOM of Orgueil, respectively, while single radicals (S = 1/2) contribute only to ∼8%. This is definitely different from mature terrestrial IOMs, which are known to contain almost exclusively S = 1/2 radicals. A structural model is proposed, whereby the occurrence of dominant biradicaloids and biradicals is the direct consequence of the structure of the IOM, made of a network of small aromatic moieties linked by branched and short aliphatic units. This implies that the formation of stable biradicaloids and biradicals by C-H breaking and their deuterium enrichment are produced after the formation of the IOM in the primitive solar system. These results reinforce the idea that the formation of the IOM and the deuterium-rich hotspots are the product of ion chemistry in the solar disk.  相似文献   

20.
The major and selected trace element composition of the melt at the eastern Lac à l'Eau Claire impact structure can be modelled by 52.3% granodiorite, 15.1% granulite, 25.7% quartz-monzonite plus 6.9% Orgueil (C1-chondrite). A satisfactory fit to melt at the western structure requires 57.4% granulite and 42.6% quartz-monzonite. These models agree with the suggestions of Palmeet al. (1978, Geochim. Cosmochim. Acta42, 313–323) on the type and extent of meteoritic component in the melts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号