首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show for the first time images of solar coronal mass ejections (CMEs) viewed using the Heliospheric Imager (HI) instrument aboard the NASA STEREO spacecraft. The HI instruments are wide-angle imaging systems designed to detect CMEs in the heliosphere, in particular, for the first time, observing the propagation of such events along the Sun – Earth line, that is, those directed towards Earth. At the time of writing the STEREO spacecraft are still close to the Earth and the full advantage of the HI dual-imaging has yet to be realised. However, even these early results show that despite severe technical challenges in their design and implementation, the HI instruments can successfully detect CMEs in the heliosphere, and this is an extremely important milestone for CME research. For the principal event being analysed here we demonstrate an ability to track a CME from the corona to over 40 degrees. The time – altitude history shows a constant speed of ascent over at least the first 50 solar radii and some evidence for deceleration at distances of over 20 degrees. Comparisons of associated coronagraph data and the HI images show that the basic structure of the CME remains clearly intact as it propagates from the corona into the heliosphere. Extracting the CME signal requires a consideration of the F-coronal intensity distribution, which can be identified from the HI data. Thus we present the preliminary results on this measured F-coronal intensity and compare these to the modelled F-corona of Koutchmy and Lamy (IAU Colloq. 85, 63, 1985). This analysis demonstrates that CME material some two orders of magnitude weaker than the F-corona can be detected; a specific example at 40 solar radii revealed CME intensities as low as 1.7×10−14 of the solar brightness. These observations herald a new era in CME research as we extend our capability for tracking, in particular, Earth-directed CMEs into the heliosphere.  相似文献   

2.
1 IntroductionDeepsurveyscarriedoutbyfutureinfraredmissions (suchasSIRTForSOFIA)willsampleinfraredbrightgalaxiesoverawiderangeofredshiftsandluminosities.Quantitativespectroscopyofmid infraredemissionlineswillbeanimportantdiagnostictoolfordeterminingthedetailedpropertiesofdistant,dustygalaxies ,thesourceoftheextragalacticbackground ,andtheoriginofnuclearactivityingalaxies.Manyofthefundamentalquestionsofgalaxyformationandevolutiondependsubstantiallyonthefractionofthetotalenergyoutputofdista…  相似文献   

3.
It is generally accepted that transient coronal holes (TCHs, dimmings) correspond to the magnetic footpoints of CMEs that remain rooted in the Sun as the CME expands out into the interplanetary space. However, the observation that the average intensity of the 12 May 1997 dimmings recover to their pre-eruption intensity in SOHO/EIT data within 48 hours, whilst suprathermal unidirectional electron heat fluxes are observed at 1 AU in the related ICME more than 70 hours after the eruption, leads us to question why and how the dimmings disappear whilst the magnetic connectivity is maintained. We also examine two other CME-related dimming events: 13 May 2005 and 6 July 2006. We study the morphology of the dimmings and how they recover. We find that, far from exhibiting a uniform intensity, dimmings observed in SOHO/EIT data have a deep central core and a more shallow extended dimming area. The dimmings recover not only by shrinking of their outer boundaries but also by internal brightenings. We quantitatively demonstrate that the model developed by Fisk and Schwadron (Astrophys. J. 560, 425, 2001) of interchange reconnections between “open” magnetic field and small coronal loops is a strong candidate for the mechanism facilitating the recovery of the dimmings. This process disperses the concentration of  “open” magnetic field (forming the dimming) out into the surrounding quiet Sun, thus recovering the intensity of the dimmings whilst still maintaining the magnetic connectivity to the Sun. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

4.
In this paper, we have considered that the Moon motion around the Earth is a source of a perturbation for the infinitesimal body motion in the Sun–Earth system. The perturbation effect is analyzed by using the Sun–Earth–Moon bi–circular model (BCM). We have determined the effect of this perturbation on the Lagrangian points and zero velocity curves. We have obtained the motion of infinitesimal body in the neighborhood of the equivalent equilibria of the triangular equilibrium points. Moreover, to know the nature of the trajectory, we have estimated the first order Lyapunov characteristic exponents of the trajectory emanating from the vicinity of the triangular equilibrium point in the proposed system. It is noticed that due to the generated perturbation by the Moon motion, the results are affected significantly, and the Jacobian constant is fluctuated periodically as the Moon is moving around the Earth. Finally, we emphasize that this model could be applicable to send either satellite or telescope for deep space exploration.  相似文献   

5.
Ayres  Thomas R. 《Solar physics》2000,193(1-2):273-297
The solar–stellar connection bridges the daytime and nighttime communities; an essential link between the singular, but detailed, views of our Sun, and the broad, but coarse, glimpses of the distant stars. One area in particular – magnetic activity – has profited greatly from the two way traffic in ideas. In that spirit, I present an evolutionary context for coronal activity, focusing on the very different circumstances of low-mass main-sequence stars like the Sun, compared with more massive stars. The former are active mainly very early in their lives, whereas the latter become coronal only near the end of theirs, during the brief incursion into the cool half of the Hertzsprung–Russell diagram as yellow, then red, giants. I describe tools at the disposal of the stellar astronomer; especially spectroscopy in the ultraviolet and X-ray bands where coronae leave their most obvious imprints. I compare HST STIS spectra of solar-type dwarfs – Dor (F7 V), an active coronal source, and Cen A (G2 V), near twin of the Sun – to the SOHO SUMER UV solar atlas. I also compare the STIS line profiles of the active coronal dwarf to the corresponding features in the mixed activity hybrid chromosphere bright giant TrA (K2 II) and the archetype non-coronal red giant Arcturus ( Boo; K2 III). The latter shows dramatic evidence for a cool absorber in its outer atmosphere that is extinguishing the hot lines (like Siiv 1393 and Nv 1238) below about 1500 Å; the corona of the red giant seems to lie beneath its extended chromosphere, rather than outside as in the Sun. I present an early taste of the moderate resolution spectra we can expect from the recently launched Chandra X-ray Observatory (CXO), and contemporaneous STIS high resolution UV measurements of the CXO calibration star Capella ( Aur; G8 III + G1 III). Last, I describe preliminary results from a May 1999 observing campaign involving SOHO SUMER, TRACE, and the Kitt Peak Infrared Imaging Spectrometer (IRIS). The purpose was to explore the dynamics of the quiet solar atmosphere through the key magnetic transition zone that separates the kinetically dominated deep photosphere from the magnetically dominated coronal regime. Linking spatially and temporally resolved solar phenomena to properties of the average line shapes (widths, asymmetries, intensity ratios, and Doppler shifts) is a crucial step in carrying physical insights from the solar setting to the realm of the distant stars.  相似文献   

6.
We consider dynamics of a Sun–Jupiter–Asteroid system, and, under some simplifying assumptions, show the existence of instabilities in the motions of an asteroid. In particular, we show that an asteroid whose initial orbit is far from the orbit of Mars can be gradually perturbed into one that crosses Mars’ orbit. Properly formulated, the motion of the asteroid can be described as a Hamiltonian system with two degrees of freedom, with the dynamics restricted to a “large” open region of the phase space reduced to an exact area preserving map. Instabilities arise in regions where the map has no invariant curves. The method of MacKay and Percival is used to explicitly rule out the existence of these curves, and results of Mather abstractly guarantee the existence of diffusing orbits. We emphasize that finding such diffusing orbits numerically is quite difficult, and is outside the scope of this paper.  相似文献   

7.
J. Rybák 《Solar physics》1994,152(1):161-166
Fe XIV 5303 coronal emission line observations have been used for the estimation of the rotation behaviour of the green solar corona. A homogeneous data set, created from measurements carried out within the framework of the world-wide coronagraphic network, has been examined with a correlation analysis to reveal the averaged synodic rotation period as a function of latitude and time over the epoch from 1964 to 1989.The values of the synodic rotation period obtained for the epoch 1964–1989 for the whole range of latitudes and for a latitude band ±30° are 28.18±0.12 days and 27.65±0.13 days, respectively. The differential rotation of the green solar corona was confirmed, together with local maxima of the rotation period at latitudes 45° and -60° and a minimum at the equator, but no clear cyclic variation of the rotation has been found for the epoch examined.  相似文献   

8.
In previous studies, transport of solar energetic particles in the inner heliosphere was regarded as one-dimensional along the Archimedean field spiral; i.e., any perpendicular transport is neglected. We extend Roelof’s equation of focused transport for solar energetic particles to accommodate perpendicular transport in the plane of the ecliptic. Numerically, this additional term is solved with an implicit Laasonen scheme. In this first approximation, it is solved for azimuthal instead of perpendicular transport – these are similar in the inner heliosphere where the Archimedean field is almost radial. The intent of the study is to estimate the possible influence of perpendicular transport, but not to fit energetic particle events; thus, the particle source stays fixed on the Sun. For typical ratios κ /κ between 0.02 and 0.1 at 1 AU scaled with r 2 as suggested in nonlinear guiding-center theory, we find that i) an azimuthal spread over some 10° occurs within a few hours, ii) the variation of maximum intensities with longitude is comparable to the ones inferred from multispacecraft observations, and iii) on a given field line, intensity and anisotropy-time profiles are modified such that fits with the two-dimensional transport model give different combinations of injection profiles and mean free paths. Implications for the interpretation of intensity and anisotropy-time profiles observed in interplanetary space and consequences for our understanding of particle propagation and acceleration in space are discussed.  相似文献   

9.
Some historical records, which have held since the beginning of modern solar activity cycles, are being broken by the present Sun: cycle 23 records the longest cycle length and fall time; latitudes of high-latitude sunspots belonging to a new cycle around the minimum time of the cycle are statistically the lowest at present, compared with those of other cycles; there are only one or no sunspots in a month appearing at high latitudes for 58 months, which is the first time that such a long duration has been observed. The solar dynamo is believed to be slowing down due to: (1) the minimum smoothed monthly mean sunspot number is the smallest since cycle 16 onwards, and even probably among all modern solar cycles; and (2) once the time interval between the first observations of two neighboring sunspot groups is larger than 14 d, it should be approximately regarded as an observation of no sunspots on the visible solar disk, called a spotless event. Spotless events occur with the highest frequency around the minimum time of cycle 24, and the longest spotless event also appears around the minimum time for observations of the Sun since cycle 16. Cycle 24 is expected to have the lowest level of sunspot activity from cycle 16 onwards and even probably for all of the modern solar cycles.  相似文献   

10.
The four-planet problem is solved by constructing an averaged semi-analytical theory of secondorder motion by planetary masses. A discussion is given of the results obtained by numerical integration of the averaged equations of motion for the Sun–Jupiter–Saturn–Uranus–Neptune system over a time interval of 10 Gyr. The integration is based on high-order Runge–Kutta and Everhart methods. The motion of the planets is almost periodic in nature. The eccentricities and inclinations of the planetary orbits remain small. Short-period perturbations remain small over the entire interval of integration. Conclusions are drawn about the resonant properties of the motion. Estimates are given for the accuracy of the numerical integration.  相似文献   

11.
Measurements of the composition and spatial distribution of pick-up ions inside the heliosphere are reviewed. The first interstellar 4He+pick-up ions were detected with the SULEICA instrument on the AMPTE spacecraft near Earth's orbit. Most data on pick-up ions were taken in the solar-wind and suprathermal energy range of SWICS on Ulysses while the spacecraft cruised from 1.4 to 5.4 AU and explored the high-latitude heliosphere and solar wind from the ecliptic to ± 80° heliolatitude. This includes the discovery of H+, 4He++, 3He+, N+,O+, and Ne+ pick-up ions that originate from the interstellar neutralgas penetrating the heliosphere. From their fluxes properties of the interaction region between the heliosphere and the Local Interstellar Cloud such as the limits on filtration and the strength of the interstellar magnetic field have been revealed. Detailed analysis of the velocity distributions of pick-up ions led to 1) the discovery of a new distinct source, the so-called Inner Source, consisting of atoms released from interstellar and interplanetary dust inside the heliosphere, 2) the determination of pick-up ion transport parameters such as the long mean free path for pitch-angle scattering of order1 AU, and 3) detailed knowledge on the very preferential injection and acceleration of pick-up ions during interplanetary energetic particle events such as Co-rotating Interaction Regions and Coronal Mass Ejections. SWICS measurements have fully confirmed the theory of Fisk, Koslovsky, and Ramaty that pick-up ions derived from the interstellar gas are the dominant source of the Anomalous Cosmic Rays; they are pre-accelerated inside the heliosphere and re-accelerated at the solar-wind Termination Shock according to Pesses, Eichler, and Jokipii. The data indicate that the Inner Source of pick-up ionsis largely responsible for the occurence of C+ in the Anomalous Cosmic Rays. The abundances of recently discovered Inner-Source Mg+ and Si+ are solar-wind like and consistent with their abundances in the energetic particles associated with Co-rotating Interaction Regions. Knowledge on the injection and acceleration processes in Co-rotating Interaction Regions is applied to discuss the current observational evidence for the Interplanetary Focusing Cone of the interstellar neutral gas due to the Sun's gravitational force. The 25–150 keV/amu suprathermal 4He+ pick-up ion fluxes measured by CELIAS/STOF on board SOHO over 360° of ecliptic longitude represent a `local' ionization and acceleration of interstellar atoms at 1 AU or smaller heliocentric distances. Completing the first limited data set of SULEICA/AMPTE on 4He+ pick-up ions they indicate a density enhancement in the Interplanetary Focusing Cone which is confirmed by recent SWICS/ACE data. Clear evidence for signatures in ecliptic longitude are found in the data on energetic neutral H fluxes observed with the CELIAS/HSTOF sensor on board SOHO. These fluxes are enhanced in the upstream and downstream directions of the interstellar wind. Detection of energetic H atoms, which propagate unaffected by the Heliospheric Magnetic Field, provided for the first time a diagnostic tool for observations near Earth to analyze the structure in ecliptic longitude of the interface region between the heliosphere and the Local Interstellar Cloud. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Ilgin Seker 《Solar physics》2013,286(2):303-314
We study whether the birthplaces of sunspots (defined as the location of first appearance in the photosphere) are related to the planetary tides on the Sun. The heliocentric longitudes of newly emerging sunspots are statistically compared to the longitudes of tidal peaks caused by the tidal planets Mercury, Venus, Earth, and Jupiter. The longitude differences between new sunspots and tidal planets (and their conjugate locations) as well as the magnitudes of the vertical and horizontal tidal forces at the birthplace of new sunspots are calculated. The statistical distributions are compared with simulation results calculated using a random sunspot distribution. The results suggest that the birthplaces of sunspots (in the photosphere) are independent of the positions of tidal planets and the strength of tidal forces caused by them. However, since the sunspots actually originate near the tachocline (well below the photosphere) and it takes considerable time for the disturbances to reach photosphere, we hesitate to conclude that the formation of sunspots are not related to planetary positions.  相似文献   

13.
14.
Pal  A. K.  Abouelmagd  Elbaz I. 《Astronomy Letters》2021,47(5):331-344
Astronomy Letters - The dynamics of a bicircular restricted Sun–Earth–Moon system in which all massive bodies orbit around the center of mass on circular orbits is studied. The...  相似文献   

15.
Starting from 80 families of low-energy fast periodic transfer orbits in the Earth–Moon planar circular Restricted Three Body Problem (RTBP), we obtain by analytical continuation 11 periodic orbits and 25 periodic arcs with similar properties in the Sun–Earth–Moon Quasi-Bicircular Problem (QBCP). A novel and very simple procedure is introduced giving the solar phases at which to attempt continuation. Detailed numerical results for each periodic orbit and arc found are given, including their stability parameters and minimal distances to the Earth and Moon. The periods of these orbits are between 2.5 and 5 synodic months, their energies are among the lowest possible to achieve an Earth–Moon transfer, and they show a diversity of circumlunar trajectories, making them good candidates for missions requiring repeated passages around the Earth and the Moon with close approaches to the last.  相似文献   

16.
Doppler measurements of the photosphere of the entire Sun carried out at the Crimean Astrophysical Observatory (CrAO) in 1974–2007 by the differential technique showed the presence of an enigmatic periodicity of P 1 = 159.967(4) min. The phase of this oscillation was constant over the entire 34-year of surveys and interval. The true nature of this phenomenon is unknown. Pulsation with the former period P 0 = 160.0101(15) min has been reliably detected only in the first nine years, from 1974 to 1982. It is noted that (a) the average amplitude of the P 1 oscillation in the first half of the data was nearly 34% higher than in the second half and (b) the beat period of 400(14) d of these two pulsations is equal within error to the Jovian synodic period (399 d). A hypothesis is discussed relating the P 1 oscillation to the superfast rotation of the inner solar core.  相似文献   

17.
Starting from the four-body problem a generalization of both the restricted three-body problem and the Hill three-body problem is derived. The model is time periodic and contains two parameters: the mass ratio ν of the restricted three-body problem and the period parameter m of the Hill Variation orbit. In the proper coordinate frames the restricted three-body problem is recovered as m → 0 and the classical Hill three-body problem is recovered as ν → 0. This model also predicts motions described by earlier researchers using specific models of the Earth–Moon–Sun system. An application of the current model to the motion of a spacecraft in the Sun perturbed Earth–Moon system is made using Hill's Variation orbit for the motion of the Earth–Moon system. The model is general enough to apply to the motion of an infinitesimal mass under the influence of any two primaries which orbit a larger mass. Using the model, numerical investigations of the structure of motions around the geometric position of the triangular Lagrange points are performed. Values of the parameter ν range in the neighborhood of the Earth–Moon value as the parameter m increases from 0 to 0.195 at which point the Hill Variation orbit becomes unstable. Two families of planar periodic orbits are studied in detail as the parameters m and ν vary. These families contain stable and unstable members in the plane and all have the out-of-plane stability. The stable and unstable manifolds of the unstable periodic orbits are computed and found to be trapped in a geometric area of phase space over long periods of time for ranges of the parameter values including the Earth–Moon–Sun system. This model is derived from the general four-body problem by rigorous application of the Hill and restricted approximations. The validity of the Hill approximation is discussed in light of the actual geometry of the Earth–Moon–Sun system. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
19.
Solar sails are a proposed form of spacecraft propulsion using large membrane mirrors to propel a satellite taking advantage of the solar radiation pressure. To model the dynamics of a solar sail we have considered the Earth–Sun Restricted Three Body Problem including the Solar radiation pressure (RTBPS). This model has a 2D surface of equilibrium points parametrised by the two angles that define the sail orientation. In this paper we study the non-linear dynamics close to an equilibrium point, with special interest in the bounded motion. We focus on the region of equilibria close to SL 1, a collinear equilibrium point that lies between the Earth and the Sun when the sail is perpendicular to the Sun–sail direction. For different fixed sail orientations we find families of planar, vertical and Halo-type orbits. We have also computed the centre manifold around different equilibria and used it to describe the quasi-periodic motion around them. We also show how the geometry of the phase space varies with the sail orientation. These kind of studies can be very useful for future mission applications.  相似文献   

20.
Coronal holes (CH) emit significantly less at coronal temperatures than quiet-Sun regions (QS), but can hardly be distinguished in most chromospheric and lower transition region lines. A key quantity for the understanding of this phenomenon is the magnetic field. We use data from SOHO/MDI to reconstruct the magnetic field in coronal holes and the quiet Sun with the help of a potential magnetic model. Starting from a regular grid on the solar surface we then trace field lines, which provide the overall geometry of the 3D magnetic field structure. We distinguish between open and closed field lines, with the closed field lines being assumed to represent magnetic loops. We then try to compute some properties of coronal loops. The loops in the coronal holes (CH) are found to be on average flatter than in the QS. High and long closed loops are extremely rare, whereas short and low-lying loops are almost as abundant in coronal holes as in the quiet Sun. When interpreted in the light of loop scaling laws this result suggests an explanation for the relatively strong chromospheric and transition region emission (many low-lying, short loops), but the weak coronal emission (few high and long loops) in coronal holes. In spite of this contrast our calculations also suggest that a significant fraction of the cool emission in CHs comes from the open flux regions. Despite these insights provided by the magnetic field line statistics further work is needed to obtain a definite answer to the question if loop statistics explain the differences between coronal holes and the quiet Sun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号